
Resolution and Domination: An Improved Exact MaxSAT Algorithm
Chao Xu1 , Wenjun Li2 , Yongjie Yang1,3 , Jianer Chen4 and Jianxin Wang1∗

1School of Computer Science and Engineering, Central South University, Changsha, China
2School of Computer and Communication Engineering, Changsha University of Science and Technology,

Changsha, China
3Chair of Economic Theory, Saarland University, Saarbrücken, Germany

4Department of Computer Science and Engineering, Texas A&M University, College Station, USA
{xuchaofay, liwenjun, jxwang}@csu.edu.cn, yyongjiecs@gmail.com, chen@cse.tamu.edu

Abstract
We study the MAXIMUM SATISFIABILITY prob-
lem (MAXSAT). Particularly, we derive a branch-
ing algorithm of running timeO∗(1.2989m) for the
MAXSAT problem, where m denotes the number
of clauses in the given CNF formula. Our algo-
rithm considerably improves the previous best re-
sult O∗(1.3248m) by Chen and Kanj [2004] pub-
lished 15 years ago. For our purpose, we derive
improved branching strategies for variables of de-
grees 3, 4, and 5. The worst case of our branching
algorithm is at variables of degree 4 which occur
twice both positively and negatively in the given
CNF formula. To serve the branching rules and
shrink the size of the CNF formula, we also pro-
pose a variety of reduction rules which can be ex-
haustively applied in polynomial time and, more-
over, some of them solve a bottleneck of the previ-
ous best algorithm.

1 Introduction
The SATISFIABILITY problem and many of its variants are
arguably the most influential problems due to their signifi-
cant applications in a wide range of areas. Though most of
these problems turn out to be computationally hard [Garey
and Johnson, 1979; Garey et al., 1976; Schaefer, 1978], their
significance still drives both theorists and practitioners to de-
rive approaches to solve the problems. Prominent approaches
include deriving approximation, randomized, heuristic algo-
rithms, etc. [Poloczek et al., 2017; Bliznets, 2013; Goemans
and Williamson, 1994; Luo et al., 2017; Poloczek et al., 2017;
Cai et al., 2014]. In addition, many powerful solvers for
these problems have been developed [Hutter et al., 2017;
Sohanghpurwala et al., 2017]. However, given that these
problems are intrinsically hard, none of these heuristic-based
solvers is able to solve all instances. Another important and
complementary line of research is developing exact algo-
rithms. First, with the rapid development of computer tech-
niques, many exponential-time algorithms (especially single-
exponential algorithms) can be also implemented in an ac-
ceptable time. This motivates researchers to improve the run-

∗Contact Author

running times references

O∗(1.3803m) [Niedermeier and Rossmanith, 1999]
O∗(1.3413m) [Bansal and Raman, 1999]
O∗(1.3248m) [Chen and Kanj, 2004]
O∗(1.2989m) this paper

Table 1: Important progress of exact MAXSAT algorithms.

ning times of exact algorithms for many NP-hard problems
(see, e.g., [Chen et al., 2010; Gupta et al., 2018]). Sec-
ond, principles behind exact algorithms might be useful for
practitioners to improve their heuristic algorithms. For in-
stance, combined with refined pruning techniques, branching
strategies in exact branching algorithms can be employed in
heuristic or machine learning algorithms [Sturtevant, 2003;
Marques-Silva, 1999], and preprocessing procedures in many
exact algorithms can be even directly used in heuristic algo-
rithms [Wang et al., 2018].

In this paper, we study an exact algorithm for the (deci-
sion version) of the MAXIMUM SATISFIABILITY (MAXSAT)
problem, which has significant applications in many areas
(see [Morgado et al., 2013] for a survey). Particularly, in this
problem, we are given a Conjunctive Normal Form (CNF)
formula F with m clauses and n Boolean variables, together
with an integer k, and the question is whether there is an as-
signment satisfying at least k clauses in F . It has long been
known that the MaxSAT problem is NP-hard, even in several
special cases such as when every clause consists of only two
literals and each variable occurs in at most three clauses [Ra-
man et al., 1998]. Our main result is an exact branching al-
gorithm of running time O∗(1.2989m), which significantly
improves the previous best result O∗(1.3248m) by Chen and
Kanj [2004] published 15 years ago. To this end, we propose
several new reduction rules to shrink the size of the input in-
stances. Moreover, based on the reduction rules and by re-
fined observations, we put forward novel branching strategies
for variables of degrees 3, 4, and 5. Table 1 summarizes re-
cent progress of exact algorithms for the MAXSAT problem.

Finally, it should be pointed out that with respect to
the parameter n, the MAXSAT problem cannot be solved
in O∗(2cn) time for any constant c < 1 in the worst
case, assuming the Strong Exponential Time Hypothesis

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1191

(SETH) [Impagliazzo and Paturi, 2001]. In addition, Chen
and Kanj [2004] also presented an algorithm of running
time O∗(1.3695k) which has been improved to O∗(1.325k)
very recently [Chen et al., 2017]. Our algorithm does not
improve this bound.

2 Preliminary
We assume that the reader is familiar with the basics of propo-
sitional logic. A Boolean variable is a variable that can be
assigned either the value 1 (TRUE) or 0 (FALSE). Through-
out this paper, we simply use variables for Boolean variables.
A literal is either a variable x or its negation x. Note that
the negation of x is x, i.e., x = x. A clause is a disjunc-
tion of several literals. For instance, C = x1 ∨ x2 ∨ x3
is a clause of three literals x1, x2, and x3. For simplic-
ity, we omit the symbol ∨. Note that the order of the liter-
als in a clause is irrelevant to the clause’s identity. Hence,
x1x2x3 = x2x1x3. For two clauses C1 and C2, we use C1C2

to denote the clause consisting of all literals included in at
least one of C1 and C2. For a clause C and a literal x, C \ x
is the clause C without the literal x. A conjunctive norm form
(CNF) formula F = C1 ∧ C2 ∧ · · · ∧ Cm is a conjunction of
clauses. An assignment f is a function which assigns to each
variable x of F a value f(x) ∈ {0, 1}. A clause C is satisfied
by f if at least one literal in C gets the value 1. An optimal
assignment refers to one that satisfies the maximum number
of clauses. For simplicity, for a clause C, we use f(C) = 0
(or C = 0) for that every literal in C has the value 0. In
this case, C is unsatisfied by f . However, by f(C) = 1 (or
C = 1) we mean that at least one literal of C obtains the
value 1 from f , to indicate that the clause C is satisfied by f .

A literal x is an i-literal if x occurs i times in F . In addi-
tion, we say that x is an (i, j)-literal if x and x appear respec-
tively i and j times in F . The degree of the variable x is then
defined as i + j. A variable x of degree h (resp. at least h)
is also called an h-variable (resp. h+-variable). The size of a
clauseC, denoted |C|, is the number of literals inC. A clause
is an h-clause if its size is h, and an h+-clause if its size is at
least h. In particular, a 1-clause is also called a unit clause.
An (i, 1)-literal x is called a singleton (resp. non-singleton)
if the literal x appears in a unit clause x (resp. a 2+-clause).

Resolution on a variable x in F is the operation that for ev-
ery pair of clauses xC and xD in F , first creates a clauseCD,
and then removes from F all clauses including the variable x.

3 Reduction Rules
In this section, we present numerous reduction rules, some of
which have been studied in the literature but many are new.
These reduction rules are designed for eliminating some spe-
cific combinatorial structures in order for the applications of
branching rules studied in the next section and shrinking the
size of the given formula. A CNF formula is reduced by some
reduction rules if none of the reduction rules applies to this
formula. Let F be a given CNF formula. In the following,
before introducing the j-th reduction rule, j > 1, we assume
that F is reduced by all the reduction rules introduced be-
fore. For two instances (F, k) and (F ′, k′), (F, k)→ (F ′, k′)
means that a reduction rule transforms (F, k) into (F ′, k′).

Moreover, by Fx=1 we mean a CNF formula obtained from F
by assigning x = 1. More precisely, Fx=1 is obtained from F
by removing all clauses including the literal x and removing
the literal x from all clauses including the literal x. A reduc-
tion rule is sound if for every MAXSAT instance I , it holds
that I is a YES-instance if and only if the instance obtained
from I by applying this rule is a YES-instance. The first six
reduction rules have been studied in the literature.
R-Rule 1 ([Bansal and Raman, 1999]).
(F ∧ xxC, k)→ (F, k − 1).
R-Rule 2 ([Bansal and Raman, 1999]).
(F ∧ xC ∧ xC, k)→ (F ∧ C, k − 1).
R-Rule 3 ([Chen and Kanj, 2004]). If there is an (i, j)-
literal x in the CNF formula F which contains at least j unit
clauses x, then (F, k)→ (Fx=1, k − i).

For instance, if there is a (4, 1)-literal x and the five clauses
including the variable x are x, xC1, xC2, xC3, and xD, then
we can directly assign x the value 1 due to R-Rule 3. Note
that a special case of R-Rule 3 is when j = 0, i.e., a variable
occurs in all clauses in the same form (positive or negative).
R-Rule 4 ([Bansal and Raman, 1999]). If there is a (1, 1)-
literal x, then (F ∧ xC1 ∧ xC2, k)→ (F ∧ C1C2, k − 1).
R-Rule 5 ([Bliznets and Golovnev, 2012]). If there is a 3-
variable x and a 2-clause xy, then
(F ∧ xy ∧ xC ∧ xD, k)→ (F ∧ yD ∧ yCD, k − 1).
R-Rule 6 ([Li et al., 2007]). If there are clauses xy, x, and y,
then (F ∧ xy ∧ x ∧ y, k)→ (F ∧ xy, k − 1).

Inspired by R-Rule 6, we propose a new rule as follows.
R-Rule 7. If there are clauses xyz, x, y, and z, then
(F ∧ xyz ∧ x ∧ y ∧ z, k)→ (F ∧ xyz ∧ xz ∧ yz, k).
Lemma 1. R-Rule 7 is sound.

Proof. Let ρ be an assignment. Let F1 = xyz ∧ x ∧ y ∧ z
and F2 = xyz ∧ xz ∧ yz. If ρ(x) = ρ(y) = ρ(z) = 1,
only one clause in both F1 and F2 is satisfied. If exactly
one of ρ(x), ρ(y), and ρ(z) is 0, then exactly two clauses
in F1 and F2 are satisfied. Otherwise, exactly three clauses in
both F1 and F2 are satisfied.

Notice that in R-Rule 6 we decrease k by one, but in R-
Rule 7 the value of k is unchanged. Now we introduce numer-
ous new reduction rules to eliminate (i, 1)-literals with some
specific structures. The worst branching case of the previous
best algorithm studied in [Chen and Kanj, 2004] is the (5, 1)-
branching at (i, 1)-literals. The new reduction rules help us
circumvent such branchings.
R-Rule 8. If there are two clauses xyC1 and xyC2 where x
is an (i, 1)-literal, i ≥ 1, then replace xyC1 with xC1.

We show that our new rule is sound.
Lemma 2. R-Rule 8 is sound.

Proof. Let F1 be a formula including two clauses xyC1

and xyC2 as stipulated in R-Rule 8. Moreover, let F2 be
the formula obtained from F1 by replacing xyC1 with xC1.
Clearly, if an assignment satisfies at least k clauses in F2, it
also satisfies at least k clauses in F1. For the other direction,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1192

because F1 and F2 differ only at xyC1 and xC1, if an as-
signment ρ satisfies k clauses in F1, it satisfies at least k − 1
clauses in F2. Moreover, if it satisfies exactly k − 1 clauses
in F2, it must be that xC1 is unsatisfied but yxC1 is satisfied
by ρ, implying that ρ(x) = 0 and ρ(y) = 1. Then, by reset-
ting x = 1 in ρ we obtain an assignment satisfying k clauses
in F2 (and also in F1).

R-Rule 9. If there is an (i, 1)-literal x such that i ≥ 2 and
all clauses containing the literal x contains a literal y, then
remove the literal y from all clauses including the literal x,
and add the literal y in the clause including the literal x, i.e.,
(F1 := F ∧ xyC1 ∧ xyC2 ∧ · · · ∧ xyCi ∧ xD, k)→
(F2 := F ∧ xC1 ∧ xC2 ∧ · · · ∧ xCi ∧ xyD, k).
Lemma 3. R-Rule 9 is sound.

Proof. Assume that there is an assignment ρ1 satisfying k
clauses in F1. Clearly, ρ1 satisfies at least k − i − 1 clauses
in F . If ρ1 satisfies at least k − i clauses in F , then reset-
ting x = 1 in ρ1 (if ρ(x) = 1 in advance we do nothing)
makes at least k clauses in F2 be satisfied; we are done. Oth-
erwise, if ρ1 satisfies exactly k−i−1 clauses in F , then xyC1,
xyC2, . . . , xyCi, and xD are all satisfied by ρ1. There can be
only 3 cases (1) ρ1(D) = 1; (2) ρ1(y) = 1; (3) none of (1)
and (2) and ρ1(C1) = ρ1(C2) = · · · = ρ1(Ci) = 1. In the
first and second cases, we reset x = 1 in ρ1, and in the third
case we reset x = 0 in ρ1. After the resetting, all the i + 1
clauses including the variable x in F2 are satisfied. The proof
for the other direction is analogous.

The following two reduction rules studied in [Chen et al.,
2017] are also needed in our algorithm.

R-Rule 10 ([Chen et al., 2017]). If there is an (i, 1)-literal x
such that the clause xyD including the literal x contains a
(j, 1)-literal y, then resolute on x, i.e.,
(F ∧ xC1 ∧ · · · ∧ xCi ∧ xyD, k)→
(F ∧ yC1D ∧ · · · ∧ yCiD, k − 1).

R-Rule 11 ([Chen et al., 2017]). Let x be a (2, 1)-literal,
and xC1, xC2, and xD the three clauses including the vari-
able x. If C1C2D contains a positive literal and a neg-
ative literal of the same variable, then resolute on x, i.e.,
(F ∧ xC1 ∧ xC2 ∧ xD, k)→ (F ∧ C1D ∧ C2D, k − 1).

We continue to propose new reduction rules to deal with
(i, 1)-literals which are now based on the domination rela-
tions between literals and clauses. Let F be a CNF formula.
A literal x in F is dominated by another literal y (resp. a
clause C not necessarily in F) if each clause in F contain-
ing the literal x also contains the literal y (resp. some lit-
eral in C). In addition, a literal x is almost dominated by
a clause D if, except at most one, all clauses in F includ-
ing the literal x includes some literal in D. For instance, if
F = xya ∧ xyb ∧ yc ∧ xd, then the literal x is dominated by
the literal y and the clause ab, and is almost dominated by the
clause ad. For a clause A = x1 · · ·xi, let !A be the clause
consists of all negations of literals in A, i.e., !A = x1 · · ·xi.
R-Rule 12. Let x be a (2, 1)-literal, and xC1, xC2, and xD
be the three clauses including the variable x. If there is
some literal y in C1C2D such that the literal y is dominated

by !(C1C2D), then resolute on x, i.e.,
(F1 := F ∧ xC1 ∧ xC2 ∧ xD, k)→
(F2 := F ∧ C1D ∧ C2D, k − 1).

Lemma 4. R-Rule 12 is sound.

Proof. Let ρ be an optimal assignment satisfying at least k
clauses in F1. If D = 1 under ρ, then ρ satisfies at least k− 1
clauses in F2 since C1D and C2D are satisfied by ρ. Other-
wise, if D = 0 but at least one of C1 and C2, say, C1, is true
under ρ, then xC1 in F1 and C1D in F2 are satisfied. Then,
the correctness of R-Rule 4 suggests that we can replace xC2

and xD with C2D. Finally, if C1, C2, and D are all false
under ρ, we claim that the assignment obtained from ρ by re-
setting y = 1 is another optimal assignment. As a matter of
fact, as y is dominated by !(C1C2D), any clauseC ′ including
the literal y contains at least one negation of some literal from
C1C2D which makes C ′ = 1 under ρ. So, the claim follows
and we come to the previous cases. The proof for the other
direction is analogous.

R-Rule 13. Let x be a (2, 1)-literal in the clauses xC1, xC2,
and xzD. If the literal z is almost dominated by !(C1C2D),
then resolute on x and decrease k by one.

R-Rule 14. For a 1-literal x in a clause xzD, if the literal z
is almost dominated by !D, then resolute on x and decrease k
by one.

R-Rule 15. Let x be a (2, 1)-literal in the clauses xC1, xC2,
and xD. If there are two literals y1 and y2 in C1C2 such
that the literal y1 is dominated by some literal z and the lit-
eral y2 is dominated by the literal z, then resolute on x and
decrease k by one.

Similar to the proof of Lemma 4, we can show the sound-
ness of R-Rules 13–15.

Lemma 5. R-Rules 13–15 are sound.

Finally, our algorithm needs the following reduction rule
studied in [Chen et al., 2017].

R-Rule 16 ([Chen et al., 2017]). Let x be a (2, 2)-literal in
the clauses xC1, xC2, xC3, xC4. If each Ci, 1 ≤ i ≤ 4,
contains a singleton literal, then resolute on x.

It should be pointed out that several of the above reduc-
tions rules may significantly increase the size of the for-
mula. Nevertheless, thanks to a kernelization algorithm for
the MAXSAT problem (see, e.g., [Chen and Kanj, 2004]),
this does not diminish the applicability of these rules. In
particular, due to this kernelization algorithm, once the size
of the formula in an instance gets too large, we can always
transform the instance into an equivalent instance whose size
is bounded by O(k2). Then, given that all our reduction rules
never increase the value of k, the above reduction rules can
be exhaustively applied in polynomial time.

4 Branching Rules
In this section, we study branching rules for instances in-
duced by all reduction rules studied in the previous sec-
tion. Let the number of clauses in a CNF formula F be m.
Each branching splits an instance I into several subinstances

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1193

sections variable types B-Rules (vectors) roots

Sec. 4.1 6+-variable & B-Rule 1 (6, 1) 1.2853
(i ≥ 3, 1)-nsin B-Rule 2 (3, 3) 1.2600

Sec. 4.2 3-variable B-Rule 3 (8, 1) 1.2321
Sec. 4.3 (3, 2)-literal B-Rules 4, 7 (4, 2) 1.2721

B-Rule 5 (10, 3, 3) 1.2937
B-Rule 6 (6, 1) 1.2853
B-Rule 8 (2, 4, 12) 1.2937

Sec. 4.4 (2, 2)-literal B-Rule 9 (6, 1) 1.2853
B-Rules 10, 11, 13, 14
(10, 3, 3) 1.2937
B-Rule 12 (15, 11, 3, 3) 1.2950
B-Rule 15
(14, 14, 12, 12, 7, 7, 5, 5) 1.2989

Sec. 4.5 (3, 1)-sin Lemma 22 1.2576
(4, 1)-sin

Table 2: An overview of branchings in Section 4. Here, “sin” stands
for “singleton” and “nsin” for “non-singleton”.

which can be recursively solved. We say that the branch-
ing is sound if it holds that I is a YES-instance if and only
if at least one of the subinstances is a YES-instance. If
branching on F results in r many CNF formulas which in-
clude respectively m − d1,m − d2, . . . ,m − dr clauses,
we call such a branching a (d1, . . . , dr)-branching, and call
(d1, . . . , dr) its branching vector. It is known that the poly-
nomial p(x) = xm − xm−d1 − · · · − xm−dr has a unique
positive root not smaller than 1, which is called the branch-
ing root of this branching. A branching is inferior to another
branching if the branching root of the former is greater than
that of the latter. If every branching step in a branching algo-
rithm has its root bounded by a constant c, the running time
of the algorithm can be bounded by O∗(cm).

Now, we are ready to present the branching rules (B-
Rules). We assume that B-Rule j is applied only when none
of B-Rules i with i < j is applicable. Let F be a CNF for-
mula reduced by the reduction rules studied in the previous
section. By saying branching on a variable x, we mean the
branching with x = 1 and x = 0. Clearly, any branching on
a variable is sound. In each branching case, the parameter k
decreases by the number of clauses satisfied in this branch-
ing. We won’t point this out in the following branching rules
as we analyze the running time with respect to the number of
clauses. This section is divided into several subsections each
of which is concerned with branching rules for variables of
some specific type. We refer to Table 2 for an overview. Ob-
serve that any induced instance by R-Rules 1–3 contains only
variables of degree at least three.

4.1 Branching on 6+-Variables
In this section, we present two branching rules to deal
with variables of degree at least 6. A direct branching
on a 7+-variable produces a (6, 1)-branching with branch-
ing root 1.2853 < 1.2989 in the worst case. However,
a direct branching on a 6-variable only guaranties a (5, 1)-
branching with branching root 1.3248. Hence, we need re-
fined branching rules for 6-variables in order to improve the
O∗(1.3248m)-algorithm studied by Chen and Kanj [2004].

Lemma 6 (B-Rule 1). Branching on a 7+-variable, a (3, 3)-
or (4, 2)-literal, or on a (5, 1)-singleton is not inferior to the
(6, 1)-branching.

Notice that in the branching x = 1 for a (5, 1)-singleton x
in B-Rule 1, in addition to the five satisfied clauses which
include the literal x, the unite clause x is also reduced, leading
to the total decrease of m by 6.

Lemma 7 (B-Rule 2). Let x be an (i, 1)-literal, i ≥ 3, such
that the clause xD including the literal x is not unit (i.e.,
|D| ≥ 1). Then, the branching with x = 1 and x = D = 0 is
sound and not inferior to the (i, 1 + 2|D|)-branching, which
is not inferior to the (3, 3)-branching.

Proof. To prove the soundness of this rule, it suffices to show
that if there is an optimal assignment under which some lit-
eral y in D is assigned the value 1, there is another optimal
assignment under which x = 1. Assume that σ is an optimal
assignment such that that σ(y) = 1 and σ(x) = 0. Then, due
to that xD is the only clause containing x, and y = 1 already
satisfies this clause, resetting x = 1 does not decrease the
number of satisfied clauses.

Now we analyze the branching vector. LetD = y1y2 . . . yh
where h ≥ 1. Branching with x = 1 satisfies at least i
clauses. On the other hand, because the instance is reduced
by R-Rule 10, each yi, 1 ≤ i ≤ h, cannot be a 1-literal.
Moreover, as R-Rule 14 is not applicable, branching with
x = D = 0 satisfies at least 2|D| clauses. Finally, since
R-Rule 1 is not applicable, x = 0 satisfies one more clause
xy1 · · · yh. Therefore, the branching is not inferior to the
(i, 1 + 2|D|)-branching where i ≥ 3 and 1 + 2|D| ≥ 3.

4.2 Branching on 3-Variables
A direct branching on a 3-variable results in a (2, 1)-
branching in the worst case. Bliznets and Golovnev [2012]
proposed a smart resolution-involved (6, 1)-branching for 3-
variables. We further improve this branching significantly
to a (8, 1)-branching (B-Rule 3). This improved branch-
ing is used as sub-branchings in other branching cases and
hence plays an important role in improving the whole algo-
rithm. Our improvement relies on a specific assignment for
domination-related literals.

Lemma 8 ([Kulikov and Kutzkov, 2007]). If a literal y dom-
inates another literal x, then the branching with (B1) x = 0,
and (B2) x = 1 and y = 0 is sound.

Proof. From an optimal assignment ρ with ρ(x) = ρ(y)= 1,
resetting ρ(x) = 0 achieves another optimal assignment since
every clause including the literal x is satisfied by y which
dominates x. This is covered by the branching x = 0.

Lemma 9 (B-Rule 3). Let x be a 3-variable, and xC1, xC2,
and xD the three clauses including the variable x. Then the
following branching is sound and leads to a branching not
inferior to the (1, 3+ |C1|+ |C2|+2|D|)-branching, which is
not inferior to the (8, 1)-branching: (B1)C1 = C2 = D = 0;
(B2) resolute on x and decrease k by one.

Proof. To see the soundness of the branching rule, observe
that it is safe to resolute on x if at least one of C1, C2, and D

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1194

is true. The case where C1, C2, and D are all false is covered
in the branch B1.

In the branch B2, the number of clauses decreases by one.
In the branch B1, we can set x = 1 and hence the three
clauses including the variable x are reduced (two of them are
satisfied). Moreover, due to R-Rules 3, 8–13, there are at least
|C1| + |C2| + 2|D| extra clauses, each of which contains at
least a negation of some literal in C1C2D, which are satisfied
under this branching. Therefore, the number of clauses de-
creases in total by at least |C1| + |C2| + 2|D| + 3. Now we
show that the branching is not inferior to the (8, 1)-branching.
Since R-Rule 5 is not applicable, it holds that |C1|, |C2| ≥ 2
and hence |C1| + |C2| + 2|D| + 3 ≥ 7. However, we show
that when |C1| + |C2| + 2|D| + 3 = 7, we can further re-
duce at least one more clause. First, the equality holds only
when D = ∅, |C1| = |C2| = 2 and, moreover, every literal
in C1C2 is a (j, 1)-literal for some j ≥ 1. Let C1 = y1y2
and C2 = y3y4 where every yi, 1 ≤ i ≤ 4, is a 1-literal.
As the instance is reduced by R-Rules 6–7, at least one of the
literals y1 and y2 is contained in a 2+-clause, say y1zD′. As
R-Rule 3 is not applicable, there exists at least one clause in-
cluding the literal z. As D = ∅, the literal z cannot be any
literal in !(C1C2) due to R-Rule 12; it cannot be any literal
in C1C2 due to R-Rule 10. As y1 is a 1-literal, it holds that z
dominates y1. Then, due to Lemma 8, we can set z = 0. Due
to R-Rule 15, z cannot be in any clause containing some lit-
eral in y2y3y4. This implies that after setting z = 0 at least
one more clause is reduced.

4.3 Branching on (3, 2)-Literals
Now we are left with variables of degrees 4 and 5. This sec-
tion is devoted to branching rules for (3, 2)-literals.
Lemma 10 (B-Rule 4). For a (3, 2)-literal x in a reduced
formula F , if there is a unit clause x or x, then branching
on x is not inferior to the (4, 2)-branching.

After B-Rule 4, there is no unit clause containing a (3, 2)-
or (2, 3)-literal.
Lemma 11 (B-Rule 5). Let xC be a clause where x is a
(3, 2)-literal andC contains a literal occurring at most thrice
in the clauses without the literal x. Then, branching on x
yields a branching not inferior to the (10, 3, 3)-branching.
Lemma 12 (B-Rule 6). Let x be a (3, 2)-literal. If the two
clauses with the literal x contain a (4, 1)-singleton y1 and a
5-variable y2, respectively, then branching on y2 leads to a
branching not inferior to the (6, 1)-branching.

The following branching rule is for (2, 2)-literals but is
used as a sub-branching in the next branching rule dealing
with (3, 2)-literals.
Lemma 13 (B-Rule 7). Let x be a (2, 2)-literal such that
there is a unit clause x. Let xC1 and xC2 be the two clauses
including the literal x. Then the following branching is sound
and leads to a branching not inferior to the (4, 2)-branching:
(B1) x = 1 and C1 = C2 = 0; (B2) x = 0.
Lemma 14 (B-Rule 8). Let xy1D1 and xy2D2 be two
clauses where x is a (3, 2)-literal, and each of y1 and y2 is ei-
ther a (3, 2)- or a (2, 3)-literal. Then, branching on y1 leads
to a branching not inferior to the (2, 4, 12)-branching.

Proof. W.l.o.g. we assume that |D1| ≤ |D2|. We distinguish
between two cases: (1) |D2| ≥ 1 and (2) |D2| = |D1| = 0.

In the first case, in the branching y1 = 0, at least two
clauses including the literal y1 are reduced. In the branch-
ing y1 = 1, all clauses including the literal y1 is reduced,
and x becomes an (i, 1)-non-singleton for some i ∈ {1, 2, 3}.
If i = 1, y1 is a (3, 2)-literal. Moreover, R-Rule 2 applies,
leading to one more clause being reduced. In this case, we
have a (2, 4)-branching. If i = 2, then B-Rule 3 is invoked
(in the worst case), leading to at least a (1, 9)-subbranching
(recall that |D2| ≥ 1 and due to B-Rule 4 any clause includ-
ing the literal x is of size at least two). In this case, we have
a (2, 4, 12)-branching if y1 is a (3, 2)-literal and a (3, 3, 11)-
branching if y1 is a (2, 3)-literal. Finally, if i = 3, B-Rule 2
applies, generating at least a (3, 5)-subbranching. In this case,
we have a (2, 6, 8)-branching if y1 is a (3, 2)-literal and a
(3, 5, 7)-branching if y1 is a (2, 3)-branching. All the above
branchings are not inferior to the (2, 4, 12)-branching.

Now we consider the second case. If y1 = 0, xy1 be-
comes a unit clause and x becomes a (2, 0)-, (2, 1)-, (2, 2)-,
or (2, 3)-literal. In the first and second cases, R-Rule 3 is ap-
plicable; in the third case, B-Rule 7 is applicable; and in the
last case, B-Rule 4 is applicable. All of these cases lead to
at least a (4, 2)-subbranching. In the branching y1 = 1, x
becomes a (i, 1)-non-singleton where i ∈ {1, 2, 3}. If i = 1,
R-Rule 3 applies. If i = 2, either some reduction rules apply
or B-Rule 3 applies and a (1, 9)-subbranching is generated.
Finally, if i = 3, then either some reduction rules apply or
B-Rule 2 applies and a (3, 5)-subbranchings is generated. In
the worst case, we have a (4, 6, 4, 12)-branching.

Since the (4, 6, 4, 12)-branching is not inferior to the
(2, 4, 12)-branching, the lemma follows.

4.4 Branching on (2, 2)-Literals: the Worst Case
Now, assume that only (4, 1)- and (3, 1)-singletons, and
(2, 2)-literals exist in the reduced formula. We present nu-
merous branching rules to eliminate (2, 2)-literals.

Lemma 15 (B-Rule 9). Let x be a (2, 2)-literal. If there
is a clause xy1C such that y1 is a (4, 1)-singleton, and the
other clause containing the literal x contains another single-
ton, then branching on y1 leads to a branching not inferior to
the (6, 1)-branching.

Proof. In the branching y1 = 0, the clause including y1 is
satisfied. In the branching y1 = 1, four clauses including
the literal y1 are satisfied and the unsatisfied unit clause y1
is reduced. Moreover, when y1 = 1, x becomes a 1- or 0-
literal, invoking the application of at least one of R-Rules 2, 3,
and 10, further decreasing the number of clauses by one.
Therefore, the number of clauses decreases by 6 in total.

Lemma 16 (B-Rule 10). Let x be a (2, 2)-literal. If the two
clauses including the literal x contain a singleton y1 and a
(2, 2)-literal y2, respectively, then, branching on y2 leads to
a branching not inferior to the (10, 3, 3)-branching.

Observe that after the above branching rules, there are no
clauses including both a (2, 2)-literal and a (4, 1)-singleton.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1195

In other words, any clause including a (2, 2)-literal can con-
tain only other (2, 2)-literals or (3, 1)-singletons. More-
over, due to R-Rule 16 and B-Rule 7, for each (2, 2)-
literal x in clauses xC1, xC2, xD1, xD2, it holds that (1)
|C1|, |C2|, |D1|, |D2| ≥ 1, and (2) at least one of C1, C2, D1,
and D2 contains only (2, 2)-literals. Therefore, all (2, 2)-
literals x as denoted above fall into one of the following
categories: either C1C2D1D2 contains only (2, 2)-literals,
orC1C2 (resp.D1D2) contains only (2, 2)-literals andD1D2

(resp. C1C2) contains only (3, 1)-singletons. The next two
branching rules are to eliminate literals of the second type.
Lemma 17 (B-Rule 11). Let xC be a clause such that x is a
(2, 2)-literal, 1 ≤ |C| ≤ 3, and C contains only singletons.
Then, branching on x leads to a branching not inferior to the
(10, 3, 3)-branching.

After B-Rule 11, if a clause xC contains a (2, 2)-literal x
and C contains only singletons, it must be that |C| ≥ 4.
Lemma 18 (B-Rule 12). Let x be a (2, 2)-literal, and xC1,
xC2, xyD1, xD2 the clauses including the variable x. If
C1C2 contains only singletons, then branching on y leads to
a branching not inferior to the (15, 11, 3, 3)-branching.

Now, all (2, 2)-literals are of the first type, i.e., every clause
including a (2, 2)-literal contains only (2, 2)-literals.
Lemma 19 (B-Rule 13). Let x be a (2, 2)-literal, and xy1C1

and xy2C2 the two clauses including the literal x. If y1
and y2 are the literals of the same variable (i.e., y1 = y2
or y1 = y2), or there is another clause y1y2C3, then branch-
ing on x leads to a branching not inferior to the (10, 3, 3)-
branching.

Lemma 20 (B-Rule 14). Let xy and xzC1 be two clauses
such that x is a (2, 2)-literal. Then, branching on z leads to
a branching not inferior to the (10, 3, 3)-branching.

The last branching rule can be used to eliminate all the re-
maining (2, 2)-literals.
Lemma 21 (B-Rule 15). For clauses xy1C1, xy2C2, y1D1,
and y2D2 where x is a (2, 2)-literal, the following branch-
ing is sound and leads to a branching not inferior to the
(14, 14, 12, 12, 7, 7, 5, 5)-branching:

B1. x = 1 and y1 = 0;

B2. x = y1 = 1 and D1 = 0;

B3. x = 0 and y2 = 0;

B4. x = D2 = 0 and y2 = 1.

4.5 Dealing with Singletons and Our Main Result
If none of the reduction rules and branching rules is applica-
ble, then we are left with only (3, 1)- and (4, 1)-singletons. A
branching algorithm handling this special case has been stud-
ied in the literature, as shown in the following lemma.
Lemma 22 ([Bliznets and Golovnev, 2012]). The MAXSAT
problem on formulas with only (3, 1)- and (4, 1)-singletons
can be solved in time O∗(1.2576m).

Now we are able to show our main result, i.e., an exact
algorithm of running time O∗(1.2989m) for the MAXSAT
problem. The algorithm applies the branching rules in the

order in accordance with their occurrences, and importantly,
before each branching we exhaustively apply all reduction
rules presented in the previous section. As pointed out in
the end of Section 3, it takes polynomial time to exhaustively
apply all reduction rules. If none of the branching rules ap-
plies, we are left with (3, 1)- and (4, 1)-singletons, and in this
case we solve the instance inO∗(1.2576m) time (Lemma 22).
The running time of the whole algorithm is dominated by
the branching described in Lemma 21, which has the worst
branching root 1.2989 (see Table 2 for a reference).

Theorem 1. The MAXSAT problem can be solved in
time O∗(1.2989m).

5 Concluding Remarks
In this paper, we have proposed an exact branch-and-bound
algorithm for the MAXSAT problem whose running time is
bounded byO∗(1.2989m), wherem is the number of clauses.
Our algorithm considerably improves the previous best re-
sult O∗(1.3248m) published 15 years ago [Chen and Kanj,
2004]. To this end, we put forward many new reduction rules
to shrink the size of the given CNF formula in polynomial
time. In addition, based on these reduction rules and refined
observations, we derived improved branching strategies for
variables of degrees 3–5.

It is important to point out that our analysis is purely
worst-case based. The performance of our reduction and
branching rules in solving practical instances deserves to be
further investigated. In fact, the cores of many competi-
tive exact MAXSAT solvers are branch-and-bound proce-
dures (see, e.g., [Davis et al., 1962; Argelich et al., 2018;
Abramé and Habet, 2015; Lin et al., 2008]). Some research
even reveals that in some cases branch-and-bound algorithms
are the best option [Morgado et al., 2013]. In addition, it
makes much sense to study how to efficiently integrate our re-
duction and branching rules into heuristic algorithms. To em-
ploy our branching rules, one may need to resort to powerful
pruning approaches, such as approaches based on the phase
transition [Coppersmith et al., 2004], or using machine learn-
ing algorithms to determine the pruning conditions, which
have proved to be useful in solving a variety of problems
(see, e.g., [He et al., 2014]). We refer to [Morgado et al.,
2013] and references therein for discussions on many other
nice ideas of designing (exact or heuristic) branch-and-bound
based MaxSAT algorithms.

Acknowledgements
This work was supported by the National Natural Sci-
ence Foundation of China (Nos. 61420106009, 61872097,
61672536, 61802441, 61872048, 61872450, 61828205,
61702557), 111 Project (No. B18059), Hunan Provincial Sci-
ence and Technology Program (No. 2018wk4001), and the
China Postdoctoral Science Foundation (No. 2017M612584).

References
[Abramé and Habet, 2015] André Abramé and Djamal Ha-

bet. On the resiliency of unit propagation to Max-
resolution. In IJCAI, pages 268–274, 2015.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1196

[Argelich et al., 2018] Josep Argelich, Chu Min Li, Felip
Manyà, and Joan Ramon Soler. Clause branching in
MaxSAT and MinSAT. In CCIA, pages 17–26, 2018.

[Bansal and Raman, 1999] Nikhil Bansal and Venkatesh Ra-
man. Upper bounds for MaxSat: Further improved. In
ISAAC, pages 247–258, 1999.

[Bliznets and Golovnev, 2012] Ivan Bliznets and Alexander
Golovnev. A new algorithm for parameterized MAX-SAT.
In IPEC, pages 37–48, 2012.

[Bliznets, 2013] Ivan Bliznets. A new upper bound for
(n, 3)-MAX-SAT. J. Math. Sci., 188(1):1–6, 2013.

[Cai et al., 2014] Shaowei Cai, Chuan Luo, and Kaile Su.
Scoring functions based on second level score for k-SAT
with long clauses. J. Artif. Intell. Res., 51:413–441, 2014.

[Chen and Kanj, 2004] Jianer Chen and Iyad Kanj. Im-
proved exact algorithms for MAX-SAT. Discrete Appl.
Math., 142(1–3):17–27, 2004.

[Chen et al., 2010] Jianer Chen, Iyad Kanj, and Ge Xia. Im-
proved upper bounds for vertex cover. Theor. Comput. Sci.,
411(40–42):3736–3756, 2010.

[Chen et al., 2017] Jianer Chen, Chao Xu, and Jianxin
Wang. Dealing with 4-variables by resolution: An im-
proved MaxSAT algorithm. Theor. Comput. Sci., 670:33–
44, 2017.

[Coppersmith et al., 2004] Don Coppersmith, David
Gamarnik, MohammadTaghi Hajiaghayi, and Gregory
Sorkin. Random MAX SAT, random MAX CUT, and
their phase transitions. Random Struct. Algorithms,
24(4):502–545, 2004.

[Davis et al., 1962] Martin Davis, George Logemann, and
Donald Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962.

[Garey and Johnson, 1979] Michael Garey and David John-
son. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York, 1979.

[Garey et al., 1976] Michael Garey, David Johnson, and
Larry Stockmeyer. Some simplified NP-complete graph
problems. Theor. Comput. Sci., 1(3):237–267, 1976.

[Goemans and Williamson, 1994] Michel Goemans and
David Williamson. New 3/4-approximation algorithms
for the maximum satisfiability problem. SIAM J. Discrete
Math., 7(4):656–666, 1994.

[Gupta et al., 2018] Sushmita Gupta, Sanjukta Roy, Saket
Saurabh, and Meirav Zehavi. When rigging a tournament,
let greediness blind you. In IJCAI, pages 275–281, 2018.

[He et al., 2014] He He, Hal Daumé III, and Jason Eisner.
Learning to search in branch and bound algorithms. In
NIPS, pages 3293–3301, 2014.

[Hutter et al., 2017] Frank Hutter, Marius Lindauer, Adrian
Balint, Sam Bayless, Holger Hoos, and Kevin Leyton-
Brown. The configurable SAT solver challenge (CSSC).
Artif. Intell., 243:1–25, 2017.

[Impagliazzo and Paturi, 2001] Russell Impagliazzo and Ra-
mamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

[Kulikov and Kutzkov, 2007] Alexander Kulikov and Kon-
stantin Kutzkov. New bounds for MAX-SAT by clause
learning. In CSR, pages 194–204, 2007.

[Li et al., 2007] Chu Min Li, Felip Manyà, and Jordi Planes.
New inference rules for Max-SAT. J. Artif. Intell. Res.,
30:321–359, 2007.

[Lin et al., 2008] Han Lin, Kaile Su, and Chu Min Li.
Within-problem learning for efficient lower bound com-
putation in Max-SAT solving. In AAAI, pages 351–356,
2008.

[Luo et al., 2017] Chuan Luo, Shaowei Cai, Kaile Su, and
Wenxuan Huang. CCEHC: An efficient local search algo-
rithm for weighted partial maximum satisfiability. Artif.
Intell., 243:26–44, 2017.

[Marques-Silva, 1999] João Marques-Silva. The impact of
branching heuristics in propositional satisfiability algo-
rithms. In EPIA, pages 62–74, 1999.

[Morgado et al., 2013] Antonio Morgado, Federico Heras,
Mark Liffiton, Jordi Planes, and Joao Marques-Silva. It-
erative and core-guided MaxSAT solving: A survey and
assessment. Constraints, 18(4):478–534, 2013.

[Niedermeier and Rossmanith, 1999] Rolf Niedermeier and
Peter Rossmanith. New upper bounds for MaxSat. In
ICALP, pages 575–584, 1999.

[Poloczek et al., 2017] Matthias Poloczek, Georg Schnitger,
David Williamson, and Anke van Zuylen. Greedy algo-
rithms for the maximum satisfiability problem: Simple al-
gorithms and inapproximability bounds. SIAM J. Comput.,
46(3):1029–1061, 2017.

[Raman et al., 1998] Venkatesh Raman, Bala Ravikumar,
and Srinivasa Rao Satti. A simplified NP-complete
MAXSAT problem. Inform. Process. Lett., 65(1):1–6,
1998.

[Schaefer, 1978] Thomas Schaefer. The complexity of satis-
fiability problems. In STOC, pages 216–226, 1978.

[Sohanghpurwala et al., 2017] Ali Asgar Sohanghpurwala,
Mohamed Hassan, and Peter Athanas. Hardware acceler-
ated SAT solvers — A survey. J. Parallel Distrib. Comput.,
106:170–184, 2017.

[Sturtevant, 2003] Nathan Sturtevant. Last-branch and spec-
ulative pruning algorithms for Maxn. In IJCAI, pages 669–
675, 2003.

[Wang et al., 2018] Yiyuan Wang, Shaowei Cai, Jiejiang
Chen, and Minghao Yin. A fast local search algorithm
for minimum weight dominating set problem on massive
graphs. In IJCAI, pages 1514–1522, 2018.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1197

