Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

An Evolution Strategy with Progressive Episode Lengths for Playing Games

Lior Fuks, Noor Awad, Frank Hutter and Marius Lindauer

University of Freiburg, Germany

{fuksl, awad, th, lindauer} @cs.uni-freiburg.de

Abstract

Recently, Evolution Strategies (ES) have been suc-
cessfully applied to solve problems commonly ad-
dressed by reinforcement learning (RL). Due to the
simplicity of ES approaches, their runtime is of-
ten dominated by the RL-task at hand (e.g., playing
a game). In this work, we introduce Progressive
Episode Lengths (PEL) as a new technique and in-
corporate it with ES. The main objective is to al-
low the agent to play short and easy tasks with lim-
ited lengths, and then use the gained knowledge to
further solve long and hard tasks with progressive
lengths. Hence allowing the agent to perform many
function evaluations and find a good solution for
short time horizons before adapting the strategy to
tackle larger time horizons. We evaluated PEL on
a subset of Atari games from OpenAl Gym, show-
ing that it can substantially improve the optimiza-
tion speed, stability and final score of canonical
ES. Specifically, we show average improvements
of 80% (32%) after 2 hours (10 hours) compared
to canonical ES.

1 Introduction

In reinforcement learning (RL), an agent learns how to solve
a given task by interacting with its environment. Recent
advances using deep policy networks have successfully ad-
dressed problems previously considered to be unsolvable,
including surpassing the level of a world champion Go
Player [Silver et al., 2017] and playing well a large collec-
tion of Atari games [Mnih er al., 2015].

Recently, evolution strategy (ES) showed surprisingly
good performance as an alternative approach to deep RL-
algorithms for playing Atari games [Salimans er al., 2017,
Conti et al., 2018; Chrabaszcz et al., 2018]. The ES di-
rectly optimizes the weights of deep policy networks encod-
ing a mapping from states to actions. Thus, an ES approach
for RL consists of optimizing a population of policies in the
spaces of potentially millions of network weights. The advan-
tages of ES compared to gradient-based optimizers are that
(i) ES is a gradient-free black-box approach which is able to
optimize non-differentiable functions and more importantly,

1234

(i1) ES can be efficiently parallelized resulting in short opti-
mization time compared to sequential optimizers and many
deep RL-algorithms [Salimans et al., 2017].

Whereas the advantages of ES are intriguing, ES has some
drawbacks similarly to the ones observed in RL. Although
ES uses parallel resources efficiently, ES still has to evalu-
ate many episodes and thus needs a lot of CPU time, e.g.,
Chrabaszcz et al. [2018] used 4 000 CPU hours for a single
ES run. Nevertheless, ES approaches are often trapped in lo-
cal optima shown by better policies found by RL-approaches
or even random search on some games [Such et al., 2017].

In this work, we aim to advance the state-of-the-art of ES
for RL-problems and propose a new algorithm, evaluated on
Atari games from OpenAl. The contributions of this work are:

1. We introduce a novel technique which we dub Progres-
sive Episode Lengths (PEL) and show how to incorpo-
rate it into canonical ES [Rechenberg, 1973; Chrabaszcz
et al., 2018]. The underlying idea is to allow an agent to
play short and easy tasks first, and then use the gained
knowledge to further solve longer and harder tasks, sim-
ilar as in transfer learning and curriculum learning.

2. We demonstrate the use of different time and episode
schedulers in PEL, controlling the maximal episode
length for a given time frame.

3. On a set of OpenAl Gym games, we show that ES is
often able to learn a policy on short episodes and transfer
this policy to longer episodes.

4. We study the empirical performance of PEL approach
with different time schedulers and show that after 2 (10)
hours of training, the agent is able to play the game with
an average improvement of 80% (32%) compared to the
use of canonical ES without PEL.

2 Related Work

The foundation of ES approaches are built upon the early
work of Rechenberg [1973]. In recent years, ES has been
proposed as an alternative approach to RL algorithms. Sal-
imans et al. [2017] showed that using a natural ES [Wier-
stra et al., 2014] can achieve comparable results in a few
hours compared to sequential RL methods (e.g., [Mnih et al.,
2015; Schulman et al., 2017]). Following Salimans’s work,
Chrabaszcz et al. [2018] showed that an even simpler canon-
ical ES can achieve better results.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Conti et al. [2018] proposed a method that improves the
exploration of ES by introducing novelty seeking. This tech-
nique tries to avoid local optima and induce exploration by
completely ignoring the reward function and selecting agents
which perform new behaviors. The results show that the pro-
posed algorithm can learn to play Atari games and solve Mu-
JoCo 3D humanoid tasks even when completely ignoring the
reward input. LaPorte et al. [2015] proposed an adaptive par-
ent population method in ES, aiming to adapt the parent pop-
ulation size which maximizes the final results.

ES approaches are applied in various disciplines and have
been incorporated in various fields in machine learning.
Cuccu et al. [2018] incorporated an ES approach with com-
pact state representation. Using vector quantization and
sparse coding, the used neural network containing only 6
to 18 neurons is capable of playing Atari games. Miller et
al. [1989] used ES to design neural networks, leading to a
modern ES for neural architecture search (e.g., [Real er al.,
2017]) and neuroevolution for playing games [Risi and To-
gelius, 2017]. Furthermore, Alvernaz and Togelius [2017]
and Poulsen er al. [2017] combined gradient-based RL-
approaches and ES-based approaches.

Our work is also related to the recent trend of multi-fidelity
Bayesian Optimization, in particular for hyperparameter opti-
mization, e.g., multi-task Bayesian Optimization [Swersky et
al., 2013], successive halving as a bandit strategy [Karnin et
al., 2013] and a combination of both [Falkner et al., 2018].
Similarly, we also try to approximate the learning task by
cheaper fidelities (here the episode length) and invest only
a fraction of the overall optimization budget on the full ex-
pensive learning task.

Furthermore, our work is closely related to curriculum
learning [Bengio et al., 2009; Jiang et al., 2015], since we
also organize experiences in a meaningful order which grad-
ually introduces more concepts and more complex concepts.
In contrast to curriculum learning for RL (e.g. [Narvekar,
20171), we do not divide the main task into sub tasks, but
we rather use the fact that shorter episodes naturally contain
less (and less complex) concepts; we also demonstrate that
the knowledge learned from such short episodes does indeed
transfer to longer episodes.

3 Background

In this section, we present canonical ES for playing Atari
games [Chrabaszcz et al., 2018] as prototypical algorithm
where progressive episode lengths (PEL) can be applied to.

3.1 Canonical Evolution Strategy

Following the work of Salimans et al. [2017], Chrabaszcz et
al. [2018] presented a simple ES algorithm dubbed canoni-
cal evolution strategy which achieved comparable results for
playing Atari games as the more complex variant by Salimans
et al. The algorithm is shown in Algorithm 1. Slightly adapt-
ing the original algorithm to the need of progressive episode
lengths, we assume that an initial policy 6, (representing the
policy network weights) is an argument of the algorithm; in
the simplest case, 6 is randomly sampled. Then an optimiza-
tion loop (Line 4) is started in which the initialized policy is

Algorithm 1: Canonical Evolution Strategy

Input:

o - Initial policy vector parameters

T - time budget

E' - max length for each episode

A - Population size

1 - Parent population size

o - Mutation step-size

F() - Fitness function for policy evaluation

1forje{l...u}do
5 ‘ W — —t0g(ut0-5)—log(j)
J ’Z:I log(p+0.5)—log(k)

3 end

4 fort=20,1,...,T do

5 fori=1,2,...,\Ado
EZNN(O,I)
5i<_FE(9t+U'€i>

6
7
8 end
9 Sort (€1, ..., €)) according to s in ascending order
w | Update policy: 011 < 0y + 0 - 3/ wj - ¢;
u end

Output: Return best found policy 6,

mutated in a similar fashion to the one done by the natural
evolution approach, where random noise €¢; ~ N'(0,02) is
added to its parameters vector (6, + o - €) for a fixed given
step size o (Lines 6 and 7). The performance of the newly
mutated policy (6; 4 o - €;) is then evaluated by a fitness func-
tion (F'(0; + o - €;)) (Line 7), representing the cumulative
reward of an entire episode. The entire population of new
agents is then ranked and sorted in an ascending order based
on their evaluation scores s; (Line 9). Finally, the current
policy 0, is updated using the update step by computing the
weighted mean of the top p policies denoted as Z‘j‘:l wj - €
(Line 10) where w is a vector of predefined weights (Lines 1
and 2) such that better ranked policies have a larger impact on
the updated policy ;1. This new policy is then forwarded
to the next generation from which a new optimization loop
is started. The whole optimization process is repeated itera-
tively to improve the policy performance over time.

3.2 Network Architecture

The policy network represented as 6 in Algorithm 1 is based
on the architecture proposed by Mnih et al. [2015]. For our
approach, we strictly follow the slightly modified architecture
proposed by Chrabaszcz et al. [2018], as shown in Figure 1.
The number of parameters in each layer which represent the
batch norm and kernel parameters are shown on top. The
activation function is changed from ReLU to ELU as pro-
posed by Clevert et al. [2016] and a virtual batch normaliza-
tion layer is added as done by Salimans et al. [2016]. Virtual
batch normalization is a variant of batch normalization, where
instead of using mini-batches to compute the normalization
statistics, a reference batch is collected at the beginning of
the optimization and is fixed for the entire optimization pro-
cess. The reference batch is collected by playing an Atari
game with randomized actions and saving the current states

1235

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

8192,32 32768,64 36864, 64 1605632,512 512*N, 2*N

>Pixel-wise Max—*RGB to Gray= Crop, Resize— 8x8x32 4x4x64 3x3x64 3136x512 512xN
— Pixel-wise Max—*RGB to Gray= Crop, Resize Sack Conv Conv Conv Dense Dense
l > Pixel-wise Max- RGB to Gray = Crop, Resize—>Frames . . . Stride 4 Stride 2 Stride 1
1 > Pixel-wise Max=RGB to Gray= Crop, Resize—> QQO
L ﬂaua
B All frames State Features Features Features Features Output
Current Frame I\\ move flickering frames 84x84x4 20x20x32 9x9x64 Tx7x64 512 N
\ /
Game Game State Game Neural
—} —_—
Engine frames Preprocessing state Network
Action
= B

Figure 1: Playing Atari games using Deep Neural Networks following Chrabaszcz et al.

with a probability of 1% until 128 samples are collected. The
policy vector weights of the network which consists of 1.7M
parameters are initialized by sampling from a normal distri-
bution M (p = 0,0 = 0.05).

The input data given by the Atari Gym environment is an
image with pixel size of 210x160 and 3 color channels. Fol-
lowing the pre-preprocessing procedure proposed by Mnih et
al. [2013], the image is resized and stacked into 4 consecutive
frames resulting in an image tensor of size 84x84x4. In order
to speed up the policy evaluation step in Algorithm 1, every
4th frame is collected instead of collecting over each frame.

4 Evolution Strategy with Progressive
Episode Lengths

In this section, we introduce Progressive Episode Lengths,
discuss its components and show how we incorporate it into
canonical ES.

4.1 Problems of Canonical ES

Although Chrabaszcz et al. [2018] showed that ES can per-
form quite well quantitatively, i.e., reaching a good score, the
learned policies are quite poor from a qualitative perspective
of humans. For example, in the game of Pong, a trained agent
might score quite well, but fails to hit even easy balls reli-
ably, an easy task for human players. The same observation
applies to other Atari games as well in which the agent fol-
lows a good strategy to maximize its main scores, but fails to
solve easy tasks and to play in a natural way. This leads to a
brittle performance and high variance.

4.2 PEL: Progressive Episode Lengths

Inspired by the human strategy to first learn short and easy
tasks, before learning the hard tasks, we propose to use pro-
gressive episode lengths (PEL), i.e., first train an agent to play
short episodes and then based on the experience gained on
these short episodes, train an agent on longer episodes.

The PEL approach is based on incremental learning, where
an agent utilizes the capabilities obtained in limited games
to an entire episodic run. The goal of this approach is to
achieve more stable and faster optimization process by fo-
cusing on simpler and shorter tasks first. When integrating it

1236

with canonical ES, the latter is able to optimize by only play-
ing a portion of a game, transferring the abilities obtained in a
short game to a longer one. For example in the game of Pong,
by solely learning to hit the ball, the algorithm could learn to
play an entire game.

Another important advantage of the proposed PEL is that
the ES approach can evaluate more policies by playing shorter
games and thus, it can potentially make progress much faster.
This applies in particular to tasks in RL, since the most time-
consuming step is often the evaluation of policies and not the
ES-update of the policies. For the case of Atari games, these
games typically last until the player loses all its in-game lives,
which can take quite some time in certain games even if only
a simple policy is applied. Therefore, limited episode lengths
for evaluating more policies can speed up the optimization
process substantially.

We formalized the idea of PEL in Algorithm 2. The input
to PEL are two components: (i) the time scheduler 7" and (ii)
the episode scheduler E (both discussed in the next subsec-
tions) and a maximal number of iterations (or another bud-
get for running PEL). First we initialize the policy randomly
(Line 1). In each iteration n, we update the maximal episode
length using E (Line 3) and the time limit using 7" (Line 4)
depending on n — 1 to run ES given an initial policy 6,,_;
(Line 5). The further improved policy 6,, returned by ES is
used in the next iteration with potentially larger budgets.

4.3 Episode Scheduler

One of the main components of PEL is the episode scheduler
to determine how many steps an episode should have at most.
Partially following the idea of successive halving by Karnin et
al. [2013], we propose a simple, yet effective episode sched-
uler that doubles the maximal episode length in each step, i.e.,
E(n) =2"- E(0).

In preliminary experiments, we observed that in practice
an important design decision is how to initialize the episode
scheduler with E'(0)—similar to the important minimal bud-
get in successive halving and approaches build upon it [Li
et al., 2017; Falkner et al., 2018]. For playing Atari games,
we found that using the expected number of steps in playing
random games is a good first estimate for F/(0). However, on
some games even more aggressive strategies can be beneficial

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Algorithm 2: ES-based Progressive Episode Length
Input:
E - Episode Scheduler
T - Time Scheduler
N - Maximal number of iterations
1 Initialize a policy from normal distribution 6y ~ N,
2 forne{l,...,N}do
3 Set episode length according to F(n — 1);
4 Set time limit according to T'(n — 1);
/* Perform ES as in Algorithm 1
*/
5 0, < ES(O,—1,T(n—1),E(n—1));
¢ end
Output: 6y

ES(0,.7T(1).E(1))

T(1) =2k
E(1) =2' . E(0)

W mm— n

Figure 2: A framework of ES-based limited episode’s length

such that we initialize £(0) by the expected number of steps
in playing random games divided by a constant; we used 2 in
our experiments.! To approximate the expectation, we used
Monte-Carlo roll-outs.

4.4 Time Scheduler

The second main component of PEL is the time scheduler
T'(n) defining how long to run ES given a limited episode
length E'(n). We propose two simple but yet effective sched-
ulers. The first scheduler simply uses the time uniformly,
i.e., T'(n) is constant (in our experiments, we used 1 hour).
The second schedule is again motivated by successive halv-
ing [Karnin et al., 2013] such that we double the time budget
in each iteration, i.e., T'(n) = 2™ - k for some user-defined
£ (20 min in our experiments). Using the second scheduler
combined with our proposed episode scheduler, PEL will
spend half of its overall optimization budget on the maximal
episode length. Therefore, even if our heuristic assumption
of learning on short games how to play long games should
not hold, PEL will still focus on long games for most of its
optimization budget.

4.5 An Example for PEL on Evolution Strategies

Figure 2 illustrates an instance of PEL where we double the
episode length and the time frame simultaneously. To play

"We show all further empirical results in an online appendix.

1237

a game for a total time budget ¢, runs of ES with different
limited episodes are carried out. For each of these maxi-
mal episode lengths, the canonical ES is performed for a time
limit defined by the time scheduler. For example in Figure 2,
in the second iteration, n = 2, the ES algorithm starts its op-
timization loop from the policy #; which is passed from the
first iteration. The ES evaluates episodes with at most F(1)
actions, which is twice as much as in the previous iteration.
Furthermore, the ES algorithm itself runs for at most 7°(1)
(e.g., seconds or generations). The improved policy 65 is then
passed to the third run of ES.

5 Experiments

In this section, we will address the following research ques-
tions:

Q1 How does PEL compare to the canonical ES by
Chrabaszcz et al. [2018] for playing Atari games?

Q2 How well do the proposed time schedulers perform?

Q3 Is it possible to learn well-performing policies for long
games by training only on short games?

5.1 Experimental Setup

To evaluate the performance of our proposed algorithm, we
used a set of Atari games [Chrabaszcz et al., 2018] from
OpenAl Gym [Brockman et al., 2016] and used the paral-
lelization technique introduced by Salimans et al. [2017] that
reduces the communication needed between workers. Each
run used 400 CPUs on a high-performance cluster equipped
with Intel Xeon E5-2630v4 processors and 128GB RAM.
We evaluated two time schedulers:

T. — The time limit is set to a constant of 1 hour, T,.(n) = 1

Ty — The time limit is set to 20 minutes and doubled in each
iteration, T;;(n) = 20 - 2™.

Both versions use a doubling scheme to increase the maximal
episode length. To compare PEL against canonical ES, we
computed the relative improvement on each game and aggre-
gated it by using a geometric mean. In our comparison, we
used the same parametric setup for both PEL and canonical
ES which is presented in Table 1. In order to estimate the
initial episode length E'(0) for PEL, we played each game
multiple times using random actions and then divided by 2
the average number of actions until the episodes ended. To
evaluate an approach, we ran five independent repetitions and
evaluated the top found policy for 30 times. We report the
mean evaluation scores of each of the five runs for both PEL
(with T}y and T.) in comparison with canonical ES.?

5.2 Q1: Comparison against Canonical ES

Table 2 shows our results for the two time schedulers 7. and
T, and compare them to canonical ES. After 2 hours of train-
ing, the PEL approach with both schedulers outperformed the

2We note that the code of Salimans er al. [2017] is not publicly
available and Salimans et al. [2017] reported only a single run of
their ES approach such that their performance estimate is potentially
very noisy and not comparable with our results.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Variable Symbol | Value
Population size A 800
Parent population size " 50
Mutation step size o 0.01

Table 1: Hyperparameters used in all ES variants (same as used by
Chrabaszcz et al).

canonical ES in 5 and 6 games out of 9 and improved the
scores by 49% and 80% on average, respectively. This shows
the effectiveness of using the proposed PEL approach to im-
prove the performance of canonical ES by optimizing differ-
ent episode lengths, and utilizing the best-so-far policy of the
previous iteration to improve further. After 10 hours, both
schedulers are better than canonical ES in 7 out of 9 games,
with an average improvement of 28% and 32% respectively.
We conjecture that by running canonical ES for a longer time,
the effect of PEL evaluating more policies decreases in com-
parison, such that the average improvement drops. On the
other hand, PEL increases the episode lengths more often by
running for 10 hours such that the PEL is more robust in this
setting. (Please note that PEL with 7, increased the episode
length only once within 2 hours).

Figure 4 shows that PEL optimized for more iterations than
canonical ES on most games, shown by the red line (canoni-
cal ES) which ends earlier than the green line (PEL with T};)
and the blue line (PEL with 7}.). On the game of Phoenix,
it is obvious that this led to much better scores. However,
on Enduro all approaches performed nearly the same amount
of iterations; nevertheless, PEL achieved higher scores and
had a much smaller variance across our repeated experiments
(shown by a smaller shaded area).

Playing the game Spacelnvaders, PEL performed worse
than canonical ES. In this specific game, the agent trained by
PEL has never seen a major event in the game after optimiz-
ing for 2 hours: the arrival of the mothership which provides
many points by shooting it. Therefore, PEL struggled to learn
shooting the mothership reliably and obtained smaller scores
on average.

5.3 Q2: Comparison of Time Schedulers

Comparing both schedulers, T;; performed better in 6 out of
9 games both after 2 and 10 hours. The average improvement
of T}; after 2 hours is much higher than 7.’s, but it is quite
similar after 10 hours. To study the performance of both ap-
proaches over time in more detail, Figure 3 shows the per-
formance of the best-so-far found policy evaluated on the full
game lengths at each time point. T}; performed particularly
well after the first 5 hours and benefited from running longer
games later on more than 7,. We draw a similar conclusion
from studying the performance over the number of iterations
(i.e., updates of the population), as shown in Figure 4.

5.4 Q3: Learning on Short Games

In order to verify whether an agent can learn a reasonable
policy on short games, we studied the performance of PEL
with T, after 2 hours. At this point, PEL has not seen the full
game, as shown in Figure 5 by the vertical lines. Neverthe-
less, PEL was able to find policies that played well on these

1238

short games (until the vertical line), but which are also able to
perform well if we let them continue playing the games (after
the vertical line). This verifies that the policies found by ES
generalize to longer games and therefore, PEL is an efficient
approach on these games.

6 Discussion and Future Work

We introduced a new approach dubbed Progressive Episode
Lengths (PEL) and integrated it with (canonical) ES. The
main idea of PEL is to divide the time budget into differently
limited time slots, and perform ES for each to firstly focus on
solving simple tasks (e.g., shorter games). We then use the
policies found on these short games to warm start ES to run
on harder tasks (e.g., longer games) which leads to better re-
sults. We evaluated the performance of PEL on a set of Atari
games from OpenAl Gym, and the results demonstrate that
the proposed approach is able to provide better results com-
pared to canonical ES, which always evaluated on full games.

The PEL approach has several assumptions: (i) We can find
a well-performing policy on short games that generalizes well
to longer games. We showed that this holds for many Atari
games. For other tasks with sparse rewards or substantially
delayed rewards, our approach has some limitations and will
likely not perform well if the agent needs to play for a long
time to get some rewards. Nevertheless, the PEL approach
will not entirely fail in such tasks but it will lead to a slow-
down such that the agent is still able to learn well. In the
future, we will study whether this also holds for other RL-
tasks such as MuJoCo. (ii) We initialize our minimal episode
length by playing random games. For games with a survival
component, this often provides a reasonable starting point.
However, preliminary results already indicate that for some
Atari games a more aggressive strategy and for some others
a less aggressive strategy will perform better. For RL-tasks
with no natural episode lengths and for tasks where shorter
episodes increase the difficulty, this heuristic will fail. There-
fore, future work will include finding a more reliable heuristic
to initialize episode lengths, and to start the evolution from
different game fragments instead of playing the game from
the beginning all the time.

Another direction for future work is to include a self-
adapting scheduler such that the maximum number of al-
lowed actions can be increased or decreased based on a poten-
tially learned heuristic. Also, ES in its current form explores
its environment by injecting random noise to its policy vector.
Introducing a guided exploration by estimating the direction
of a more rewarding space can improve the optimization pro-
cess. Overall, we believe that integrating PEL into deep re-
inforcement learning algorithms is a promising direction and
can lead to new advances in the state of the art.

Acknowledgments

Robert Bosch GmbH is acknowledged for financial support.
The authors acknowledge support by the state of Baden-
Wiirrtemberg through bwHPC and the German Research
Foundation (DFG) through grant no. INST 39/963-1 FUGG.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Game 2H 10H

Can. ES PEL-ES;. PEL-ES;, | Can. ES PEL-ES;. PEL-ESp,
Alien 1962 3673.4 3108.2 4063 5763.6 5509.6
BankHeist 41.6 214.2 229.8 192.4 341.8 269.4
BeamRider 743 718 734.8 1259 1107.6 1744.2
Breakout 16.4 10 44.8 64.6 1104 120.2
Enduro 55.6 82.4 88 78.6 106 108.6
Phoenix 1011.6 3330.8 2872.6 2203.2 3821.6 3888.2
Pong 4.8 9.6 14.4 11 14.2 15.2
Seaquest 1263 1008.2 797.2 1914.2 2123.6 1755
Spacelnvaders 960.8 790 930 2030.6 1448 1610.6
Average Improvement | 49% 80% | 28% 32%

Table 2: Mean evaluation scores for PEL-ES approach with two different time limits compared to canonical ES. Each entry in the table is
the mean score over 5 optimization runs in which 30 evaluations runs are performed for each. The average improvement is computed in

comparison with canonical ES. Bold values indicate the highest mean scores.

BeamRider

Breakout

Enduro i
20 5000 Phoenix
1400 120
2
1200 ,— 100 4000
1000 20
° '?“ g 80 B 3000
g % S 15 £ s
& 600 & & & 2000
10
400 —— PEL-ESy, — PELESY, | 4 —— PELES, —— PEL-EST,
200 — PELEST, 5 — PELESr, 2 — PELEST 1000 —— PEL-EST,
— Can.ES —— Can.ES —— Can.ES —— Can.ES
0 0 0 0
0 2 8 0 2 8 10 0 2 8 10 0 2 [) 10

4 6
Time [Hours]

4 6
Time [Hours]

4 6
Time [Hours]

4 6
Time [Hours]

Figure 3: Score over time for PEL (blue 7. and green 7};) and canonical ES (red). Each line is the median score of 5 optimization runs and
the shaded areas show the 25% and 75% percentiles of these runs.

BeamRider

Breakout

30 Enduro Phoenix
= 5000
1400 [120 -
2 — 40N
1200 [— 100 - N 4000 i
- 1000 -2 k] ©
g = 2 e 80 £ 3000 »
800 if P
= Pl =1 i 2 gl i [=
Q e00{ [~] i Q @ 2000
o e (2P - x 14 IR
400 —— PEL-ESy, L -~ PEL-ES, —— PEL-ESy, —— PEL-ESy,
200 —— PELESy, 5 = — PELEST. 2 J — PELEST 1000 —— PELESy,
—— Can.ES égj — Can.ES — Can.ES — Can.ES
0 0 0 = 0
L 800 1000 0 1000 2000 3000 4000 5000 6000 0 200 600 0 20 800 1000

60!
Optimization Iterations

Optimization lterations

400 800
Optimization Iterations

400 600
Optimization Iterations

Figure 4: Score over time for PEL (7% and 75) and canonical ES. Each line is the median score of 5 optimization runs and the shaded areas
show the 25% and 75% percentiles of these runs. The vertical lines show the points after which the maximal episode lengths were increased.

BeamRider 1[Hour] Breakout 1[Hour] Enduro 1[Hour] Phoenix 1[Hour]
120

800 7 4000

§ § R é 100 g 3500
2

T 600) > 3000
& @ s @ 4

© o Py o 250

2 84 2 6 2 2000
T 5, = k]

> > > 2 1500

£ E. £« 3

200 1000
o (@) o O

1 500

0 500 1000 1500 2000 0 0 %0 100 150 200 2 ° 500 1000 1500 2000 2500 200 400 600 800 1000 1200
Steps Steps Steps Steps

Figure 5: Mean of cumulative reward for 30 evaluation runs for PEL with 7% with 2 hours time budget. The red dashed line indicates the
maximal number of actions observed by PEL.

1239

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Alvernaz and Togelius, 2017] S. Alvernaz and J. Togelius.
Autoencoder-augmented neuroevolution for visual doom
playing. In Proc. of IEEE CIG, pages 1-8, 2017.

[Bengio et al., 2009] Y. Bengio, J. Louradour, R. Collobert,
and J. Weston. Curriculum learning. In Proc. of ICML,
pages 41-48, 2009.

[Brockman et al., 2016] G. Brockman, V. Cheung, L. Pet-
tersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym. arXiv:1606.01540 [cs.LG],
2016.

[Chrabaszcz et al., 2018] P. Chrabaszcz, 1. Loshchilov, and
F. Hutter. Back to basics: Benchmarking canonical evolu-
tion strategies for playing atari. In Proc. of IJCAI, pages
1419-1426, 2018.

[Clevert et al., 2016] D.-A. Clevert, T. Unterthiner, and
S. Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). In Proc. of ICLR, 2016.

[Conti et al., 2018] E. Conti, V. Madhavan, F. Such,
J. Lehman, K. Stanley, and J. Clune. Improving ex-
ploration in evolution strategies for deep reinforcement
learning via a population of novelty-seeking agents.
arXiv:1712.06560 [cs.Al], 2018.

[Cuccu et al., 2018] G. Cuccu, J. Togelius, and P. Cudre-
Mauroux. Evolutionary generative adversarial networks.
arXiv:1803.00657 [cs.LG], 2018.

[Falkner et al., 2018] S. Falkner, A. Klein, and F. Hutter.
BOHB: robust and efficient hyperparameter optimization
at scale. In Proc. of ICML, pages 1436-1445, 2018.

[Jiang et al., 2015] L. Jiang, D. Meng, Q. Zhao, S. Shan, and
A. Hauptmann. Self-paced curriculum learning. In Proc.
of AAAL pages 2694-2700, 2015.

[Karnin et al., 2013] Z. Karnin, T. Koren, and O. Somekh.
Almost optimal exploration in multi-armed bandits. In
Proc. of ICML, pages 1238-1246, 2013.

[LaPorte et al., 2015] G. LaPorte, J. Branke, and C.-H.
Chen. Adaptive parent population sizing in evolution
strategies. Evolutionary Computation, 23:397-420, 2015.

[Lietal,2017] L. Li, K. Jamieson, G. DeSalvo, A. Ros-
tamizadeh, and A. Talwalkar. Hyperband: A novel bandit-
based approach to hyperparameter optimization. Journal
of Machine Learning Research, 18:185:1-185:52, 2017.

[Miller et al., 1989] G. Miller, P. Todd, and S. Hegde. De-
signing neural networks using genetic algorithms. In Proc.
of ICGA, pages 379-384, 1989.

[Mnih et al., 2013] V. Mnih, K. Kavukcuoglu, D. Silver,
A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller. Playing atari with deep reinforcement learning.
arXiv:1312.5602 [cs.LG], 2013.

[Mnih et al., 2015] V. Mnih, K. Kavukcuoglu, D. Silver,
A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Ried-
miller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level

1240

control through deep reinforcement learning. Nature,

518(7540):529-533, 2015.

[Narvekar, 2017] S. Narvekar. Curriculum learning in rein-
forcement learning. In Proc. of IJCAI, pages 5195-5196,
2017.

[Poulsen et al., 2017] A. Poulsen, M. Thorhauge, M. Funch,
and S. Risi. DLNE: A hybridization of deep learning and
neuroevolution for visual control. In Proc. of IEEE CIG,
pages 256-263, 2017.

[Real et al., 2017] E. Real, S. Moore, A. Selle, S. Saxena,
Y. Suematsu, J. Tan, Q. Le, and A. Kurakin. Large-scale
evolution of image classifiers. In Proc. of ICML, pages
2902-2911, 2017.

[Rechenberg, 1973] 1. Rechenberg. Evolutionsstrategie opti-
mierung technisher systeme nach prinzipien der biologis-
chen evolution. PhD thesis, Frommann-Holzboog, 1973.

[Risi and Togelius, 2017] S. Risi and J. Togelius. Neuroevo-
lution in games: State of the art and open challenges.
IEEE Trans. Comput. Intellig. and Al in Games, 9(1):25—
41, 2017.

[Salimans et al., 2016] T. Salimans, I. Goodfellow,
W. Zaremba, V. Cheung, A. Radford, and X. Chen.
Improved techniques for training gans. In Pros. of NIPS,
2016.

[Salimans et al., 2017] T. Salimans, J. Ho, X. Chen, and
S. Sidor amd I. Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning.
arXiv:1703.03864 [stat. ML], 2017.

[Schulman et al., 2017] J. Schulman, S. Levine, P. Moritz,
M. Jordan, and P. Abbeel. Trust region policy optimiza-
tion. arXiv:1502.05477 [cs.LG], 2017.

[Silver et al., 2017] D. Silver, J. Schrittwieser, K. Simonyan,
I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. Driessche, T. Graepel, and Demis Hassabis. Master-
ing the game of go without human knowledge. Nature,
550:354-359, 2017.

[Suchetal,2017] F. Such, V. Madhavan, E. Conti,
J. Lehman, K. Stanley, and J. Clune. Deep neuroevolu-
tion: Genetic algorithms are a competitive alternative for
training deep neural networks for reinforcement learning.
CoRR, abs/1712.06567, 2017.

[Swersky er al., 2013] K. Swersky, J. Snoek, and R. Adams.
Multi-task bayesian optimization. In Proc. of NIPS, pages
2004-2012, 2013.

[Wierstra et al., 2014] D. Wierstra, T. Schaul, T. Glasmach-
ers, Y. Sun, J. Peters, and J. Schmidhuber. Natural evolu-
tion strategies. JMLR, 15:949-980, 2014.

