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Abstract
In this paper, the Minimum Cost Submodular Cover
problem is studied, which is to minimize a modu-
lar cost function such that the monotone submod-
ular benefit function is above a threshold. For this
problem, an evolutionary algorithm EASC is intro-
duced that achieves a constant, bicriteria approx-
imation in expected polynomial time; this is the
first polynomial-time evolutionary approximation
algorithm for Minimum Cost Submodular Cover.
To achieve this running time, ideas motivated by
submodularity and monotonicity are incorporated
into the evolutionary process, which likely will ex-
tend to other submodular optimization problems.
In a practical application, EASC is demonstrated
to outperform the greedy algorithm and converge
faster than competing evolutionary algorithms for
this problem.

1 Introduction
A function f : 2S → R≥0 defined on subsets of a ground set
S is monotone submodular if it possesses the following two
properties:

i. For all A ⊆ B ⊆ S, f(A) ≤ f(B) (monotonicity).

ii. For all A ⊆ B ⊆ S and x /∈ B, f(A ∪ {x})− f(A) ≥
f(B ∪ {x})− f(B) (submodularity).

Monotone submodular set functions and optimization prob-
lems are found in many applications in machine learning and
data mining. In this paper, the NP-hard Minimum Cost Sub-
modular Cover Problem (MCSC) is considered, which is de-
fined as follows.

Problem 1 (Minimum Cost Submodular Cover (MCSC)). Let
S be a ground set of size n. Let c : 2S → R≥0 be a modular1

function such that c(X) = 0 if and only if X = ∅, and
f : 2S → R≥0 be monotone submodular. Given a threshold
τ ≤ f(S), MCSC is to find argmin{c(X) : X ⊆ S, f(X) ≥
τ}. The function c is called the cost, while f is called the
benefit.

1The function c is modular if c(X) =
∑
x∈X c({x}) for all

X ⊆ S.

Applications of MCSC include data summarization [Mirza-
soleiman et al., 2015; 2016], active set selection [Norouzi-Fard
et al., 2016], recommendation systems [Guillory and Bilmes,
2011], and viral marketing in social networks [Kuhnle et al.,
2017].

The standard greedy algorithm2 is an effective, efficient
approximation algorithm for MCSC [Wolsey, 1982]; however,
once the greedy solution has been obtained, it is unclear how it
could be improved if more computational resources are avail-
able. Therefore, it is of interest to employ methods that can
improve the solution quality at the expense of more runtime,
while maintaining a worst-case guarantee. For this reason, an
evolutionary algorithm has recently been proposed for MCSC
[Qian et al., 2015a].

Although random search methods such as evolutionary al-
gorithms (EA) can find better quality solutions in practice, it is
difficult to analyze the approximation quality of evolutionary
algorithms. The algorithm of Qian et al. is able to improve
upon the greedy solution in practice, but requires expected
exponential time3 to have a worst-case guarantee similar to
that of the greedy algorithm. Furthermore, no evolutionary
algorithm exists in prior literature for MCSC that achieves
such an approximation ratio in polynomial time.

1.1 Contributions
This paper presents the novel algorithm, EASC (Evolutionary
Algorithm for Submodular Cover, Alg. 1), which is the first
polynomial-time evolutionary algorithm for MCSC with con-
stant, bicriteria approximation ratio: EASC finds a solution A
such that f(A) ≥ (1 − ε)τ and c(A) ≤ (ln(1/ε) + 1)c(A∗),
where A∗ is an optimum solution and ε ∈ (0, 1) is an input pa-
rameter. The expected time isO(n3((cmax/cmin) ln(1/ε))2),
where cmax and cmin are the maximum and minimum cost of
a single element s ∈ S, respectively. If cmax/cmin is bounded
by a polynomial in n and ε is a constant, then EASC finds a
near-feasible solution to MCSC with a constant approximation
ratio in expected polynomial time.

In contrast to existing EAs that have been analyzed for sub-
modular optimization problems [Qian et al., 2015b; 2015a;

2The greedy algorithm is discussed in the Appendix in the full
version of the paper.

3Time is measured in number of evaluations of f and c, as is
commonly done [Badanidiyuru and Vondrák, 2014].
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2017], EASC is not a generic EA for multi-objective opti-
mization. Instead, EASC takes advantage of the structure
of monotone submodular functions to quickly strengthen its
population. A key idea in EASC is that the range [0, τ ] is
discretized into bins and subsets of X ⊆ S are mapped to bins
based on the value of f(X). Solutions within a bin compete
with one another using a novel measure of cost-effectiveness.
Both the bin structure and notion of cost-effectiveness are
designed to take advantage of monotonicity and submodular-
ity. It is likely that these ideas have potential to be applied
to monotone submodular optimization problems other than
MCSC.

EASC is experimentally evaluated on instances of the In-
fluence Threshold Problem (IT) [Goyal et al., 2013; Kuhnle
et al., 2017] on real social network datasets. EASC is com-
pared to both the greedy algorithm as well as the existing EA
that has been analyzed for MCSC, POM [Qian et al., 2015a].
Both EASC and POM are able to find better solutions than
the greedy algorithm on the problem instances, which demon-
strates the value of EAs for MCSC. In addition, EASC is
shown to converge faster than POM on some instances.
Organization. Related work is first discussed in Section 1.2.
Then, EASC is described in detail in Section 2. Theoretical
results on the approximation ratio of EASC are presented
in Section 3. Finally, the application and an experimental
analysis of EASC is given in Section 4.
Notation. The following notation will be used through-
out the paper. For x ∈ S, define c(x) = c({x}) and
f(x) = f({x}). Define cmin = minx∈S c(x), and cmax =
maxx∈S c(x). Let fτ (X) = min{f(X), τ} for all X ⊆ S.
The notation for marginal gain is shortened to ∆f(X,x) =
f(X ∪ {x}) − f(X) for X ⊆ S and x ∈ S. Finally, exp(a)
denotes the exponential function a 7→ ea.

1.2 Related Work
Evolutionary algorithms (EAs) have previously been analyzed
for submodular optimization problems [Friedrich and Neu-
mann, 2015; Qian et al., 2015a; 2015b; 2017; Friedrich et
al., 2018]. In general, these EAs work by maintaining a pop-
ulation of non-dominating4 solutions. Iteratively, a random
solution from the population is selected and mutated. If the
new solution is not strictly dominated by an existing solution
in the population, it is kept5 in the population and solutions
dominated by the new solution are removed from the pop-
ulation. These EAs are quite generic and apply broadly to
multi-objective optimization problems. In contrast, EASC is
designed specifically for MCSC.

Friedrich and Neumann (2014) and Qian et al. (2015b) ana-
lyzed similar EAs for the problem of maximizing a monotone,
submodular function with respect to a cardinality constraint k.
Friedrich and Neumann obtained as good an approximation
ratio as the greedy algorithm in expected O(n2(log(n) + k))
time and Qian et al. in expectedO(k2n) time for this problem.

4A solution X is dominated by a solution Y if c(Y ) ≤ c(X)
and f(Y ) ≥ f(X). The domination is strict if at least one of the
inequalities is strict.

5In addition, the EA may require that the new solution meet some
requirement such as the cost being beneath a bound.

Algorithm 1 Evolutionary Algorithm for MCSC (EASC)
Input: MCSC instance parameters f : 2S → R≥0,
c : 2S → R≥0, and τ , bin parameters δ ∈ [1 −
cmin/c(A

∗), 1− cmin/c(S)] and ε ∈ (0, 1), and number of
iterations T ∈ Z≥0.
t = 1,B = {∅}
bin← The bin function induced by τ, δ, ε
≺← The comparison operator induced by τ,bin
while t ≤ T do
X uniformly randomly chosen from B
X ′ = mutate(X)
if ∃Y ∈ B such that bin(Y ) = bin(X ′) then

if Y ≺ X ′ then
B = B \ {Y } ∪ {X ′}

end if
else
B = B ∪ {X ′}

end if
t = t+ 1

end while

Qian et al. (2015a) analyzed an EA for MCSC called POM
(Pareto Optimization Method) [Qian et al., 2015a]. Qian
et al. proved that the population of POM would contain
an Hcτ

6 = O(log(cτ)) approximate solution for MCSC in
O(Nn(log(n) + log(cmax) +N))) expected time, where N
is the number of distinct f values in [0, τ). In order that the
approximation guarantees of POM be in expected polynomial
time, the number of distinct values of f in the region of [0, τ)
must be bounded by a polynomial. However, this is not a realis-
tic assumption for many applications in machine learning and
data mining, where f is real-valued and easily takes on expo-
nentially many values in the region [0, τ) [Kuhnle et al., 2017;
Mirzasoleiman et al., 2015].

The N in the number of expected time comes from the
population size of POM. Hence in POM, the population can
get quite large, which in turn affects the expected time before
the approximation ratio is reached. A similar issue arises when
an EA for the dual problem of MCSC is analyzed [Qian et
al., 2017]. EASC does not have this problem as its population
size is always O((cmax/cmin) ln(1/ε)n). There exist results
on approximating a set of non-dominating solutions with a set
of smaller size [Laumanns et al., 2002; Horoba and Neumann,
2009]. In fact, Laumanns et al. and Horoba and Neumann both
describe approaches of binning solutions that serves a similar
purpose to the bins in EASC, though the bins in EASC are
quite different; among other reasons, solutions that dominate
others in the population of EASC are possible. However, it
is not clear that the approaches described by Laumanns et al.
and Horoba and Neumann could be done efficiently in this
context nor could result in approximation ratios in expected
polynomial time.

6c is the minimum real number making cf(X) for all X ⊆ S
and cτ integers, and the cτ harmonic number is Hcτ =

∑cτ
j=1 1/j.
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2 Evolutionary Algorithm for MCSC (EASC)
In this section, the algorithm EASC (Evolutionary Algorithm
for Submodular Cover) is introduced. Pseudocode for EASC
can be found in Algorithm 1. EASC is designed for finding
good approximate solutions to instances of MCSC efficiently.
As will be shown in Section 3, if the input parameter ε is con-
stant and cmax/cmin is bounded by a polynomial, then EASC
provides a near-feasible solution to MCSC with a constant
approximation ratio in expected polynomial time.

Fundamental to EASC is a mapping from 2S to
O((cmax/cmin) ln(1/ε)n) bins; bin j is associated with the
subinterval [(

1− δj
)
τ,
(
1− δj+1

)
τ
)
⊆ [0, τ ],

and a subset X ⊆ S is mapped into the bin where
min{f(X), τ} falls. The population B ⊆ 2S , which is a
set of subsets of S, contains at most one subset of S per bin.
The bins are discussed in more detail in Section 2.1.

The input parameters ε ∈ (0, 1) and δ ∈ [1 −
cmin/c(A

∗), 1 − cmin/c(S)], where A∗ is an optimal solu-
tion to the instance, determine the number of bins and the
intervals for each bin. Lower ε and δ values result in less bins,
and hence a smaller population size. To find a δ in the required
range, δ can be set to 1− cmin/B where B is an upper bound
on c(A∗) such that B ≤ c(S). In the experiments in Section
4, B is set to the cost of the greedy solution.

The number of iterations of EASC is determined by the
input parameter T . At each iteration, EASC chooses a solution
X ∈ B to mutate to X ′, under the mutation process described
in Section 2.3. If it is not the case that X ′ is mapped to a
bin with a better solution according to comparison ≺, X ′ is
added to B, and the weaker solution is removed, if any. The
comparison operator ≺ is discussed in Section 2.2.

The structure of the bins and the comparison operator ≺ are
motivated by monotonicity and submodularity, as described in
Sections 2.1 and 2.2.

2.1 The Bin Function
In EASC, [0, τ ] is discretized into logδ(ε) + 1 intervals asso-
ciated with bins. Every X ⊆ S is mapped to the bin where
min{f(X), τ} falls: The function bin takes X ⊆ S and
returns a bin number in {0, ..., logδ(ε)} as follows:

bin(X) =


i if (1− δi)τ ≤ f(X) < (1− δi+1)τ

for an i ∈ {0, ..., logδ(ε)− 1}
logδ(ε) if f(X) ≥ (1− ε)τ.

The bins are depicted in Figure 1. The population B in EASC
contains at most one solution for each bin, and therefore is
bounded in size by logδ(ε) + 1. A solution X ∈ B that
maps to bin logδ(ε) (the final bin) is near-feasible: f(X) ≥
(1− ε)τ . It is the solution mapped to this bin that will give the
approximation ratio in expected polynomial time.

Using the fact that δ ≤ 1− cmin/c(S), the total number of
bins is bounded as follows.
Proposition 1. The number of bins is at most

cmax
cmin

ln

(
1

ε

)
n+ 1.

c(X) f(X)

ϕ(
X)

Figure 2: An illustration of the cost-effectiveness φ for X where
bin(X) ∈ {1, ..., logδ(ε)− 1}. On both the c(X) and f(X) axis,
left is greater. Lower values of φ(X) means more cost-effective.

Proof. It is the case that

logδ(ε) =
ln(ε)

ln δ
=

ln(1/ε)

− ln δ
≤ ln(1/ε)

1− δ
≤ c(S)

cmin
ln

(
1

ε

)
.

Since c(S) ≤ cmaxn, the result follows.

The motivation behind the interval assignment of each bin
comes from the greedy algorithm for MCSC. Suppose the
sequence of elements a1, ..., ak is chosen by the greedy algo-
rithm for the instance of MCSC. Let Ai = {a1, ..., ai}. It is
the case7 that for i < k the marginal gain at each step is lower
bounded as follows:

f(Ai+1)− f(Ai) ≥
c(ai)

c(A∗)
(τ − f(Ai))

where A∗ is an optimal solution to the instance of MCSC.
If δ ≥ 1 − cmin/c(A∗) the region of each bin mimics this
marginal gain. Intuitively, the bins can be thought of like steps
in the greedy algorithm. EASC holds on to the best solution
for each step.

2.2 Comparison Operator ≺
If two solutions in B map to the same bin, then the weaker
solution is removed. Weaker is determined by the comparison
operator ≺. ≺ uses a novel measure of cost-effectiveness, φ,
in order to compare solutions. Let X ⊆ S. If bin(X) = 0 or
bin(X) = logδ(ε), then φ(X) = c(X). Otherwise

φ(X) = c(X)/ ln

(
τ

τ − f(X)

)
.

Notice that lower φ means better cost-effectiveness. Then
Y ≺ X if and only if bin(X) = bin(Y ) and φ(X) < φ(Y ).

Figure 2 illustrates the cost-effectiveness φ(X) for varying
values of c(X) and f(X) for bin(X) ∈ {1, ..., logδ(ε) −
1}. Lower values of c(X) and higher values of f(X) result
in lower φ(X) (which means more cost-effective). But as
f(X) decreases, differences in c(X) are amplified in φ(X).
Therefore, c matters more when comparing solutions in lower
bins, and in higher bins (excluding the last) f matters more.
This encourages solutions in B to rise up (via mutation) to the
final bin, where a (1− ε)-feasible solution is held.

7See the Appendix in the full version of the paper.
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0

bin 0

(1− δ)τ

bin 1

(1− δ2)τ

bin 2

(1− δ3)τ

.....

(1− ε)τ

bin logδ(ε)

τ

Figure 1: The region [0, τ ] is discretized into logδ(ε) + 1 bins in EASC. Solutions X ⊆ S are mapped into the bin corresponding to the region
where min{f(X), τ} falls. B contains at most 1 subset of S for each bin.

Like the bins discussed in Section 2.1, the motivation for
≺ is the greedy algorithm for MCSC. Again, consider the se-
quence of elements chosen by the greedy algorithm a1, ..., ak
and let Ai = {a1, ..., ai}. For i < k it is the case8 that

c(Ai)/ ln

(
τ

τ − f(Ai)

)
≤ c(A∗).

Therefore at every iteration the greedy algorithm has a solution
Ai where φ(Ai) ≤ c(A∗). In a sense, a solution X ⊆ S
such that φ(X) ≤ c(A∗) has as good of cost-effectiveness
as solutions picked by the greedy algorithm. ≺ ensures that
if B contains a solution X such that φ(X) ≤ c(A∗), then X
cannot be replaced with a solution that is less good in that
sense.

2.3 Mutation of Elements in B
Random mutation of solutions in the population occur in the
same fashion as existing Pareto optimization algorithms [Qian
et al., 2015b]. At each iteration of EASC, an element X ∈ B
is chosen uniformly randomly to be mutated. X is mutated
into X ′ as follows: Every x ∈ X is removed from X with
independent probability 1/n. Every x /∈ X is added to X
with independent probability 1/n. The number of elements
expected to change from X to X ′ is 1.
X ′ is added to B if there does not exist a Y ∈ B mapping

to the same bin as X ′ such that X ′ ≺ Y . If no such Y exists,
then X ′ is added to B and any existing solution in the bin of
X ′ is removed.

3 Approximation Results
In this section, the number of iterations before EASC contains
a near-feasible solution for MCSC with an approximation ratio
of ln(1/ε) + 1 is analyzed, where ε ∈ (0, 1) is an input param-
eter of EASC. Each iteration of EASC involves exactly one
evaluation each of f and c. If time is measured in evaluations
of f and c, as is commonly done [Badanidiyuru and Vondrák,
2014], then the expected time is a constant times the expected
number of iterations.

The approximation guarantee in Theorem 1 is a bicriteria
approximation guarantee, which means that both the feasi-
bility constraint9 and the minimum cost are approximated.
Algorithms with bicriteria approximation guarantees have pre-
viously been considered for submodular optimization prob-
lems [Iyer and Bilmes, 2013].

If ε is assumed to be a constant and cmax/cmin bounded by
a polynomial in n, then Theorem 1 shows that EASC finds a
near-feasible solution with a constant approximation ratio in
expected polynomial iterations.

8See the Appendix in the full version of the paper.
9The set X is feasible iff f(X) ≥ τ .

Theorem 1. Suppose that we have an instance of MCSC with
optimal solution A∗ 6= ∅, and EASC is run indefinitely with
input ε ∈ (0, 1) and δ ∈ [1 − cmin/c(A∗), 1 − cmin/c(S)].
Then B contains a set A in bin logδ(ε) such that f(A) ≥
(1− ε)τ and

c(A) ≤
(

ln

(
1

ε

)
+ 1

)
c(A∗),

where A∗ is an optimum solution, in expected number of itera-
tions at most

en

((
cmax
cmin

)
ln

(
1

ε

)
n+ 1

)2

.

Once a solution that fits the criteria of Theorem 1 appears
in bin logδ(ε), it cannot be replaced by one that does not
since the comparison operator ≺ compares based on only c
in the last bin. Notice that Theorem 1 does not contradict the
optimality of the ln(n)-approximation ratio for the set cover
problem [Feige, 1998], since the guarantee is bicriteria. The
same bicriteria approximation guarantee in Theorem 1 holds
for the greedy algorithm10.

The proof of Theorem 1 tracks cost-effective solutions in
B over the duration of EASC. A set X is cost-effective if it
satisfies one of the following (mutually exclusive) conditions:

i. bin(X) < logδ(ε) and φ(X) ≤ c(A∗).
ii. bin(X) = logδ(ε) and c(X) ≤ (ln(1/ε) + 1) c(A∗).

Once a cost-effective set is in the final bin, a solution that
meets the criteria of Theorem 1 is in the population. By design,
EASC never replaces a cost-effective solution in its population
with one that is not cost-effective. In addition, because of the
requirement that δ ≥ 1− cmin/c(A∗), the bins are structured
tightly enough so that there is a significant probability that
cost-effective solutions mutate into cost-effective solutions in
strictly greater bins. Together, these points enable EASC to
contain a cost-effective solution in its final bin in polynomial
expected iterations.

The following lemmas will be used to prove Theorem 1. The
lemmas are not novel to this work, but have previously been
used to analyze the approximation guarantee of the greedy al-
gorithm for MCSC [Goyal et al., 2013]. Proofs of the lemmas
are included in the Appendix in the full version of the paper.
Lemma 1. Suppose that we have an instance of MCSC
with optimal solution A∗ 6= ∅. Let X ⊆ S and x∗ =
argmaxx∈S∆fτ (X,x)/c(x). Then

τ − fτ (X ∪ {x∗}) ≤
(

1− c(x∗)

c(A∗)

)
(τ − fτ (X)).

10This result was originally proven for an influence application by
Goyal et al. (2013) but holds for general MCSC. See the Appendix
in the full version of the paper for the proof.
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Lemma 2. Suppose that we have an instance of MCSC with
optimal solution A∗ 6= ∅. Let X ⊆ S such that f(X) < τ
and x∗ = argmaxx∈S∆fτ (X,x)/c(x). Then c(x∗) ≤ c(A∗).

Proof of Theorem 1. Recall that notation is defined in Section
1. For brevity, let r = logδ(ε) be the final bin.

There always exists at least one cost-effective solution in
B: The empty set is cost-effective since φ(∅) = c(∅) = 0 <
c(A∗), and the empty set is never removed from B because
there does not exist Y ⊆ S such that c(Y ) < 0 = c(∅). Note
that this means if a solution is removed from B, it can be
assumed that it did not correspond to bin 0.

Define an infinite sequence `t, t ∈ {1, 2, ...}, where `t is the
max value in {0, ..., r} such that there exists a cost-effective
solution X ∈ B where bin(X) = `t at the beginning of
iteration t of EASC.
Part One. First, it is shown that the sequence `t is non-
decreasing. Let X be the cost-effective set corresponding to
`t at the beginning of iteration t. If X is not removed from B
during the tth iteration, then clearly `t ≤ `t+1.

SupposeX is removed from B during the tth iteration. Then
X was replaced with X ′ such that X ≺ X ′ and bin(X) =
bin(X ′). Let b = bin(X) = bin(X ′). As explained
above, b 6= 0. Suppose b = r. Then X ≺ X ′ implies that
c(X ′) < c(X) ≤ (ln(1/ε) + 1) c(A∗). Therefore X ′ is cost-
effective. If b ∈ {1, ..., r − 1}. Then X ≺ X ′ implies that
φ(X ′) < φ(X) ≤ c(A∗) and hence X ′ is also cost-effective.
In both of these cases, `t = `t+1.
Part Two. Second, it is shown that if bin(X) < r and

x∗ = argmaxx∈S
∆fτ (X,x)

c(x)
,

then bin(X ∪ {x∗}) > bin(X).
Let a = bin(X). Lemma 1 and that δ ≥ 1− cmin/c(A∗)

implies
fτ (X ∪ {x∗}) ≥ (1− δ)τ + δfτ (X).

By definition of the bins fτ (X) ≥ (1− δa)τ , and therefore

fτ (X ∪ {x∗}) ≥ (1− δa+1)τ.

Since a < r, it is the case that bin(X ∪ {x∗}) ≥ a+ 1.
Part Three. Third, it is shown that if X is cost-effective,
bin(X) < r, and x∗ defined as in Part Two, then X ∪ {x∗}
is cost-effective. Let a = bin(X) and b = bin(X ∪ {x∗}).
To show the cost-effectiveness of X ∪ {x∗}, four cases are
analyzed based on the values of a and b.

Case (i): b < r and a = 0. In this case, X = ∅ as explained
at the beginning of the proof, and X ∪ {x∗} = {x∗}. Lemma
1 states that

τ − fτ (x∗) ≤
(

1− c(x∗)

c(A∗)

)
τ ≤ exp

(
− c(x

∗)

c(A∗)

)
τ

which can be re-arranged to see that φ(x∗) ≤ c(A∗) and hence
X ∪ {x∗} is cost-effective.

Case (ii): b < r and a > 0. Since b, a < r it is the case that
fτ (X ∪ {x∗}) = f(X ∪ {x∗}) and fτ (X) = f(X). Lemma
1 gives that

τ − f(X ∪ {x∗}) ≤ exp

(
− c(x

∗)

c(A∗)

)
(τ − f(X)).

Using the upper bound on τ − f(X) given by re-arranging
φ(X) ≤ c(A∗) implies that

τ − f(X ∪ {x∗}) ≤ exp

(
−c(X ∪ {x

∗})
c(A∗)

)
τ

which may be re-arranged to see that X ∪ {x∗} is cost-
effective.

Case (iii): b = r and a > 0. X being cost-effective and
a < r imply that c(X ∪ {x∗}) =

c(X) + c(x∗) ≤ ln

(
τ

τ − f(X)

)
c(A∗) + c(x∗).

By Lemma 2, c(x∗) ≤ c(A∗). Therefore X ∪ {x∗} is cost-
effective.

Case (iv): b = r and a = 0. ThenX = ∅ as explained at the
beginning of the proof. Then c(X ∪ {x∗}) = c(x∗) ≤ c(A∗)
by Lemma 2, and therefore X ∪ {x∗} is cost-effective.
Part Four. It is now shown that if at iteration t, the cost-
effective set X associated with `t < r is mutated into X ∪
{x∗}, then `t < `t+1.

Suppose X is mutated into X ∪ {x∗} on iteration t. X ∪
{x∗} is cost-effective by Part Three. Let b = bin(X ∪{x∗}).
By Part Two, b > `t. If there does not exist Y ∈ B at the
beginning of iteration t such that bin(Y ) = b, then X ∪{x∗}
is added to B. Then `t+1 = b.

Suppose there does exist a Y ∈ B at the beginning of
iteration t such that bin(Y ) = b. Y is not cost-effective by
definition of `t. Then if b = r,

c(X ∪ {x∗}) ≤ (ln(1/ε) + 1)c(A∗) < c(Y )

and so Y ≺ X ∪ {x∗}. Then Y is replaced with X ∪ {x∗}
in B. If b < r, and recalling that b 6= 0 as explained at the
beginning of the proof, then

φ(X ∪ {x∗}) ≤ c(A∗) < φ(Y ).

Therefore again Y ≺ X ∪ {x∗}, so Y is replaced with X ∪
{x∗} in B. In both cases, `t+1 = b.
Part Five. Finally, the expected number of iterations until
`t = r is analyzed. Once `t = r, the solution in B mapping to
bin r satisfies the conditions of the theorem statement.

Suppose it is the beginning of iteration t of EASC such that
`t < r. Then with probability at least

1

|B|
1

n

(
1− 1

n

)n−1
≥ 1

en(r + 1)

the set X corresponding to `t will be chosen and mutated into
X ∪{x∗}. By Part Four, if this occurs `t < `t+1. By Part One,
the sequence is non-decreasing. This means that the expected
number of steps for `t to reach r is at most enr(r + 1). The
bound on r given by Proposition 1 of Section 2.1 gives the
theorem statement.

4 Experimental Analysis
In this section, EASC is experimentally evaluated on instances
of the Influence Threshold Problem (IT) [Goyal et al., 2013],
a special case of MCSC. EASC is compared to the greedy
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Figure 3: Over the duration of EASC and POM, the minimum cost of any solution in the population with f value above (1− ε)τ is plotted.
Both cost and number of f evaluations are normalized by that of the greedy algorithm.

algorithm and POM [Qian et al., 2015a]. In all experiments,
EASC and POM find solutions of lower cost than the greedy
algorithm, and in most cases EASC converges faster than POM
to a low cost. Code to run the experiments is publicly available
at https://gitlab.com/vcrawford/easc.git.

4.1 Application and Setup
The experiments are run on instances of the Influence Thresh-
old Problem, defined as follows. Let G = (V,E) be a social
network where vertices V represents users, and directed edges
E represent social connections. Activation of users in the
social network starts from an initial seed set and then propa-
gates across “live edges” according to the independent cascade
model [Kempe et al., 2003], in which every edge (u, v) ∈ E
has an independent probability puv of being live.

For every user v ∈ V , there is a cost cv of seeding that user.
The cost of seeding a setX is c(X) =

∑
x∈X cx. The function

f(X) is the expected number of users that will become active
if X is seeded; f is monotone submodular [Kempe et al.,
2003]. Then the IT problem is defined as follows: given an
activation threshold τ , find argmin{c(X) : X ⊆ S, f(X) ≥
τ}.

The experiments are run on four real social networks from
SNAP [Leskovec and Krevl, 2015]: ca-GrQc (n = 5242),
ca-HepPh (n = 12008), wiki-Vote (n = 7115), and ego-
Facebook (n = 4039). The independent cascade model is
used to model activation from a seed set for the above four
social networks with constant edge probabilities p = 0.07,
p = 0.02, p = 0.04, and p = 0.013, respectively.

Computing the expected activation f(X) under the indepen-
dent cascade model is #P-hard [Chen et al., 2010]. Instead of
evaluating f directly, the reverse influence sampling approach
[Borgs et al., 2014] with 100,000 samples is used in order
to approximate f . The same set of samples is used for all
algorithms on a data set.

The cost function c(X) =
∑
x∈X cx, where every node v

in the social network is assigned a cost cv that is its outgoing
degree perturbed by random multiplicative noise11 In partic-
ular, node v with outdoing degree d has cost 1 + (1 + |ξ|)d
where ξ ∼ N (µ = 0, σ = 0.5)12.

11Under this model of cost, social network users with more out-
going edges are generally more expensive to seed, but individual
preferences factor into the price of seeding via random noise.

12A normal distribution with mean 0 and standard deviation 0.5.

The instance of MCSC for each social network is run with
a different threshold τ . The greedy algorithm is run with
input τ and ε = 0.05. EASC is run with τ , ε = 0.05, and
δ = 1 − cmin/B where B is the cost of the output of the
greedy algorithm when run with τ and ε = 0. POM is run with
threshold (1− ε)τ for fair comparison with EASC, although
POM is not a bicriteria algorithm. EASC and POM are run 3
times on each instance, and the results are averaged.

4.2 Results
The experimental results are plotted in Figure 3. At small
intervals over the duration of EASC and POM, the minimum
cost of any solution in the population with f value above
(1− ε)τ is plotted. The cost and the number of f evaluations
are normalized by that of the greedy algorithm. That is, if the
greedy algorithm returned a set G, then the costs plotted are
normalized by c(G) and the number of function evaluations
are normalized by n|G|.

In all experiments, EASC and POM were able to find a
better solution than the greedy algorithm. In ca-HepPh (Fig-
ure 3(b)), both EASC and POM find a better solution than
the greedy algorithm in less f evaluations. These results
demonstrate an ability to improve on the solution quality of
the greedy algorithm.

In ca-GrQc (Figure 3(a)) and wiki-Vote (Figure 3(c)), EASC
finds a better solution more quickly than POM throughout the
entire experiment. In contrast, in ca-HepPh (Figure 3(b)) and
ego-Facebook (Figure 3(d)) POM finds a better solution more
quickly in the earlier stages of the experiment, but EASC
catches up and either outperforms POM for the remainder of
the iterations (caHepPh) or converges to about the same perfor-
mance. This behavior may be explained by the fact that at first
POM has a smaller population since every solution competes
with every other solution, unlike EASC where competition is
restricted to within bins. But as the population of POM gets
larger (at least 3 times larger than EASC at the end of these
experiments), the improvement of POM is slowed.
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