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Abstract

In this paper, we consider scheduling problems in-
volving resources that must perform complex setup
operations between the tasks they realize. To deal
with such problems, we introduce a simple yet ef-
ficient iterative two-layer decision process that al-
ternates between the fast synthesis of high-level
schedules based on a coarse-grain model of setup
operations, and the production of detailed sched-
ules based on a fine-grain model. Experiments real-
ized on representative benchmarks of a multi-robot
application show the efficiency of the approach.

1 Introduction

In this paper, we consider scheduling problems involving re-
sources for which there exist setup times between the tasks
they must realize, and for which setup times are an abstrac-
tion of potentially complex setup operations which can in-
teract with each other. For instance, in an application where
several robots must be deployed on a field to make observa-
tions of some areas, a setup operation that requires a robot
to go from waypoint A to waypoint B can be approximated
by a constant setup time obtained by a simple shortest path
computation. But in practice, setup operations correspond
to actual robot moves, and the fact that the network of links
between waypoints is a resource that is shared between the
robots must be taken into account to evaluate the actual effi-
ciency of a schedule. In this case, at a detailed level, there can
be several candidate navigation paths to move between A and
B, and each path alternative corresponds to a set of moves on
links of the waypoint graph. Another example is the place-
ment of embedded functions over a multi-core platform [Per-
ret et al., 2016], where embedded functions placed on distinct
cores must potentially exchange data. In this case, the time
required for each data exchange can be approximated by a
constant setup time, but at a detailed level data transfers corre-
spond to packet exchanges concurrently realized on a shared
network. Also, in logistics, transferring an object from one
location to another can be modeled as a simple setup time,
but at a detailed level it might require using a shared fleet of
vehicles whose activities must also be scheduled.
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To take into account all detailed setup tasks, a first option
is to define a unique global scheduling problem containing
all potential setup operations that might be used in an opti-
mal schedule. For the multi-robot application, this leads to a
number of tasks in ©(RO?PL) with R the number of robots,
O the number of waypoints at which observations must be re-
alized, P the maximum number of candidate paths between
two waypoints, and L the maximum number of network links
on a single path. To avoid handling such a huge number of
tasks, another approach is to explicitly break down the prob-
lem into several sub-problems. For instance, we can use a
two-layer decision strategy that first synthesizes a high-level
schedule based on a coarse-grain model of setup operations
(decision layer L1), and then details this schedule based on a
fine-grain model (decision layer L2). The advantage of this
approach is that L2 only needs to consider setup operations
which are actually used in the coarse-grain solution produced
by L1. Such a top-down approach is commonly used in prac-
tice for hierarchical decision making, but as high-level deci-
sions are computed from a coarse-grain model, it can fail to
reach the highest quality solutions. This is why we introduce
a new hierarchical decision strategy that iteratively uses the
two scheduling layers to deal with complex setup operations.
More precisely, each time a new detailed schedule is pro-
duced by L2, input data of the imperfect coarse-grain model
of L1 is updated and a new high-level solution is looked for.
Doing so, L1 iteratively learns a better approximation of the
content of L2, the goal being to converge very quickly to-
wards better full solutions. It is important to note that in the
two-layer mechanism introduced, L1 learns an approxima-
tion which is not necessarily a lower bound on the fine-grain
model of L2, and the approach proposed can be extended even
if L2 is a black-box simulator which does not provide critical
path explanations on the schedules it produces.

The paper is organized as follows. Section 2 recalls some
preliminaries on constraint-based scheduling. Section 3 de-
scribes the two-layer model considered for dealing with com-
plex setup operations. Section 4 defines the iterative two-
layer decision process and discusses related works, especially
logic-based Benders decomposition and surrogate models.
Section 6 illustrates the approach on a multi-robot mission
and shows order of magnitude improvements compared to
an approach modeling a unique large size global scheduling
problem. Section 7 gives some perspectives of this work.
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2 Constraint-Based Scheduling Model

For the different decision layers, we consider a set of tasks T
and a set of disjunctive resources R with setup times. Each
task ¢ € T is defined by a release date rd; (after which it can
start), a due date dd; (before which it must end), and a set of
resources R; C R consumed all along its execution. Tasks
can be mandatory or optional. For each resource r € R and
each pair of tasks (¢, ¢’) successively realized by r, there ex-
ists a setup time setup,.(t,t") € N required between the end
of ¢ and the start of ¢'. Resources in R can also be disjunctive
resources without setup times, in which case the setup time
function always returns 0. We do not consider cumulative
resources, which are left for future work. Formally, we use
constrained-based scheduling models that associate with each
task ¢t € T three basic decision variables, namely a start time
variable start, € [rd;, dd:], an end time variable end; €
[rdy, dd], and a presence variable pres, € {0,1} express-
ing whether the task is present in the solution schedule. Note
that, in some CP modeling frameworks, these decision vari-
ables are clustered as values of a single atomic interval vari-
able. We also associate with each resource r € R a so-called
sequence variable seq, whose value corresponds to a total
ordering [t1,. .., t,] of all tasks which are present and con-
sume r. The set of decision variables of the model is there-
fore V.= (Uier{pres,,start;,end;}) U (U,cr{seq,}).
We also denote by du; the duration of task ¢, defined as the
temporal distance between its start and end times (du; =
end; — start;).

A scheduling model is then defined by a triple (7, R, ¥)
with 7 a set of tasks, R a set of disjunctive resources with
setup times, and ¥ a set of constraints. Constraints in ¥ hold
over the set of variables V' associated with 7 and ‘R and can
for instance be duration constraints on tasks, temporal dis-
tance constraints between tasks, or constraints on the first/last
task realized by a resource. The global constraint expressing
that the tasks consuming the same resource must not overlap
(and be separated by minimum setup times) is considered as
a default constraint which is not included in .

A solution schedule o is an assignment of all variables in
V' that satisfies all constraints in ¥ and all minimum setup
time constraints between successive tasks realized by the re-
sources. A solution schedule o is said to be optimal if it mini-
mizes the makespan 1, defined as the end time of the last task
realized (4 = max;c7 | pres,—1 €nd¢). In the following, for
a variable x € V, we denote by o(z) its value in o, and for
a sequence variable seq, we denote by “(¢,¢') € o(seq,.)”
the fact that ¢ and ¢’ are successive tasks on r according to o.

3 Two-Layer Models for Dealing with
Complex Setup Operations

As mentioned before, our goal is to consider two schedul-
ing layers L1/L2 that represent setup operations at a differ-
ent level of abstraction. At each step, layer L1 considers
a constraint-based scheduling problem Pb; = (71, R, Y1)
and layer L2 considers a constraint-based scheduling prob-
lem Pby = (72, Ra, Vs). For making these two layers inter-
act, a key point is to define the formal relationship between
the scheduling problems they tackle. To do this, we define
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a generic scheme for automatically generating Pby starting
from a solution o found for Pby.

The main idea is to identify in R; the set of disjunc-
tive resources with setup times Rff C R, which are re-

fined by layer L2. For each resource 7 € R, we assume
that there exists a problem-specific function setupRefine,.
which details the setup operations needed for r. More pre-
cisely, for each pair of tasks (¢, ¢’) successively realized by
r in a solution oy to Pby, a call to setupRefine,.(t,t') re-
turns a set of tasks denoted by 7,7/ (¢, '), and a set of con-
straints over these tasks denoted by W7 (¢, ¢'). We assume
that 7,7 (¢, ¢') contains one particular task, referred to as
setupOp,.(t,t'), which spans all other tasks in 7,7 (¢, ').
As shown later, for the feedback phase, once a solution o5 is
found for the scheduling problem of layer L2, it is possible to
return to layer L1 quantities o2 (dWsesupop, (¢,1)) and to use
them to update the abstract setup times setup,.(t, ') in L1.

For layer L2, the set of resources Ry contains R \ R{ef
plus all resources consumed by tasks created by the setup re-
finement functions. Layer L2 takes as constraints the val-
ues of the presence variables and sequence variables obtained
in solution o;. The precise dates found by L1 for present
tasks are not transmitted to L2, to keep some temporal flexi-
bility for L2. Theoretically speaking, the scheduling problem
of L2 also contains all tasks in 77 and all constraints in W,
even if in practice these sets of tasks and constraints can be
pruned to keep only the specifications associated with present
tasks. Last, L2 contains precedence constraints capturing the

ordering of tasks and setup operations over resources in R;ef .
More formally, from the solution ¢y found for layer L1, the
scheduling problem for layer L2 is (72, R2, U5) where:

T = TiU( U T (1)) (1)

TE'R;Ef,(t,t’)Go'l (seq,.)

Wy U ( U
TGRief,(t,t/)Go'l (seq,.)

U{pres, = oi(pres,) |t € T1}
Ufseq, = o1(seq,) | r € R})
U{end; < start,uyop, (1,0 | € R (t,1) € o1(seq,)}

Wy W (¢,1)) 2)

U{end,eupop, 1,1y < starty |7 € R (t,t) € o1 (seq,. )}

In the proposed scheme, the only elements to define for L2

are the setupRefine,. functions for resources r € R;ef .

4 Iterative Hierarchical Scheduling

We now present the interaction between the two layers mod-
eled previously. As explained before, we define an iterative
process in which the solution found by the second layer is
used to update the inputs used by the first one. This process
is illustrated in Fig. 1, where on one hand L1 transmits to
L2 a set of present tasks and a sequence of tasks realized by
each resource, and on the other hand L2 returns the actual
duration obtained for the detailed setup operations. The it-
erations between the layers are performed until a given CPU
time is reached. Note that the purpose of this process is not to
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{o1(pres,)| t € Ti}. {o1(seq,)|r € R}

Layer 1 | /| Layer 2

{o2(Aseripop, 1) 7 € RYT, (8, 1') € o1 (seq, )}

Figure 1: Iterative process using layers.

obtain an optimal solution for the full problem but to get solu-
tions of good quality within a short computation time, which
is more crucial than finding optimality in many case studies.
In fact, as the solutions produced by layer L2 are constrained
by the solutions of layer L1 and as layer L1 works with an
approximation of the global model, the iterative process has
no guarantee to find an optimal solution. We can only say that
if the initial setup times used by layer L1 are lower bounds of
the real durations of setup operations, then the solution pro-
duced by L1 at the first iteration gives a lower bound of the
optimal makespan. That lower bound can be used to evaluate
the distance between the final solution of the iterative pro-
cess and the optimal solution. Algorithm 1 presents a generic
pseudo-code of a process between two layers that use each
others solutions to minimize an objective function. We detail
first the main lines of this pseudo-code and then the imple-
mentation of each function.

The first step of the algorithm is to initialize several ele-
ments, including the solutions o7 and o2 respectively found
by layers L1 and L2 at the last iteration, and the best solution
o* found by layer L2 over all iterations. The best objective
value found by L2 is denoted by 0bj™ (line 1). The input data
for layer L1 is initialized through function initL1 (line 2).

The process runs until a maximum CPU time is reached
(line 3). To escape from local optima, we follow a restart
strategy modeled by function shouldRestart that takes as
parameters the last solutions found by L1 and L2. If a restart
is required, function perturbLl reinitializes a given per-
centage of the input data of layer L1 (line 4). Otherwise, if
layer L2 has found a solution at the previous iteration, the lat-
ter is used by function updateL1 to update setup times for

Algorithm 1 Iterative hierarchical scheduling

Input: cpuMaz, nLoops

Output: ¢* //the best solution found
1 01,02,0% < null, 0bj™ < 400, it + 0
2 initL1()
3 while CpuTimeElapsed() < cpuMaz do
4 | if shouldRestart(oq,02) then perturbL1()
else if 0o # null then updateLl(os)
(T1,R1,91) + createPbL1()
o1 < solve((T1, Ry, ¥1), timeL1(it, nLoops))
if o1 = null then

(T2, R2, ¥s) < createPbL2(0q)
10 o2 < solve((7z2, Rz, U3), timeL2(it, nLoops))
1 if o9 # null A objective(os) < obj™ then
12 | 0bj™ « objective(as), 0* + 0
13 |t ait+1
14 return o*

E=2E- R B N |
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L1 (line 5). The problem to solve by L1 is created (line 6) and
the associated solution is obtained through function solve to
which a maximum CPU time is given. In our case, this CPU
time is computed by a function timeL1 that uses the number
of iterations nLoops desired for the whole process and the
number of loops done so far (line 7). If a solution exists for
layer L1, then it is used to create the problem (73, Ra, V)
that is solved by layer L2 (lines 8-10). If this problem has a
solution, we first compare its objective value to the best one
found so far and update the latter if needed (lines 11 - 12).
The best solution found over all iterations is finally returned
(line 14). We now detail how the functions and parameters
defined previously are instantiated.

e createPbL1, createPbL2 Creates scheduling prob-
lems as described in Section 3.

solve Solves a scheduling problem and returns the best
solution found within the maximum CPU time allocated.

objective In our case, the objective function is the min-
imization of the makespan.

initL1 The data to initialize for layer L1 are the approx-
imate setup time matrices for each resource r. Depend-
ing on the initialization, the algorithm can behave differ-
ently. If the matrices are initialized with lower bounds
of the real durations, then L1 tends to provide optimistic
solutions to L2 and the makespan of solutions can be
greater for L2 than for L1. On the contrary, if the ma-
trices are initialized with upper bounds of the real dura-
tions, then L1 provides pessimistic solutions to L2.

shouldRestart We restart if L2 has the same
makespan during a given number of consecutive itera-
tions. We also restart whenever L1 produces a solution
whose makespan is greater than the best makespan found
so far by layer L2. For L2, we allow lower quality solu-
tions so that L1 can improve its approximation model.

perturbL1l We randomly reinitialize to their initial
value a percentage rateReinit of the setup time matrix
of each resource.

updateL1 To update the abstract setup times of layer
L1 based on the solution given by layer L2 at the pre-
vious iteration, we use a reinforcement learning rate
a €]0, 1] that represents the influence of the actual setup
times produced by layer L2 on the input values of layer
L1. Formally, for each resource r € Rgef ,if L1 sends to
layer L2 a solution o1 where tasks ¢, t" are successively
realized over r, then the solution o3 produced by L2 is
used to update the value setup,.(t, t') at the level of L1
by (1 _a) ’ Setupr(tv t/) +a-o2 (dusetupOp,,.(t,t/))' More
insightful strategies are left for future work.

5 Related Works

The two-layer scheduling approach we propose can first be
related to Bender’s decomposition [Benders, 1962], where
the solutions produced by a first-stage problem are sent to a
second-stage problem that might return new constraints (Ben-
ders cuts) which are violated by the current solution of the
first-stage problem. In our case, layer L2 does not need to
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compute cuts. Instead, it just returns a fine-grain plan from
which the parameters of the coarse-grain model of layer L1
are updated. This can be seen as a light-weight interaction
alternative to Logic-based Benders decomposition (LBBD)
where our goal is to update the “light” information contained
in the setup time values (raw input data of layer L1), and not
to generate constraints (cuts) holding on several decision vari-
ables of layer L1. We emphasize that the purpose of our pro-
cess is not to obtain an optimal solution but to get solutions
of good quality within a short computation time. Also, in
LBBD, the cuts returned are usually valid cuts, i.e. cuts that
only prune suboptimal solutions. The approach we propose
is more flexible since at a given step, each setup time con-
sidered by L1 can be a lower or an upper bound on the real
setup times. We might have setup,.(¢,t") = 10 at a given it-
eration, then setup,.(t, t') = 12 later in the process, and then
setup,.(t,t") = 8, meaning that we update the model of L1
instead of accumulating a conjunction of cuts.

The interaction between L1/L2 is actually closer to works
on approximation models (or surrogate models) for black-box
optimization [Khac Vu er al., 2016]. Indeed, for layer L1, the
computation of a solution through the combinatorial model
of L2 can be seen as the computation of a complex evaluation
function. The latter is summarized in L1 by a matrix of min-
imum setup times between tasks. Each time a new detailed
schedule is available, this surrogate model is updated based
on the real setup times that take into account interferences
between all detailed setup operations. In surrogate models, a
key point is the choice of the next parameters for which the
complex evaluation function (layer L2) must be computed. In
our case, the more promising high-level schedules according
to L1 are evaluated at each step. This also differs from some
iterative incomplete search techniques like Iterated Greedy
Search and Large Neighborhood Search, where at each step
a part of the current solution is modified. Also, some works
have already introduced two-stage decompositions involving
CP models. In particular, [Tran et al., 2017] addresses a
robot deployment application where the decomposition of a
CP model also seeks to improve upon a Full-Model involving
a number of tasks that potentially increases with the number
of robots and locations. In a master problem, it simplifies
the objective function (whereas our layer L1 simplifies the
setup operations), and it does not exploit any feedback from
the subproblem to converge towards better solutions (whereas
our L2 sends feedback to L1). Note that the authors state that
it is not very clear whether the structure of their problem al-
lows for a decomposition such as LBBD to be applied.

Last, several hierarchical planners have been developed in
the planning community, such as CHIMP [Stock e al., 2015],
Meta-CSP [Mansouri and Pecora, 2016], HiPOP [Bechon et
al., 2014], FAPE [Dvorak et al., 2014], ASPEN [Chien et al.,
1999], EUROPA [Barreiro et al., 20121, or PLATINUm [Um-
brico et al., 2018]. These planners use hybrid domain knowl-
edge mixing symbolic, temporal and resource reasoning. All
these ingredients are integrated in an iterative flaw resolution
search technique that tries to repair at each step some flaws
in the plan such as resource over-consumptions. The iter-
ations involved in our search scheme are not used to solve
flaws but to improve the quality of the coarse-grain model

used by the high-level decision layer. The recent planner
GSCCB-SHOP2 [Qi et al., 2017] explicitly integrates task hi-
erarchies, resources, and temporal constraints, but it is how-
ever not available for comparing results.

6 Multi-Robot Case Study

We now illustrate the approach proposed by considering a
multi-robot deployment mission.

6.1 Mission Description

We consider a fleet of robots which must perform observa-
tions of specific areas of a field. Our problem is to allocate
each candidate observation to a robot, schedule the sequence
of observations realized by each robot, and plan navigation
tasks between observation locations. The robots cannot per-
form more than one observation at a time. They must also
transfer observation data in real time to the mission center,
and for this purpose each robot uses a specific emission fre-
quency. To avoid interferences, two robots that use the same
frequency cannot transfer observation data in parallel. Re-
dundancy is also useful in this kind of application, therefore
some observation targets must be observed by several distinct
robots. Moreover, some precedence constraints can be im-
posed over observations. Finally, a graph of waypoints is
used to represent the structure of the field, and the movements
of robots between observation locations can be broken down
into successive movements between pairs of adjacent way-
points. To avoid collisions, each link between two waypoints
cannot be occupied by more than one robot at a time. The
objective is to realize all observations as quickly as possible.

6.2 Work Breakdown Structures (WBSs)

To ease the modeling of L1/L.2, we use Work Breakdown
Structures (WBSs) which can be automatically translated into
a CP model [Laborie et al., 2018]. We describe the WBSs
by reusing terminologies used in Hierarchical Task Network
(HTN) planning [Erol et al., 1994; Nau er al., 2005]. Each
task of the scheduling model can be either primitive or com-
pound. We consider a list of possible decomposition methods
M. = [m¢1,...,m.x] usable for realizing each compound
task c. Each decomposition method m € M, corresponds to
a set of tasks 7, (primitive or compound), and more gener-
ally to a task network (Tp,, ¥, ) where ¥, is the set of con-
straints that hold only over decision variables pres,, start;,
end; associated with tasks ¢t € 7,,.

A Hierarchical Scheduling Problem (HSP) is then defined
by a task network (7o, Uo) called the root task network,
which represents the set of high-level tasks to be realized.
The addressed HSPs are assumed to be well formed, meaning
that each task belongs to a unique task network and that the
set of tasks is finite. Given an HSP, it is possible to generate
a flat CP encoding which contains constraints expressing that
for each present compound task ¢, exactly one of its decom-
position method m is used, and in this case all tasks in 7, are
present and spanned by c. See [Laborie and Rogerie, 2008;
Laborie et al., 2009] for further details. Note that constraints
whose scope is not contained in a single task network of the
hierarchy of tasks can be freely added to the model, thanks to
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Figure 2: HSP for layer L1

the flexibility of Constraint Programming. We now use HSPs
to concisely define the models of L1 and L2.

6.3 Coarse-Grain Scheduling Model: Layer L1

The HSP built for layer L1 is illustrated in Fig. 2. In the
model, the root compound tasks are a set of observation re-
quests Req, corresponding to areas of the field that must be
observed. Each request RQ); € Req is decomposed into sev-
eral (primitive) observation tasks made by N; distinct robots,
the idea being to build a schedule containing some redun-
dancy to be robust to robot failures at execution time. Each
request actually has several possible decompositions, corre-
sponding to the candidate combinations of N; distinct robots
that can perform the corresponding observations. See the ex-
ample of request R()1, which can be realized through primi-
tive observation tasks made by either {ry, 72}, or {r1, 73}, or
{ra,73}. The set of all primitive possible observation tasks is
denoted by Obs, and each of these tasks has a fixed duration,
together with release and due dates equal to 0 and H respec-
tively, where H is the maximum duration of the mission.

Next, the model contains two kinds of resources, namely
the set of robot resources Rob used to realize the observation
tasks and the set of frequency resources JF used to transfer
observation data. Each primitive observation task simulta-
neously requires one robot resource and one frequency re-
source. All frequency resources are simple disjunctive re-
sources (constant setup time equal to 0), while robots are dis-
junctive resources with setup times. For each robot r € Rob
and each pair of candidate observations (i,¢'), setup,.(i,4")
returns the duration required by 7 to move from the location
of observation 4 to the location of observation i’ through the
waypoint network. We extend setup, so that setup,. (0,i)
gives the duration required to move from the initial loca-
tion of r to observation ¢’. In the set of constraints of the
model, we also consider a set of acyclic precedence con-
straints P C Reg X Req between requests. As explained
previously, a CP model can be directly generated from the
HSP illustrated in Fig. 2. Note that the problem solved in
layer L1 is a kind of Sequence Dependent Setup Time Job
Shop Scheduling Problem [Oddi ez al., 2011].

6.4 Detailed Scheduling Model: Layer L2

Layer L2 is responsible for detailing the routing of robots
and managing routing conflicts on the navigation graph. The
latter is defined by a set of links L available between adja-
cent waypoints, and two robots cannot simultaneously use the
same link. For L1, the set of resources to refine is the set of
robots (R = Rob), and for L2 the set of resources to con-
sider is Ro = L U F (the set of frequencies is kept in the set

of resources since itis notrefined by L2, i.e. F = R4 \Rfef ).
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Figure 3: HSP for layer L2

The HSP built for L2 is illustrated in Fig. 3, for an ex-
ample involving two robots (requests R(Q); are not repre-
sented). The figure shows the sequence of high-level moves
and observations realized by each robot in the solution o4
produced by L1. In Fig. 3, the sequences of observations of
robots are obsSeq, = [2,4] and obsSeqy = [3,1,5]. Robot
1 must therefore realize a compound move MV oo from
its initial location to observation number 2, then a primi-
tive observation task Oz, then a move MV; 5 4 from obser-
vation 2 to observation 4, and last a primitive observation
task O4. Precedence constraints are imposed to guarantee
that each robot realizes a move activity between two succes-
sive observations. The problem also contains precedence con-
straints between some observations (coming from the prece-
dences required between observation requests). Each com-
pound move MV, ; ;s between two observations ¢, is the
root of a task network. It has as many decomposition meth-
ods as the number of possible paths between the location of @
and the location of ¢’ (two possible decompositions in the case
of compound move M V5 3 1). A decomposition using the pth
path points to a task network which specifies a sequence of
atomic moves muv,.; i/ , 1 Tequired on links of the waypoint
graph. Each atomic move consumes one link resource. For
instance, the first path for MV 3 1 traverses the sequence of
links [I3,19,ls], and each subtask muvs 31,1 % consumes the
kth link of the sequence. Such a decomposition of moves be-
tween observations realized by each robot r is provided by the
problem-specific function setupRefine, mentioned in Sec-
tion 3. The setup operation setupOp,.(i,4") associated with
each move from i to ¢’ for robot r corresponds to MV ; ;+ in
the example provided. As for layer L1, a CP encoding can be
directly obtained from such a representation.

6.5 Experiments

Instances. Experiments were performed over several multi-
robot problem instances generated randomly. These instances
contain from 1 to 15 observation requests, each request re-
quiring observations from 1 to 3 robots. From 1 to 3 frequen-
cies are available to transfer observation data, and 3 robots
are available to carry out the observations. Each robot has a
different speed, which determines the duration needed to tra-
verse a link. The field structure contains 3 x |R eg| waypoints
connected to their closest neighbors within a fixed range.
Function updateL1 is implemented with a learning rate «
ranging from 0.2 to 1 and the reinitialization rate rateReinit
for perturbL1 is 0.2. The scheduling problems were solved
using IBM ILOG CP Optimizer 12.5 on an Intel Xeon ES5-
1603, 2.80GHz 8GB RAM, setting cpuMax = {5,30} min-
utes and an adequate iterations number nLoops, depending on
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Figure 4: Interaction between layers
request and precedences

the number of observations (problem size) and the cpuMaz.

Interactions between layers L1/L.2. To illustrate the inter-
actions between the two layers, makespan results over itera-
tions of the proposed approach are presented in Fig. 4 for a
problem instance containing 5 observation requests (each one
must be observed by 2 different robots). In order to accen-
tuate the behavior, we have specifically implemented a very
optimistic initL1 function to initialize setup,. values to zero,
using a learning rate o = 1. The best makespans successively
obtained by L2 during the iterations are marked with a filled
dot. Fig. 4 shows that makespans of both layers tend to con-
verge quickly. When solutions cannot be improved, restarts
are realized (vertical lines in the figure). More precisely, the
first two restarts occurred when L1 did not find a solution bet-
ter than the best one found so far, and the third restart when
the makespan of the solution in L2 remained the same dur-
ing several iterations. Since initL1 is very optimistic, the
makespan of solutions of L1 tends to increase, given that val-
ues of coarse-grain setup times are also increasing.

Full Model. To compare the two-layer decision process
with a global one-shot resolution strategy, we developed a
global CP model. In theory, this model can be used to find
an optimal solution. It contains (1) the model of layer L1
and (2) the model of layer L2 duplicated for each possi-
ble transition between observations. More precisely, it in-
volves, for each robot r and each pair of distinct observations
i,4', one optional task MV, ; ; representing a global move of
robot 7 from 4 to ¢/, plus a huge number of optional intervals
MUy 4 i p,k Modeling the move of r on the kth link of the pth
path available to go from 4 to #’. The model contains a fine-
grain no overlap constraint that takes into account all observa-
tions and all move intervals over links, but to boost constraint
propagation it also contains the coarse-grain no overlap con-
straint of layer L1 which takes into account all observation
tasks and minimum setup times between them. Last, a con-
straint is added to ensure that the successive fine-grain activ-
ities realized by each robot have consistent types, i.e. that an
observation interval associated with observation i is preceded
by a move interval of the form MV, ;s ;.

Comparison between the two-layer process and the Full
Model. All generated instances have been solved using the
two approaches. Representative results are given in Fig. 5
and 6, where the circle marks correspond to a makespan
lower bound obtained from layer L1. For the instances of
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Figure 5: Makespan results with 1 robot per

Figure 6: Makespan results with 2 robots per
request and no precedences

Fig. 5, only one robot must observe each request, and there
are 0.2 x |Req|? randomly generated precedences between
requests. For Fig. 6, two distinct robots must observe each re-
quest and there are no precedences. Since the same makespan
is reached for most of the experiments with several o values,
we only present results for o = 0.7. Similarly, giving more
CPU time to the two-layer process does not significantly im-
prove the best solution, hence we only present the results for
cpuMaxr = 5 minutes. For the Full Model, the generated
instances contain from 14 tasks in the smallest instance to
139543 tasks in the largest one. For the largest instances,
the Full Model does not find any solution, even with a CPU
time of 30 minutes. The two-layer approach achieves bet-
ter makespan results in a significantly shorter time, and the
makespan values obtained are very close to the makespan
lower bounds. It provides first solutions of good quality in
less than 3 seconds (not represented on the figures), even for
the largest instances in which the complete solver is not able
to reach any solution after several minutes. For the smallest
instances, the two-layer approach manages to find the opti-
mal solution (without proving its optimality). These results
demonstrate that the proposed iterative approach is both sim-
ple and much more effective than the Full Model for solving
large-size instances. It allows to quickly get good quality so-
lutions no matter the problem size, and intuitively the itera-
tive process used allows L1 to propose very quickly different
promising solutions to L2, based on approximations which
can freely manipulate both lower and upper bounds on setup
times, differently from approaches which would only manip-
ulate valid cuts.

7 Conclusion

In this paper, we introduced techniques for scheduling with
complex setup operations. As shown in the experiments, the
approach exploits the strengths of existing CP solvers and
gives acceptable computation times, even on problems for
which the set of possible decompositions of setup operations
is large. On the modeling side, we could add representation
features to deal with task preconditions and task effects as in
HTNs. On the algorithmic side, we could search for strate-
gies that decompose compound tasks step-by-step, instead of
having an arbitrary separation between two decision layers.
Finally, decomposition structures allowing to derive efficient
cuts for the layer L1 (LBBD) will be explored.
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