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Abstract

Existing automated testing frameworks require
multiple observations to be jointly diagnosed with
the purpose of identifying common fault locations.
This is the case for example with continuous inte-
gration tools. This paper shows that existing solu-
tions fail to compute the set of minimal diagnoses,
and as a result run times can increase by orders
of magnitude. The paper proposes not only solu-
tions to correct existing algorithms, but also con-
ditions for improving their run times. Neverthe-
less, the diagnosis of multiple observations raises
a number of important computational challenges,
which even the corrected algorithms are often un-
able to cope with. As a result, the paper devises
a novel algorithm for diagnosing multiple observa-
tions, which is shown to enable significant perfor-
mance improvements in practice.

1 Introduction

The importance of system debugging cannot be overstated,
given the ever growing complexity of software, hardware
and cyber-physical systems. The best-known principled ap-
proach for system debugging is based on model-based diag-
nosis (MBD), which has a wide range of successful practical
applications. Concrete examples include type error debug-
ging [Stuckey et al., 2003], design debugging [Safarpour et
al., 2007], software fault localization [Jose and Majumdar,
2011], debugging of web services [Ardissono et al., 2005],
spreadsheet debugging [Jannach and Schmitz, 2016], axiom
pinpointing in description logics [Schlobach et al., 2007], and
debugging of relational specifications [Torlak ef al., 2008],
among many others. Although in some settings the focus is
the computation of diagnoses and in others the focus is the
computation of conflicts, it is well-known that each is a min-
imal hitting set of the other [Reiter, 1987].

Since the original seminal work [Reiter, 1987; de Kleer
and Williams, 1987], algorithms for MBD have been the sub-
ject of a number of improvements, enabling the analysis of
ever more complex systems [Huang and Darwiche, 20053;
Pietersma and van Gemund, 2006; de Kleer, 2008; Siddiqi,
2011; Stern et al., 2012; Nica et al., 2013], and also with dif-
ferent fault models [Feldman et al., 2009]. A recent trend
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is the adoption of SAT-based MBD approaches [Feldman et
al., 2010a; Metodi et al., 2014; Marques-Silva et al., 2015].
MaxSAT and MaxSMT are also applied for design debug-
ging and software fault localization [Safarpour er al., 2007;
Jose and Majumdar, 2011].

In software development, the use continuous integration
frameworks such as Jenkins (https://jenkins.io/) and Travis Cl
(https://travis-ci.org/, used by GitHub) has emerged as best
practice. Among other features, these frameworks support the
execution of a (possibly large) number of predefined regres-
sion tests. Failing tests (or observations) require further anal-
ysis to identify possible fault locations. Compared to the stan-
dard MBD setting, the existence of multiple failing observa-
tions can reduce the number of diagnoses but also adds com-
plexity to the analysis, raising the question how to analyze
all observations in a feasible manner. Furthermore, observa-
tions in this setting are user-supplied and determined upfront.
Alternative approaches that impose dependencies among ob-
servations, e.g. sequential diagnosis [Feldman er al., 2010b],
are not an option.

Recent algorithms for analyzing multiple (failing) observa-
tions in software [Lamraoui and Nakajima, 2014; Lamraoui
and Nakajima, 2016]—as our paper demonstrates—are not
guaranteed to only compute minimal diagnoses. Besides the
useless diagnoses that are produced, another downside is that
this approach can lead to prohibitive run times.

Motivated by the limitations of existing algorithms, this pa-
per builds on [Ignatiev ef al., 2017] and has the following
main contributions. First, it provides a principled approach
to the simultaneous analysis of multiple failing observations.
Second, it identifies key limitations in existing algorithms that
analyze multiple failing observations. Third, the paper pro-
poses fixes to such limitations and mechanisms to improve
the performance of the corrected algorithms. Nevertheless,
for realistic systems, the number of possible diagnoses, and
their aggregation can be unmanageable. As a result, the pa-
per develops a novel solution, based on implicit hitting set
dualization. Experimental results, obtained on well-known
benchmarks, highlight the efficiency gains of the proposed
approach.

The paper is organized as follows. Section 2 introduces
notation and definitions used in this paper. Section 3 states
the problem of diagnosing multiple failing observations, and
Section 3.1 details an existing algorithm for solving this prob-
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lem [Lamraoui and Nakajima, 2014; Lamraoui and Naka-
jima, 2016] and its limitations. Section 3.2 investigates how
these limitations can be addressed, and concludes that novel
algorithms are required to tackle larger problems. Section 4
presents a novel scalable algorithm that exploits hitting-set
dualization. Section 5 presents experimental results for stan-
dard MBD benchmarks. Section 6 concludes the paper.

2 Preliminaries

The paper uses standard model-based diagnosis (MBD) def-
initions, used in Reiter’s seminal work [Reiter, 1987] and
most modern references [Reiter, 1987; Siddigi, 2011; Metodi
et al., 2014; Nica et al., 2013]. In line with other recent
work, the weak fault model (WFM) is assumed through-
out. A system description SD is a set of first-order sen-
tences [Reiter, 1987]. The system components, Comps, are
a set of constants, Comps = {cj,...,¢y}. Given a sys-
tem description SD composed of a set of components Comps,
each component can be declared as healthy or unhealthy.
For each component ¢ € Comps, Ab(c) = 1 if ¢ is un-
healthy; otherwise Ab(c) = 0. As in [Feldman ez al., 2010a;
Metodi et al., 2014], SD is represented as a CNF formula:

sD& A (Ab(c) Vv F) (1)

ceComps

where F. denotes the encoding of component c.
Observations represent deviations from the expected sys-
tem behavior. An observation Obs is a finite set of first-order
sentences [Reiter, 1987]. Like SD, it is assumed that the ob-
servation Obs can be encoded in CNF as a set of unit clauses.

Definition 1 (Diagnosis Problem) A system with descrip-
tion SD is faulty if it is inconsistent with a given observation
Obs when all components are declared healthy:

SDAObsA [\ —Ab(c) F L 2)
ceComps

The problem of diagnosis is to identify a set of components
which, if declared unhealthy, restore consistency. The prob-
lem of MBD is represented by the 3-tuple (SD, Comps, Obs).

Definition 2 (Diagnosis) Given —an  MBD  problem
(SD, Comps, Obs), the set of components A C Comps
is a diagnosis if

SDAObsA A Ab(e)n A

cEA ce€Comps\A

-Ab(c) ¥ L (3)

A diagnosis A is minimal if no proper subset A' C A is a
diagnosis, and A is of minimal cardinality if there exists no
other diagnosis A’ C Comps with |A'| < |A].

In this paper, the dual of a diagnosis (often referred to as
a conflict [Reiter, 1987]) is referred to as an explanation. A
minimal diagnosis is a minimal hitting set of the minimal ex-
planations, and vice-versa [Reiter, 1987].

Recent work on MBD exploited propositional encod-
ings and Satisfiability (SAT) solvers, but also MaxSAT
solvers [Safarpour et al., 2007; Feldman et al., 2010a; Nica
et al., 2013; Metodi et al., 2014; Marques-Silva et al., 2015].
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(Each MaxSAT solution is a smallest Minimal Correction
Subset (MCS). A dual concept of MCSes are Minimal Un-
satisfiable Subsets (MUSes) [Birnbaum and Lozinskii, 2003;
Bailey and Stuckey, 2005; Liffiton and Sakallah, 2008].) To
model MBD with MaxSAT [Safarpour et al., 2007; Feld-
man et al., 2010a], SD (see (1)) represents hard clauses,
whereas the soft clauses are unit clauses (—Ab(c)), one for
each component ¢ € Comps. This is referred to as the
basic MaxSAT encoding in this paper. Different MaxSAT
solving approaches can then be applied. Alternatively, the
soft clauses can be replaced by a cardinality constraint and
solved iteratively with a SAT solver. Recent work on SAT-
based MBD [Metodi et al., 2014] develops a more sophis-
ticated model, by using logical equivalence between the un-
healthy variable of a component and its associated CNF en-
coding, and also by exploiting structural properties of the
system description, including graph dominators and sections.
Throughout the paper, the basic MaxSAT encoding of MBD
is assumed [Safarpour et al., 2007; Feldman et al., 2010a;
Marques-Silva et al., 2015]. It should be observed that the
MaxSAT encoding of MBD not only enables computing and
enumerating minimum cardinality diagnoses, but also subset
minimal diagnoses. This paper focuses on efficiently com-
puting and enumerating minimal diagnoses in the presence of
multiple (possibly many) observations.

There is a close relationship between diagnoses and min-
imal correction sets (MCSes), and between explanations
and minimal unsatisfiable subsets (MUSes) [Reiter, 1987;
Birnbaum and Lozinskii, 2003; Bailey and Stuckey, 2005].
Given the inconsistent formula (2), a minimal diagnosis A
is such that (3) is consistent. Thus, A is an MCS of (2).
Similarly, an explanation is a minimal hitting set of the di-
agnoses, and so it corresponds to an MUS of (2). As a result,
enumeration of diagnoses can be obtained by enumeration of
MCSes [Mencia et al., 2015], and enumeration of explana-
tions by enumeration of MUSes [Liffiton and Sakallah, 2008;
Liffiton et al., 2016].

3 Diagnoses for Multiple Observations

MBD can be generalized to multiple inconsistent observa-
tions Obsy, ..., Obs,,. In this setting, (3) is modified as fol-
lows for observation 4, Obs;:

SD; AObs; A \ Ab(c)A /\  —Ab(c)EL (4
ceEA ce€Comps\ A

We assume that the system remains unchanged given different
observations, and so SD; is solely a replica of the system
description SD, where the abnormal variables are shared, but
the components are replicated. The distinct replica for each
observation is required if all observations are analyzed jointly
(as in Equation 5 below), since the actual component output
values can differ for each observation.

Definition 3 (MBD with Multiple Observations) Let Obs;
(1 <7 < m) be a set of observations . With each obser-
vation we associate a replica of the system SD;, but such that
the abnormal variables are shared by the different replicas.
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Comps 2 {z1,22,23,24,01,02}
sb £ /\c€CompS(Ab(c) vV Fe) Observation <7,'17 12,13,14, 15, 01, 02>
Foy 2 CONF(z1 & —(i1 Ad3))
F, 2 NFCoo 5 0) Obs; (0,1,1,0,1,1,1)
Fag £ CNF(z3 « —(i2 A 22)) Obs; <17171’07171v]>
Fzy £ CNF(z4 <> =(22 Ais)) Obss <170a070,17071>
Foq e CNF(o1 +» —(z1 A 23))
Foo £ CNF (o2 <> —(z3 A 24))
(a) C17 circuit (b) MBD formulation (c) Example observations

Figure 1: C17 circuit with an injected stuck-at fault at gate z> and 3 failure revealing observations.

Obsi: D1 = {{z2},{z3}, {21, 24}, {21,02},{24,01},{01,02}}

Obsy: D2 = {{2z2}, {23}, {2}, {02}}

Obsz: D3 = {{z2}, {24}, {02}, {z3,01}}

Table 1: Diagnoses for the Obs;, Obsz, and Obsz shown in Figure 1.

A minimal diagnosis A C Comps is a minimal set such that

7\(SD¢/\Obsi)/\/\Ab(c)/\ /A —AbleEL (5

cEA c€Comps\ A
holds.

Thus, the goal is to find or enumerate subset-minimal (or
cardinality-minimal) diagnoses A C Comps that make the
system consistent with all observations Obs;, 1 < i < m.

Figure 1 shows the C17 circuit from the ISCAS85 bench-
mark suite [Brglez and Fujiwara, 1985], which we use as a
running example. Assume that a stuck-at fault injected in the
circuit forces gate z, to output value O (see Figure 1a). Fig-
ure 1b shows the basic MaxSAT encoding of this faulty cir-
cuit, where the faulty gate is encoded as a constant (z2 <> 0).
Figure 1c depicts three failure revealing observations, i.e. (2)
is inconsistent with each of these observations.

A conceptually simple solution to diagnose multiple obser-
vations is to consider multiple replicas of the system simulta-
neously, one for each observation, and then search for diag-
noses that enable all replicas of the system to become consis-
tent with their corresponding observations. MaxSAT can be
used for solving the resulting problem. In practice, however,
the size of the problem formulation for a non-negligible num-
ber of observations (and the associated search space) renders
this approach infeasible. The next sections investigate alter-
native approaches aiming at scalability.

3.1 Redundant Diagnoses and the DC Algorithm

Given a set of observations {Obs, ..., Obs,,}, D; denotes
the set {A;;} of diagnoses for observation Obs;, with 1 <
1 < m. This section investigates how diagnoses of each in-
dividual observation can be aggregated into diagnoses of the
set of observations.

Definition 4 (Aggregated Diagnosis) An aggregated diag-
nosis for the set of observations is a subset of components
that contains at least one diagnosis from D;, for 1 < i < m,

i.e. the aggregated diagnosis includes one possible diagnosis
for each of the given observations.

Observe that each aggregated diagnosis represents a sufficient
condition for restoring consistency given the set of observa-
tions.

Definition 5 ((Minimal) Covering Set) A covering set 0 C
Comps for the sets of diagnoses D;, 1 < i < m, is such that:
Vi<icm3a, ep; - A;; C 0. A covering set is minimal if there
is no proper subset that is also a covering set.

As proposed in earlier work [Lamraoui and Nakajima, 2014;
Lamraoui and Nakajima, 2016], the set of possible aggre-
gated diagnoses can be obtained by computing all covering
sets of the sets of diagnoses of each observation; however,
the approach of [Lamraoui and Nakajima, 2014; Lamraoui
and Nakajima, 2016] does not guarantee the covering sets to
be minimal.

Concretely, [Lamraoui and Nakajima, 2014; Lamraoui and
Nakajima, 2016] proposes the DiagCombine (DC) algorithm
for computing aggregated diagnoses for a set of observations.
The gist of the DC algorithm is the computation of the cov-
ering sets as described above. Each possible aggregated di-
agnosis is obtained by computing the union of every set of
diagnoses, each associated with a different observation.

Example 1 Let {Obs;, Obsa} represent two observations
with D1 ={{0},{2}}, D2 ={{0},{1,2}} denoting the sets
of diagnoses, one set for each observation.  The set
of aggregated diagnoses for the two observations is:
{{0},{0,2},{1,2},{0,1,2}}. As can be observed, the
aggregated diagnoses {0,2} and {0,1,2} are not subset-
minimal.

Example 2 The sets of diagnoses D;, i € [3], for the faulty
C17 circuit of Figure 1 are shown in Table 1. It is easy to
see that diagnosis {22} is a subset-minimal aggregated diag-
nosis. However, besides reporting it, the DC algorithm would
try to combine {z3 } with the other diagnoses of D;, thus, pro-
ducing a number of non-minimal diagnoses, e.g. {za, z3, 24 }.

As the above examples illustrate, finding covering sets of
the set of diagnoses associated with each observation may
produce diagnoses which are not subset-minimal.

Definition 6 (Redundant diagnosis) An aggregated diag-
nosis A;, that contains a diagnosis for each observation from
a set of observations, is redundant if it is not subset-minimal,
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i.e. there is another aggregated diagnosis A;, © # j, such
that A C A,.

Example 3 With respect to the diagnoses listed in Exam-
ple 1, the redundant aggregated diagnoses are: {0,2}, and
{0, 1, 2}. Moreover, the non-redundant aggregated diagnoses
are: {0}, and {1,2}. Regarding the diagnoses for the faulty
C17 example, plenty of redundant aggregated diagnoses can
be seen, e.g. those combining component zo with the other
individual diagnoses. The unit-size diagnosis {22} is an ex-
ample of a non-redundant aggregated diagnosis.

Proposition 1 Given a set of observations
{Obsy,...,0bs,,}, the number of redundant diagnoses
for the set of observations is in the worst-case exponential on
the number of components.

Proof. [Sketch] For each observation, the number of
diagnoses is worst-case exponential on the number of com-
ponents. It is simple to conceive two observations, one with a
small number of diagnoses, and the other with exponentially
many, such that those exponentially many diagnoses will
only serve to produce redundant aggregated diagnoses given
the two observations. a

Example 3 illustrates the argument used in the proof above.

The DC algorithm [Lamraoui and Nakajima, 2014; Lam-
raoui and Nakajima, 2016] overlooks the possibility of redun-
dant diagnoses being computed. The number of such redun-
dant diagnoses can be exponentially larger than the subset-
minimal diagnoses.

3.2 Improvements of the DC Algorithm

A simple fix to the DC algorithm is to compute all covering
sets of the diagnoses of each observation, aggregating each
as an explanation given the observations, and then filtering
the non-subset minimal diagnoses. This solution ensures that
redundant diagnoses will be eliminated. Nevertheless, a po-
tential problem with this solution is that redundant diagnoses
are first generated and then discarded. Clearly, if there are
exponentially many redundant diagnoses, this process can in-
cur significant overhead. An alternative solution is to devise
conditions which curb the generation of redundant diagnoses.

Proposition 2 Suppose these exists a diagnosis Ay that oc-
curs in every set of diagnoses D;, i = 1,...,m associated
with Obs;. Then, A; occurs in the set of aggregated diag-
noses Cr, and the aggregation of A with any other diagnosis
is redundant.

Proof. [Sketch] Immediate by noting that the eliminated
aggregated diagnoses will be proper supersets of aggregated
diagnoses that are guaranteed to be computed.

Example 4 Revisiting Example 1, we see that given that {0}
occurs in all sets of diagnoses, there will be no other non-
redundant aggregated diagnosis that also includes {0}.

Proposition 3 Suppose there exists a diagnosis Ay € Dy,
such that for every set of diagnoses D;, there exists A;; € D;
with Ay; C© Ay Then, A, occurs in the set of aggregated
diagnoses Cr, and the aggregation of A with any other di-
agnosis is redundant.
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Proof. [Sketch] Clearly, combining A; € D, with every
Ay € Dy, i # s, st Ayy C Ay, results in A, being a
minimal aggregated diagnosis. Hence, aggregation of A,
with any other diagnosis is redundant. O

Example 5 Revisiting again Example 1, we see that {1,2}
occurs in one set of diagnoses, and {2} occurs in the other.
Thus, {1, 2} must occur in the aggregated set of diagnoses.
Observe that the same condition can be used to explain why
{0} must occur in the aggregated set of diagnoses.

Remark 1 If some diagnosis appears in the aggregated set
of diagnoses, then there is no need to attempt to use it for
computing other aggregated diagnoses; each can be viewed
as a fixed diagnosis.

Example 6 Consider the faulty C17 circuit and the sets of
individual diagnoses shown in Table 1. Assuming that the
target set of all non—redundant aggregated diagnoses is de-
noted by 1, Proposition 3 enables one to conclude that
{{ZZ}a {Zla Z4}a {Zl7 02}) {Z37 01}7 {247 01}7 {017 02}} c D,
without computing the covering sets as in DiagCombine. Fur-
thermore and as discussed in Remark 1, there is no need to
combine these diagnoses with any other diagnosis, i.e. they
can be dropped from Dy, D3, and Ds. The remaining sets
of individual diagnoses yet to be combined are thus D} =

{{zs}}, Dy = {{zs}, {24}, {02}}, and Dy = {{z4}, {02}}.

Remark 2 The previous results suggest that there are condi-
tions under which some diagnoses behave as absorbing ele-
ments of the operation of aggregating diagnoses.

Although Proposition 2 and Proposition 3 enable a signif-
icant reduction of the number of redundant aggregated diag-
noses, it is also the case that the conditions are not complete,
in the sense that redundant diagnoses can still be generated.

Example 7 Let us consider a universe of three ob-
servations ~ {Obsy, Obsy, Obss}, with  the  follow-
ing sets of diagnoses, one for each observation:
{D1 = {{3}}, Dy = {{3}. {4}, {6}}, Ds = {{4},{6}} }

The set of aggregated diagnoses for the three observations
is: {{3,4},{3,6},{3,4,6}}. As can be observed, the
aggregated diagnosis {3,4,6} is redundant. However, the
conditions of Proposition 2 and Proposition 3 do not apply.

Example 8 A similar observation can be made with re-
spect to the faulty CI17 system. From Example 6, re-
call that after applying the condition of Proposition 3 to
detect and then filter out a few minimal aggregated di-
agnoses, the sets of remaining diagnoses to be combined
with use of the covering sets are D} = {{z3}}, D) =
{{z3},{z1},{02}}, and D = {{z4},{02}}. The result of
the exhaustive covering set computation for D}, D}, and D},
is {{z3, 24}, {23, 02}, {23, 24, 02} }. Observe that the last ag-
gregated diagnosis, i.e. {23, 24,02}, is redundant.

While one could devise additional conditions addressing the
examples above, the testing of such conditions incurs added
overhead. Moreover, some other cases might not be covered
by those additional conditions. The main conclusion is that
it seems unrealistic to propose a closed set of conditions for
filtering redundant diagnoses which runs in polynomial time.
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Algorithm 1: Enumeration of minimal diagnoses
input : SD, Obsy,...,Obs,,
Olltpllt: D= {Al, AQ .. .}, U= {ul,UQ .. }
1 (H1,...,Hm,S) <+ Encode(SD, Obsy, ..., Obs,,)
2 (D, 1) < (0,0)

3 while true:

4 (st,A) + MinHS(U,D) #find a min HS of U 5.t. D

5 if not st:

6 break

7 foreachic {1,... ,m}:

8 (st,k) < SAT(H; U (S\ A))

9 if not st:

10 U + Reduce(k) #U is MUS of
HiU(S\A)

1 U+~ Uu{u}

12 ReportExpl(U) # report min explanation

13 break

14 else: # if the loop was not broken

15 D+ DU{A} # block diagnosis A\

16 ReportDiag(A) # report min diagnosis

7 foreachi € {1,...,m}:

18 if not SAT(H; UD):  #no more diagnoses exist

19 return

20 return

Furthermore, there are far more effective alternatives, which
are investigated in the next section.

4 Implicit Hitting Set Dualization

This section develops an alternative algorithm which, given a
(possibly large) set of observations, computes the final set of
aggregated diagnoses. By construction, it filters out all redun-
dant (non-minimal) diagnoses. Additionally, the algorithm
computes (and can report) a number of explanations. In con-
trast with the approaches described in Section 3 and earlier
work, the proposed approach is shown to scale in practice.

The proposed approach builds on recent work on hitting set
dualization, which has been investigated in different contexts
[Chandrasekaran et al., 2011; Davies and Bacchus, 2011;
Stern et al., 2012; Liffiton et al., 2016; Saikko et al., 2016].
(However, these ideas can also be traced to the seminal work
of Reiter [Reiter, 1987], and have been studied in differ-
ent settings over the years, e.g. [Bailey and Stuckey, 2005;
Liffiton and Sakallah, 2008] among others.)

The proposed approach is summarized in Algorithm 1.
Let us denote the set of all subset-minimal aggregated diag-
noses of a faulty system by D (analogously, the set of ex-
planations is denoted by U). Each A; denotes a computed
aggregated minimal diagnosis, and each I{; denotes a com-
puted minimal explanation. Also, the basic MaxSAT encod-
ing is assumed, i.e. given a system description SD and a list
of observations Obsy, ..., Obs,,, function Encode() con-
structs m replicas of the CNF encoding for SD in the form
of (hard) formulas H1, ..., H,, and a set of (soft) clauses S
used for enabling/disabling the components of SD. Although
the paper focuses mainly on computing subset-minimal di-
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agnoses, the same algorithm can be used for computing
cardinality-minimal diagnoses. The only difference is the im-
plementation of function MinHS(), which can be instructed
to compute either subset-minimal or cardinality-minimal hit-
ting sets of a given set of explanations. As proposed in
earlier work [Bailey and Stuckey, 2005; Stern et al., 2012;
Liffiton et al., 2016], the algorithm iteratively computes min-
imal diagnoses and minimal explanations, and reports them
in every iteration of the algorithm. The key objective is to
find a new minimal hitting set of all explanations extracted so
far (see line 4), at each iteration of the algorithm. (Passing
D as an argument to MinHS() blocks all previously com-
puted diagnoses.) If the minimal hitting set of the expla-
nations is not an aggregated diagnosis, i.e. it is not a diag-
nosis for at least one of the observations (this is checked'
on line 8), then a new (missing) minimal explanation is ex-
tracted® (line 10), which is then added to the set of mini-
mal explanations U (see line 11). If the computed minimal
hitting set is indeed an aggregated diagnosis (for all obser-
vations), then it is discarded for future iterations by block-
ing the same hitting set from being computed (line 15). Ob-
serve that Algorithm 1 follows the setup of the prior instan-
tiations of the implicit hitting set enumeration in the context
of MaxSAT [Davies and Bacchus, 2011; Liffiton et al., 2016;
Saikko et al., 2016] and its correctness relies on the known
hitting set duality between MCSes and MUSes of a formula.

In contrast with other enumeration approaches proposed
recently [Liffiton et al., 2016], which can be viewed as tar-
geting enumeration of explanations, Algorithm 1 will ter-
minate as soon as all aggregated diagnoses have been com-
puted, even if some explanations have not yet been identi-
fied (see lines 17-19). Indeed, as soon as all diagnoses for
some observation have been computed and blocked, one can-
not find another way to recover consistency for that observa-
tion. (Observe that this technique is standard in MCS enumer-
ation [Mencia et al., 2015; Previti et al., 2018; Grégoire et al.,
2018] and, thus, the direct correspondence between MCSes
of an unsatisfiable formula and diagnoses for a faulty system
enables us to adapt the technique here.) The lines 17-19 can
in practice be made optional if the goal is to compute some
number K of aggregated diagnoses.

In theory, a potential drawback of Algorithm 1 is that it
can compute an exponentially large number of explanations
in between computed diagnoses (if the system has this many
explanations). Given that every iteration of the algorithm re-
quires an NP oracle call, this may be infeasible. However,
the experimental results in Section 5 demonstrate that this
worst-case scenario is not observed in practice. This is well
in line with other successful uses of the implicit hitting set
paradigm, where hitting set based algorithms outperformed
alternative approaches and significantly pushed the state of
the art [Davies and Bacchus, 2011; Ignatiev e al., 2015;

"Here, a SAT oracle call is made w.r.t. formula #;U(S\ A). The
oracle returns a status St and an unsatisfiable core ~ of the formula.
Note st = true and x = () whenever the formula is satisfiable.

“Similarly to recent algorithms for MUS enumeration [Liffiton
et al., 2016], an off-the-shelf MUS extraction algorithm can be used
in Reduce().
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Previti et al., 2015; Arif et al., 2015; Ignatiev et al., 2016b;
Liffiton et al., 2016; Ignatiev et al., 2016al.

5 Experimental Results

This section evaluates three approaches to MBD with multi-
ple failing observations: the DiagCombine approach of [Lam-
raoui and Nakajima, 2014; Lamraoui and Nakajima, 2016],
its improved version implementing the ideas of Section 3.2,
and, finally, the approach based on hitting set dualization
(see Section 4). The experiments® were performed in Ubuntu
Linux on an Intel Xeon E5-2630 2.60GHz processor with
64GByte of memory. The time and memory limits for each
individual instance were 1800s and 10GByte, respectively.

A prototype of the iterative hitting set dualization approach
referred to as HSD was implemented in C++ and consists of
two interacting parts. One of them computes subset-minimal
or cardinality-minimal hitting sets of the set of explanations
(see MinHS() in Algorithm 1). The other part tests consis-
tency of the system provided that the hitting set components
are disabled. (The consistency checks are done using the
Glucose 3 SAT solver [Audemard et al., 2013].) In the per-
formed evaluation, HSD is configured to compute cardinality-
minimal diagnoses although enumeration of subset-minimal
solutions is also supported. Subset-minimal hitting sets are
computed with the use of the LBX algorithm [Mencia et al.,
2015] for enumerating MCSes for a given unsatisfiable for-
mula while enumeration of cardinality-minimal hitting sets
is achieved with the use OLLITI/RC2 [Morgado erf al., 2014;
Ignatiev e al., 2018], the best performing MaxSAT algorithm
from the MaxSAT Evaluation 2018.

Both DiagCombine and its improved version were also im-
plemented as prototypes*, which in the following are referred
to as DC and DC*, respectively. DC implements the algo-
rithm of [Lamraoui and Nakajima, 2014] while DC* imple-
ments the improvement discussed in Section 3.2. Both tools
make use of the LBX algorithm for doing exhaustive enumer-
ation of the individual diagnoses for each failing observation.
As in HSD, Glucose 3 is used in DC and DC* as an under-
lying SAT solver. As discussed in Section 3.1, both DC and
DC* compute a number of non-minimal diagnoses, i.e. the
redundant diagnoses resulting from the combination step.

The test instances build on the ISCAS85 benchmark
suite [Brglez and Fujiwara, 1985]. To mimic a faulty system,
single stuck-at faults were injected into every gate of each IS-
CASSS5 circuit. Assuming that each of n gates of a circuit can
be stuck at either O or 1 results in 2n faulty circuits. Each
of the 2n circuits was used to generate 100 unique observa-
tions revealing the corresponding failure. The observations
were obtained by using SAT to compute a satisfying assign-
ment for a miter connecting the original (correct) ISCAS85
circuit and its faulty counterpart (in which one of the gates
was stuck at either O or 1). To illustrate the main points of the

3The implementation of the considered approaches as well as
all the benchmarks used are available online at https://github.com/
alexeyignatiev/mbd-mobs.

*Although DiagCombine was implemented in Python, it was
written on top of the PySAT toolkit [Ignatiev et al., 2018], which
makes use of the original low-level implementations of SAT solvers.
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paper, the experiment targets the scenario in which multiple
observations improve the quality of model-based diagnosis by
reducing the number of fault candidates. Therefore, we con-
sidered only instances with at most 100 aggregated minimal
diagnoses in total. We did not control the number of individ-
ual diagnoses per observation.” The number of benchmark
instances generated in this non-exhaustive way is 144.

Figure 2 depicts how the considered tools compare both in
terms of running time and quality of solutions reported, i.e.
the number of the final aggregated diagnoses. As shown® in
Figure 2a, HSD extensively outperforms both variants of Di-
agCombine. It is able to efficiently solve all 144 problem in-
stances. The original DC solves 110 benchmarks while DC*
can successfully deal with 128 instances. In terms of run-
ning time, DC and DC* are on par with each other, while
HSD outperforms both of them by 2—4 orders of magnitude.
In light of the downsides of DiagCombine discussed above,
this result is not surprising. Figure 2b and Figure 2c confirm
this intuition: Figure 2b details the number of individual di-
agnoses, which DC (and also DC*) has to compute during the
first step of the DiagCombine algorithm, i.e. when enumerat-
ing diagnoses for each failing observation separately. Here,
the number of individual diagnoses is compared to the num-
ber of the aggregated minimal diagnoses (computed by HSD).
Recall that, by construction, each benchmark has at most 100
aggregated minimal diagnoses. This contrasts with the num-
ber of individual diagnoses that in some cases are more than
103, which constitutes about 5 orders of magnitude differ-
ence. The situation becomes more dramatic during the sec-
ond step of the DiagCombine algorithm, i.e. after combining
the diagnoses all together. This is detailed in Figure 2c. Here,
the color bar of the right-hand side indicates the number of
non-redundant aggregated diagnoses, ranging from 1 to 100.
Thus, each point in the scatter plot shows the number of cor-
rect minimal diagnoses and the number of redundant diag-
noses computed by DC and DC*. As one can observe, the
improvement proposed in Section 3.2 enables DC* to signif-
icantly reduce the number of computed redundant diagnoses.
Concretely, it drops by 1-6 orders of magnitude. However,
in many cases DC* still computes 10-20000 non-minimal di-
agnoses. This together with the necessity to enumerate all
individual diagnoses before their aggregation, is deemed to
be a major limitation of the algorithm. In this situation, it
seems natural to opt for a more efficient alternative based on
the hitting set dualization.

Note that the experimental evaluation targets a realistic sce-
nario where a significant number of observations is consid-
ered simultaneously (e.g. see the Jenkins and Travis Cl sys-
tems). The evaluation is conducted on a family of standard
benchmarks and shows a clear advantage of the proposed
hitting set based approach in practice. Nevertheless, it is

SA faulty system with its 100 observations was discarded if it
had more than 100 minimal aggregated diagnoses, eliminating some
faulty systems from the experiment. We emphasize that this filtering
was done after the observation generation phase. However, one may
come up with another range of observations for the same faulty sys-
tem, which could result in a smaller number of minimal diagnoses,
in which case the system could still be considered.

®The Y-axis is scaled logarithmically in Figure 2a.
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Figure 2: Comparison of DC, DC*, and HSD in terms of the running time and the number of diagnoses computed.

not guaranteed to significantly outperform other approaches
in all possible practical settings. As mentioned above, if a
faulty system has an exponential number of explanations, Al-
gorithm 1 may end up enumerating them. However, the ex-
perimental results shown here do not exhibit this worst case
behaviour, and on the contrary demonstrate that the existing
alternative of exhaustive enumeration of individual diagnoses
and their posterior aggregation is inefficient in practice.

6 Conclusions

The emergence of continuous integration frameworks moti-
vates the need for approaches for diagnosing multiple failing
observations in model-based diagnosis. As shown in this pa-
per, existing algorithms can produce non-minimal diagnoses,
in unmanageable numbers. The paper develops simple op-
timizations to existing algorithms. The proposed improve-
ment is to filter non-subset-minimal aggregated diagnoses,
but their number can be unwieldy. Moreover, the optimiza-
tions proposed involve conditions that prevent non-minimal
diagnoses from being generated. As shown in the paper, even
with these improvements, many test cases cannot be solved
within a given timeout. As a result, to address the perfor-
mance bottleneck of aggregating diagnoses, the paper devises
a novel hitting set dualization approach. The use of hitting set
dualization outperforms by orders of magnitude not only ex-
isting algorithms, but also the improvements proposed in this
paper. Although the standard setting of MBD was used in the
paper, the proposed ideas apply in any practical deployment
of MBD, including software fault localization and design de-
bugging, among others. This is the subject of future work.
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