Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Acquiring Integer Programs from Data

Mohit Kumar, Stefano Teso and Luc De Raedt

KU Leuven
{mohit.kumar,stefano.teso,luc.deraedt } @cs.kuleuven.be

Abstract

Integer programming (IP) is widely used within op-
erations research to model and solve complex com-
binatorial problems such as personnel rostering and
assignment problems. Modelling such problems is
difficult for non-experts and expensive when hir-
ing domain experts to perform the modelling. For
many tasks, however, examples of working solu-
tions are readily available. We propose ARNOLD,
an approach that partially automates the modelling
step by learning an integer program from exam-
ple solutions. Contrary to existing alternatives,
ARNOLD natively handles multi-dimensional quan-
tities and non-linear operations, which are at the
core of IP problems, and it only requires examples
of feasible solution. The main challenge is to ef-
ficiently explore the space of possible programs.
Our approach pairs a general-to-specific traversal
strategy with a nested lexicographic ordering in or-
der to prune large portions of the space of candi-
date constraints while avoiding visiting the same
candidate multiple times. Our empirical evaluation
shows that ARNOLD can acquire models for a num-
ber of realistic benchmark problems.

1 Introduction

Integer programming (IP) is a widespread framework for
modelling and solving complex combinatorial problems such
as scheduling, packing, routing, efc. [Nemhauser and Wolsey,
1989]. Real-world IP models consist of multi-dimensional
decision variables (e.g. schedules) tied together by complex
constraints. Designing integer programs requires technical
know-how beyond the level of non-experts, and can be time-
consuming and expensive. This hinders the adoption of IP.

In many applications, however, example solutions of rea-
sonable quality are readily available. For instance, in
nurse rostering, the hospital has access to past nurse sched-
ules. In line with the previous work on constraint acquisi-
tion [De Raedt et al., 2018; Bessiere et al., 2017; Beldiceanu
and Simonis, 2012], we propose to partially automate the
modelling process by acquiring integer programs directly
from working solutions, i.e., positive examples.
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Existing approaches to constraint acquisition have not been
designed to handle this setting. First, most of them are ill-
equipped to deal with structured (e.g. multi-dimensional)
variables and non-linear constraints, which are the norm in
integer programming. Furthermore, most of them require ex-
amples of negative (i.e., infeasible) configurations, which are
often unavailable in applications.

We contribute ARNOLD, for AcquiRing NOn-Linear moD-
els, a novel approach to learn integer programs from positive
example solutions. ARNOLD relies on a tensor-based lan-
guage for describing polynomial constraints between multi-
dimensional quantities, which are common in integer pro-
grams. This representation enables handling several con-
straints (namely, one per element) at once. Our approach
cleverly enumerates the potential IP constraints and collects
those that are satisfied by the example solutions. This is
guaranteed to produce a valid IP model, but it requires the
evaluation of a large number of candidates. In line with ap-
proaches to inductive logic programming [De Raedt, 2008;
De Raedt and Dehaspe, 1997] and graph mining [Jiang et al.,
2013], we use two strategies to manage the enumeration pro-
cess: a general-to-specific search scheme that prunes away
large portions of the search space, and a nested lexicographic
ordering that avoids enumerating the same constraint twice.

Summarizing, our contributions include: (1) A constraint
language for representing and manipulating typical integer
programs, (2) ARNOLD, a novel algorithm for acquiring inte-
ger programs from examples of feasible (but not necessarily
optimal) solutions, and (3) An extensive empirical analysis
on a number of integer programs, showing that ARNOLD can
acquire good quality programs from a handful of examples.

2 Learning Integer Programs

We aim to automatically acquire (polynomial) integer pro-
grams from positive examples. Since IP often relies on multi-
dimensional quantities, we start by introducing the required
notation.

As for notation, scalars x are written in lower-case, ten-
sors X in bold upper-case, and sets X in calligraphic upper-
case. Given a tensor X, its elements are indicated as X ; x,
its indices are referred by index (X), and the ranges of those
indices as range (X). For instance, if X € {0,1}?*5 has
indices i and j, then index (X) is {7, j} and range (X) is
{1,...,3} x {1,...,5}.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

All operations and comparisons between tensors are im-
plicitly element-wise. For instance, if X and Z have identical
dimensions, then (X + Z); ; = X;; + Z; ; for all 4, j. In
IP, tensor indices often represent semantically distinct enti-
ties, like objects to be packed or employees to be scheduled.
For this reason, when performing operations across tensors
we implicitly match indices with the same name. For exam-
ple, if index (X) = {7,7} and index (Z) = {i, k, ¢}, then
index (XZ) = {Z,j,k,é} and (XZ)Z'J"]C,[ = Xm-ZUM. A
tensor satisfies a condition if all of its elements satisfy that
condition, e.g., X < Z holds iff V4, j, k, £ . X; j < Z; . ¢

2.1 Integer Programs

Let us introduce a toy integer program for nurse roster-
ing [Burke er al., 2004; Smet et al., 2013].

Example. Consider a small hospital with five nurses. The
goal is to find a seven day schedule, where every day has
three shifts, such that a minimum number of at-least-medium
skilled nurses are always available. Let X € {0,1}°*7*3 be
a decision variable such that X,, q s encodes whether nurse
n works on shift s of day d, V € {0,1}® (resp. M, L) in-
dicate which nurses are very skilled (resp. medium or low
skilled), and R € N7*3 be the minimum number of skilled
nurses required in each shift. Then, an integer program for
this problem can be written as:

find X
s.t. En Van,d,s + Zn Man,d,s > Rd,s Vd, S (1)

This example captures some important aspects of typical
integer programs: a) The decision variables (i.e. the quanti-
ties determined by the IP solver, like X above) and the con-
stants (all the other quantities, such as R, V, M, L) are non-
negative integer tensors of arbitrary dimensions. We use V
and C to indicate the set of tensor variables and constants,
respectively, and 7 = V U C to indicate all the tensors ap-
pearing in the program. We stress that the constants C (e.g.,
the skill levels) are often known beforehand. b) The con-
straints only include sums, products, and comparisons among
tensors; in other words, they are polynomial inequalities. The
caveat is that the variables and the value of the polynomial
can be multi-dimensional. ¢) The constraints are non-linear,
that is, they include products among tensors (constants and
decision variables alike). This holds for both linear and non-
linear integer programs. d) This is a satisfaction problem.
Satisficing problems, where the goal is to find a configuration
that is “good enough” according to some objective function,
are subsumed as a special case, as discussed below.

For these reasons, we focus on IP programs P of the form:

find V st g;(V) <Z,

where g1, ..., gn are polynomials of VV with coefficients in
C,and Z,,...,Z,, are constants in C. Such integer programs
can be viewed as sets of polynomial constraints. Given P, a
solution is a value assignment to the decision variables in VV
that satisfies all the constraints in P. Abusing notation, we
write value assignments as )V too. We use P |= V to indicate
that a value assignment V is feasible with respect to P, that
is:

i=1,2,....m

VEP < Vi=1,....m.g;(V) < Z;
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We will also say that V satisfies P. The set of solutions of P
is written Sol (P) = {V : V E P}.

Observe that this setup also captures satisficing scenarios,
where an (integer polynomial) objective f()) is given and
the goal is to find solutions satisfying f(V) > 6, for some
threshold #. More generally, pure 01 integer programming
is extremely expressive, as it subsumes propositional logic.

2.2 Problem Statement

Our aim is to simplify the modelling step by acquiring a pro-
gram Py, from a set of examples of feasible solutions. This
can be formalized as follows:

Definition (Integer Program Learning). Given a set of tensor
constants C, tensor decision variables V, and feasible solu-
tions D = {V1,...,V,} taken from some unknown integer
program, find an integer program Py, that is satisfied by all
examples, i.e., Vi.V; E Pr.

The estimated model can be used to produce new schedules
that are as good or better than the example ones. Of course,
the learned program can be validated or extended by domains
experts, for instance to include corner cases that were not ob-
served in the data. At the same time, the domain experts could
already have specified constraints that need to be part of the
model Pr,.

Notice that we do not assume the input examples to be
optimal, which would be very hard to guarantee in practice.
Rather, we make the more realistic assumption that they rep-
resent desirable solutions, e.g., past schedules that were ob-
served to work well in practice. For instance, existing sched-
ules are often the result of a laborious process of trial-and-
error, where the administration of a hospital tried out different
alternatives and retained the ones that worked well enough.
Of course, in general, the higher the quality of the examples,
the better the solutions of the learned program.

3 Learning Integer Programs with ARNOLD

We propose ARNOLD (for AcquiRing NOn-Linear moDels),
an approach for learning integer programs that acquires poly-
nomial constraints from examples of feasible solutions. In
order to do so, ARNOLD relies on a language for expressing
and manipulating the constraints, which we introduce next.

3.1 The Constraint Language

The basic elements of our constraints are ferms, that is, ex-
pressions like Edd V.. X4, (see Eq. 1). Formally, a term
has the form:

termy, x = Z(il,iz,..i)Erange(I) [xex Xz, (2)

where X C T is a set of the decision variables and constants
appearing in the product, both of which can be a tensor. For
example, in Zd)s V.. X d,s» VY is a 1-d constant while X, g ¢
is a 3-d decision variable. Z represents the set of indices
being summed over. For consistency, the indices Z are re-
quired to actually appear in the tensors in X, that is, Z C
Uxex index (X). Notice that terms are themselves multi-
dimensional quantities. In particular, the indices of a term
are the indices that appear in its tensors but are not summed
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0<Z

Figure 1: Recursive refinement of a most-general constraint (0 <
Z) € p(T). The levels illustrate three specialization schemes:
adding a term, elongating a product and adding an index. W, X
and Z have values greater than or equal to 1 and have single index .

over, namely index (termz x) = [Uxc y index (X)\Z. In the
above term Z is {d, s}, which is indeed a subset of {n,d, s},
and the term’s indices are {n,d, s} \ {d, s} = {n}.

The constraints we consider have the form:

> o termze yr < Z 3)

As in Eq. 1, the left-hand side is a sum of terms. The sum
implicitly iterates over all terms appearing in the constraint.
To be a well-formed constraint, all terms in the sum must
have the same dimension. For instance, if index (A) =
index (X) = {n,d, s} and index (B) = index (Y) = {n, d},
then Z[LS AnXnds + 2 gBdYn,a is well-formed, because
both terms have dimension {n}. The right hand side is a sin-
gle tensor constant Z € C.

Importantly, since tensor comparisons are element-wise,
all of the indices that are not summed over, namely
index (termz: y1) U index (Z), are implicitly universally
quantified. For example in Eq. 1, the constraint is univer-
sally quantified over {d, s} because index ( >, V, X, 4.5) U
index (Rq,s) = {d, s}. Notice that the indices of the expres-
sion on the left hand side need not be identical to those on the
right. For instance, the constraint X < Z could have indices
{s,n} for X and {s} for Z, as the constraint is universally
quantified over s and n; in other words, this constraint states
that for all s and n, X, ,, < Z,,.

3.2 The Arnold Algorithm

Given a set of feasible solutions D = {V;,...,V,} and a
bias including additional “utility” tensors (such as the all-zero
and all-one tensors), ARNOLD acquires an integer program
‘Pr, using a general-to-specific search strategy that is reminis-
cent of inductive programming, graph mining and constraint
acquisition [De Raedt and Dehaspe, 1997; De Raedt, 2008;
Jiang et al., 2013; De Raedt et al., 2018].

Letting p be the (user-specified) maximum number of ten-
sors in a term and s the maximum number of terms in a con-
straint, ARNOLD cleverly searches the space of all syntacti-
cally correct constraints up to the given complexity and keeps
the ones that are compatible with all examples. It is easy to
see that the number of potential terms is exponential in p and
that the number of candidate constraints is even larger. The
main challenge is thus to avoid enumerating as many candi-
dates as possible. ARNOLD adopts two strategies to prune
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Algorithm 1 The ARNOLD search algorithm.
1: procedure ARNOLD(D: dataset)
2: return REFINE(T, D)
3: procedure REFINE(c: constraint, D)
4 P10
5: if D |= c then
6: P. + {c}
7.
8
9

for ¢’ € p(c) do
P. < P. UREFINE(c/, D)
return P,

the search space: 1) Enumerating the candidate constraints in
a general-to-specific fashion, which allows it to prune away
large parts of the search space; and 2) Using a canonical form
and a nested lexicographic ordering to avoid enumerating the
same constraint twice.

3.3 General-to-specific Search

Given two constraints ¢ and ¢/, we say that ¢ is more specific
than ¢’ (and that ¢’ is more general than c), written ¢ = ¢/,
if and only if all value assignments V that satisfy c also sat-
isfy ¢’. Intuitively, specializations impose more strong con-
ditions in the left hand side of the constraint. For instance,
if P is non-negative, then (X + P < Z) = (X < Z) holds
for any X, Z of compatible sizes. Enumerating constraints in
a general-to-specific order is convenient because, whenever
a constraint c is inconsistent with the examples D, all of the
more specific constraints ¢’ are also inconsistent and can be
efficiently pruned. This is in line with logical and relational
learning, where the generality relation coincides with logical
entailment [De Raedt, 2008].

As in that line of work, ARNOLD performs general-to-
specific search by recursively specializing constraints using a
refinement operator as shown in Fig 1. A refinement operator
p maps a constraint c (or a set of constraints) to a set of more
specific constraints p(c). A complete general-to-specific
search then starts from the maximally general constraint (de-
noted by T), and recursively applies the refinement operator
p, while imposing some pruning.The recursive application of
a refinement operator p is denoted by p” if it is applied recur-
sively n times. Furthermore, p*(c) = p(c) U p?(c) U ...

ARNOLD follows this schema faithfully, see Algorithm 1.
In particular, ARNOLD uses an ad hoc refinement operator
for generating polynomial integer programming constraints,
discussed next. In order to simplify the presentation, we tem-
porarily assume all tensors to be non-negative, i.e., for all
X € 7, X > 0. Notice that, in this case, the most general
constraints are simply p(T) ={0<Z : Z< T}.

3.4 The Refinement Operator

We are now ready to define our refinement operator. In this
definition, we distinguish good tensors satisfying G > 1, bad
tensors satisfying 0 < B < 1, and ugly tensors U, which
are neither good nor bad. All the other unqualified (but still
positive) tensors will be denoted by X, Y, Z. Let c be a well-
formed constraint ) °, termzr y» < Z and termge y¢ be one
of its terms. All specializations ¢’ € p(c) are obtained by
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increasing the left hand side of c through any of the following
operations:

a) Adding a term to the left hand side. For every non-
negative tensor P € 7, adding it as a term:

Zk termzk,xk +P Z Zk termzk,xk

b) Adding an index to a term. For any non-negative term
termge ye > 0, adding another index i to ¢, that is:

termge gy, x0¢ 2> termge ye

For instance, consider a 2 X 2 non-negative tensor tensor
P with indices {i,j}. Then, the sum th P,, =P+
...+ Py 5 is always (element-wise) greater than or equal to
the partial sums Zi Pi,j = (Pl,l + P271,P1’2 + P272) and
> iPij = P11 +P12,Pay+Pop)

¢) Adding a tensor to a product. For any non-negative term
termze ¢ > 0, adding any good tensor G € T to a product:

termgze yey(gy = termege ye

It is easy to verify that, for every ¢’ above, ¢’ |= c.

Notice that none of the above operations changes the right
hand side of c: doing so would amount to replacing the tensor
Z with some other tensor. However, all valid alternatives are
already implicitly enumerated when contructing p(T).

3.5 Dealing with Bad Tensors

For bad tensors, which have elements between 0 and 1, cases
(a) and (b) are still valid, but case (c) is not. Indeed, adding a
bad tensor to a product reduces the value of the LHS, rather
than increasing it. The refinement operator has to be extended
with:

d) Removing a bad tensor from a product. Removing a bad
tensor B from any term termgze ye > 0:

termze ye\(py > termge ye

Now, two desirable properties of refinement operators in
our context are: completeness, i.e., p*(T) corresponds to the
set of all well-formed constraints; and non-redundancy, in
that for every well-formed constraint c there is exactly one
sequence of constraints ¢y, ..., ¢, such that ¢; € p(T),co €
pc1),...,c € p(cp). To ensure that our refinement operator
is complete, it should always increase the left hand side of ¢
by the tiniest possible amount. When bad tensors are consid-
ered, the minimal increase is obtained by multiplying together
p — 1 bad tensors, namley B, - ... -B,_;. Consequently, case
(a) has to be revised as follows:

a’) Adding a non-negative term to the LHS. For every non-
negative tensor P € T, adding P Hf__ll B;, that is:

>k termzr yr + PHf;ll B; >3, termgx yk

Of course, in the absence of bad tensors (a) and (a’) coincide.

3.6 Dealing with Ugly Tensors

Unlike good or bad tensors, multiplying a term with an
ugly tensor neither specializes nor generalizes the constraint.
Therefore, the general to specific search fails for this specific
case; that is why ARNOLD uses a more elaborate strategy to
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automatically enumerate them. For each constraint generated
during general to specific search, ARNOLD generates all pos-
sible constraints by multiplying an ugly tensor to any term in
the left hand side and adds this constraint in the enumeration
process. Although this increases the time taken to enumer-
ate all constraints, it ensures the completeness property of the
refinement operator.

3.7 Nested Lexicographic Ordering

Notice that our refinement operator p is not optimal, as dis-
tinct constraints ¢; and co can have the same specialization
¢'. For instance, if T = {X,Y,Z}, then X + Y < Z can be
obtained by specializing either X < Z or Y < Z. In this case,
¢’ and all of its descendants would be enumerated twice.

To avoid this situation, we define a nested lexicographic
ordering over tensors, indices, terms and operations used for
refinement in the following way: (1) p(c) can only use oper-
ations of higher or equal lexical rank compared to the opera-
tions used to reach ¢ from a most general constraint; (2) p(c)
can only modify a term of higher or equal lexical rank com-
pared to the terms modified in ¢; and (3) p(c) can only add or
remove tensors (resp. indices) from a term that have higher
or equal lexical order compared to the tensors (resp. indices)
added or removed from that term previously.

For tensors and indices we used standard alphabetical or-
der. For terms, the one added last has the highest order, so
that p can modify it. For operations, using the wrong order
can make enumeration skip over some constraints. For exam-
ple, in an ordering where (b) < (a’), after adding a term we
can not sum it over any index. To ensure the completeness of
the refinement operator we define the following ordering: (a’)
=< (d) < (c) <X (b). The intuition is that: (a’) < (d), because a
bad tensors must be added to a term before it can be removed;
(d) < (c), since terms added by (a’) have p tensors, we allow
(d) to remove them before allowing (c) to add more; (c) =<
(b), since operators preceding (b) make changes to a term, we
allow (b) to add indexes to any of these modified terms.

3.8 Dealing with Negative Tensors

A side-effect of only allowing non-negative tensors is
that constraints like 37, . X;; > Z, or equivalently
— ZZ j X;,; < —Z, can not be represented. This can be fixed
by allowing both non-positive and non-negative tensors. Do-
ing so amounts to factorizing the sign out of the tensors them-
selves and into the terms and constraints in Eq. 2-3, thus up-
dating them to:

termz y = iZ(u,z‘
Zk} termzk,7x‘k S +7Z

2,...)€range(ZT) HXEX Xilai%m

In doing so, we can safely assume that all tensors in T are
non-negative, w.l.o.g. The tensors which have both positive
and negative values are hard to deal with but are also very
infrequent. We did not encounter any such tensor (Table 2)
and thus leave it for the future work. The refinement operator
must be adapted accordingly. Most importantly, p(T) now
contains all constraints with the most negative possible left
hand side, i.e., the sum of the most negative terms that can be
built with the tensors in 7. We add four more operations in
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Problem P, [V| |C] Largest #G #B #U
knapsack 1 4 5x1 4 0 1
shipping 1 4 4x3 4 0 1
social golfers 1 5 9 x4 6 0 0
assignment 2 4 5x4 5 1 0
capital budget 2 5 4x1 6 0 1
stuckey assighment 2 5 5XDd 6 1 0
schedule 3 5 7Tx1 8 0 0
rostering 3 5 7Tx3 8 0 0
curriculum 3 7 46x8 9 1 0
scheduling bratko 5 6 1x1 10 1 0

Table 2: Properties of the problems used in the experiments, includ-
ing (left to right): number of variables, number of constants, size of
the largest tensor, and number of good/bad/ugly tensors.

p to deal with negative terms. Each of these are analogous to
the operations defined above. For example, similar to (a), re-
moving a negative term from the left hand side of a constraint
c produces a more specific constraint. The complete list is:
e) Removing a non-positive term from the LHS. f) Removing
an index from a non-positive term. g) Removing a good ten-
sor from a non-positive term. h) Multiplying a bad tensor to
a non-positive term. We define an ordering for these added
operations which is just the opposite of the order defined for
the analogous operations earlier. For example, previously it
made sense to add a term before adding an index to that term.
Similarly, now it makes sense to remove an index from a term
before removing the term. The complete ordering of opera-
tions used is given by: (f) = (g) =< (h) = (e) < (") X (d) =
(c) < (b). Notice that the operations for non-positive terms
precedes the ones for non-negative terms because the LHS in
p(T) starts with all negative terms.

We ensure that p produces well formed constraints by al-
lowing it to only add terms compatible with sum, i.e., dimen-
sions of terms must be same. Thus, p is complete as long as
only good and bad tensors are present, and optimal for posi-
tive terms and good tensors. The constraints with ugly tensors
are enumerated separately as discussed above.

4 Empirical Analysis

We addressed the following research questions: Q1) Does
ARNOLD acquire accurate integer programs?  Q2) Is
ARNOLD efficient in practice? Q3) Do pruning and nested
lexicographic ordering reduce the runtime of ARNOLD?
To this end, we used ARNOLD for learning 10 satisfac-
tion/satisficing MiniZinc [Nethercote et al., 2007] benchmark
integer programs', detailed in Table 2. To ensure that learning
is challenging enough, we chose programs with > 5 tensors.

For each program P,, first we sampled examples of feasi-
ble solutions, and then checked how well ARNOLD could re-
cover it. Sampling independent solutions of integer programs
is non-trivial, so we enumerated 10,000 (correlated) solutions
using the Gecode solver [Schulte et al., 2006] and then re-
sorted to reservoir sampling [Tillé, 2011] to obtain a subset

"From github.com/MiniZinc/benchmarks and from
hakank.org/minizinc. Our code is available at
github.com/mohitKULeuven/arnold
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of 125 solutions. Next, we split the dataset into five folds of
25 solutions each and fed ARNOLD with n € {1,2,10,25}
random solutions from one fold as training set, while us-
ing the union of the other four folds for performance eval-
uation. For each learned program Py, we measured its re-
call and precision with respect to the hidden program P,,
namely Pr = [Sol(P.) N Sol(PL)|/|Sol(PL)| and Rc =
[Sol(P.) N Sol(Pyr)|/|Sol(P.)|. Exact computation of these
quantities is not trivial, so they were estimated using sam-
pling: for the recall, the four test folds were used as samples,
while for precision 1,000 solutions were sampled anew from
‘Pr. The procedure was repeated as in 5-fold cross-validation.

Table 1 shows the average precision and recall of the pro-
grams learned by ARNOLD using different target complexity
(s, p), and number of examples n. The parameters used were
(s.p) = (1,1),(1,2),(1,3),(2.1),(3,1). which are large
enough to capture the majority of the benchmark problems,
and n = 1,5,10,25. The performance changes monotoni-
cally with increasing n, so the results for n = 5,10 are not
reported. Blanks indicate time-outs, i.e., > 6h per fold.

In general, increasing s or p increases precision—as more
complex constraints are captured by the learned program—
but it tends to decrease recall if not enough examples are
available. In other words, too complex programs may overfit,
as expected. However, if n is large enough, then ARNOLD
achieves high performance: in 8 out of 10 programs, the pre-
cision and recall both surpass 90%. For instance, when p
increases to 2, captial budget’s precision jumps to 100%, and
similarly, schedule can be learned perfectly if s > 2. No-
tice that these results are obtained using n = 25 examples
at most. Further, the behavior with n = 10 examples is es-
sentially the same (data not reported). The two remaining
programs (social golfers and rostering) represent the satisfac-
tion problem in a slightly incompatible manner (namely, us-
ing equality checks over numerical variables). In principle, a
simple change in representation would make them learnable.
We plan to automate this step in future work. This allows us
to answer Q1: ARNOLD does acquire good IP programs so
long as they are representable in its language, as expected.

Understandably, the number of learned constraints in-
creases with [V|, |C|, s, and p, while it decreases as more
examples are given. With n = 25 examples, ARNOLD learns
50-250 (avg. 160) constraints for s = 1, p = 3, and about
300-1000 (avg. 600) for s = 3, p = 1. This number can be
substantially reduced by pruning entailed constraints. Run-
time also increases along the same dimensions, but only lin-
early in the number of examples. In the most complex task
(s = 3and p = 1), ARNOLD takes 20m-3.5h (avg. 1.5h) to
complete with n = 25 examples. Although it seems that the
scalability is limited, but the learned models can be re-used
multiple times, so it makes sense to use ARNOLD for larger
IPs as well. Question Q2 can thus be answered affirmatively.

To answer Q3, we compared ARNOLD to two naive ver-
sions without general-to-specific pruning or nested lexico-
graphic ordering, respectively. Since the naive algorithms
take much longer to complete than ARNOLD, we compared
them on knapsack, the simplest benchmark program (cf. Ta-
ble 2). Notice that the naive algorithms—by construction—
have the same recall and precision of ARNOLD, so these are
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Problem P, ‘ n ‘ s,p=1,1 ‘ s,p=12 s,p=1,3 ‘ s,p=2,1 s,p=3,1
4 o knapsack 1070, 0.12 | 0.54, .00 0.49, 1.00 | 0.20, 0.20  0.11,0.20
o Without Ordering 25 | 0.99, 0.09 | 0.97, .00 0.96, 1.00 | 0.96, 0.30  0.92,0.32
= Without Entalment shipping 1| 1.00, 1.00 | 1.00, 1.00 0.80, 1.00 | 1.00, .00 1.0, 1.00
g 25 | 1.00, 1.00 | 1.00, .00  1.00, 1.00 | 1.00, 1.00  1.00,1.00
! assignment 1] 0.49, 0.03 | 0.19, .00 0.11, 1.00 | 0.16, 0.06  0.06,0.10
o 3 . 25 | 0.98, 0.01 | 0.98, 1.00 0.98, 1.00 | 0.98, 0.03  0.97,0.03
" Number of Products capital- 1] 0.36, 0.01 | 0.06, .00 0.01, 1.00 | 0.03, 0.04 0.01,0.10
= ol budget 25 | 0.96, 0.01 | 0.95, 1.00 091, 1.00 | 0.92, 0.00  0.91,0.01
©
gi Without Ordering stuckey- 1 0.35, 0.03 | 0.10, .00 0.10, 1.00 | 0.24, 0.76  0.13,0.03
s, Without Entailment assignment | 25 | 1.00, 0.01 | 0.98, 1.00 0.98, 1.00 | 0.98, 0.09 .
K - - schedule 1| 1.00, 0.00 | 0.95, 0.00 0.20, 0.72 | 1.00, 1.00  1.00,1.00
*1 | 25 | 1.00, 0.00 | 0.98, 0.00 0.97, 0.00 | 1.00, 1.00 .
>
<0 2 3 curriculum 1| 0.82, 0.00 | 0.27, .00 0.08, 1.00 | 0.02, 0.00 .
Number of Products 25 | 1.00, 0.00 | 0.96, 1.00  0.96, 1.00 | 0.93, 0.00 .
Figure 2:  Effect of general-to- scheduling- 1 | 0.02, 0.04 | 0.04, 0.40 0.00, 0.50 | 0.00, 1.00  0.00,1.00
specific pruning and nested lexi- bratko 25 | 1.00, 0.00 | 0.92, 0.00 0.91, 0.00 | 0.90, 1.00 °
ﬁff;ﬁ?‘faggdizr’i‘fﬁcgoﬁras"efgf social- 1| 100, 0.00 | 0.71, 0.00 0.68, 0.00 | 0.91, 0.00  0.91,0.00
and p — 1.2.3 (logarithmic scale golfers 25 | 1.00, 0.00 | 1.00, 0.00 0.98, 0.00 | 0.98, 0.00  0.98,0.00
- base 10). Bottom: average num- rostering 1 | 1.00, 0.00 | 0.87, 0.00 0.65, 0.00 | 1.00, 0.00  1.00,0.00
ber of acquired constraints (loga- 25 | 1.00, 0.00 | 1.00, 0.00 0.99, 0.00 | 1.00, 0.00 °

rithmic scale). (Best viewed in

color.)

Table 1: Cells report the average (recall, precision) of the program learned by ARNOLD; n, s, and

p are as in the main text. Bold indicates values above while 90%, e represents time-outs.

not reported. The cross-validated runtime and number of ac-
quired constraints for n € {1,25}, s = 1 and p € {1,2,3}
are shown in Figure 2. As we increase the complexity of
the learned model, ARNOLD becomes much faster compared
to both the naive algorithms: in the most complex setting,
namely p = 3, ARNOLD is more than 8 times faster than the
alternatives. Switching off pruning also increases the number
of constraints learned, by up to 40 times for p = 3.

5 Related Work

Learning IPs from examples has not received a lot of atten-
tion. Existing approaches include ESOCCS [Pawlak, 2019]
and CountOR [Kumar et al., 2018]. ESOCCS is a heuris-
tic approach based on evolutionary optimization. It converts
positive-only learning to binary classification by sampling
negatives from an estimated density. ESOCCS can learn
weighted constraints. Its strategy could be adapted to learn
IP objective functions; we leave this to future work. How-
ever, contrary to ARNOLD, ESOCCS expects the terms to be
enumerated upfront, which is impractical in IP as the num-
ber of terms can be huge. Furthermore, it does not exploit
structure of the set of variables. On the contrary, CountOR
uses tensors to represent and acquire IPs, but it focuses on
a restricted class of constraints capturing ranges of quanti-
ties of interest, which are common in scheduling tasks. In
contrast, ARNOLD acquires arbitrary polynomial constraints,
which are much more expressive.

ARNOLD is based on general principles from constraint ac-
quisition [De Raedt er al., 2018; Bessiere et al., 2017] and
inductive programming [De Raedt, 2008]. Constraint ac-
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quisition has been studied, for instance, by [Bessiere ef al.,
2017] and [Beldiceanu and Simonis, 2012], which both focus
on constraint programming problems rather than integer pro-
grams. One advantage of the IP formulation is that it naturally
ties together sets of variables into tensors, allowing to eas-
ily deal with high-dimensional constraints. [Bessiere et al.,
2017] employ a bi-directional search for finding a constraint
satisfaction problem. Their approach does not exploit struc-
ture on the variables. Recent extensions [Arcangioli et al.,
2016; Tsouros et al., 2018] also neglect multi-dimensional
structures. The most related approach is the ModelSeeker
[Beldiceanu and Simonis, 2012], which learns constraint pro-
grams from positives only by folding the data into tensors of
different shapes. However, it can only deal with a single in-
put vector. ARNOLD instead discovers polynomial terms and
constraints and can deal with multiple input tensors.

ARNOLD’s algorithm is reminiscent of the clausal discov-
ery engine [De Raedt and Dehaspe, 19971, which searches
for a set of clauses (i.e., logical constraints) that hold in
databases. While the algorithm and the use of refinement
are similar, ARNOLD searches a completely different space
of constraints. On the other hand, IPs can also be used to
represent (propositional) logic constraints, and therefore it
could be interesting to use ARNOLD to learn sets of purely
logical constraints. ARNOLD is also be related to systems
that find equations in data [Todorovski and Dzeroski, 1997,
Lloyd et al., 2014]. The difference with ARNOLD is that these
systems focus on continuous distributions and on equations
rather than on integer programs and inequalities.
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6 Conclusion

We presented ARNOLD, an approach for learning integer pro-
grams from examples of feasbile solutions. ARNOLD cleverly
enumerates non-linear inequalities using a general-to-specific
search (based on a novel refinement operator) and a nested
lexicographic ordering. Crucially, ARNOLD exploits multi-
dimensional numerical tensors and handles non-linear opera-
tions among them. Experiments show that ARNOLD can ac-
curately acquire programs from a handful of examples.
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