Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

DeltaDou: Expert-level Doudizhu Al through Self-play

Qiqi Jiang, Kuangzheng Li, Boyao Du, Hao Chen and Hai Fang

SweetCode Inc, Beijing

{jiangqiqi, likuangzheng, duboyao, chenhao, fanghai} @itgwn.com

Abstract

Artificial Intelligence has seen several break-
throughs in two-player perfect information game.
Nevertheless, Doudizhu, a three-player imperfect
information game, is still quite challenging. In this
paper, we present a Doudizhu Al by applying deep
reinforcement learning from games of self-play.
The algorithm combines an asymmetric MCTS on
nodes representing each player’s information set, a
policy-value network that approximates the policy
and value on each decision node, and inference on
unobserved hands of other players by given policy.
Our results show that self-play can significantly im-
prove the performance of our agent in this multi-
agent imperfect information game. Even starting
with a weak AI, our agent can achieve human ex-
pert level after days of self-play and training.

1 Introduction

Computer programs are able to beat the best human play-
ers in a lot of popular perfect information games, such as
backgammon [Tesauro, 1995], checkers [Schaeffer er al.,
2007], chess [Campbell et al., 2002], and go [Silver et al.,
2016]. AlphaZero [Silver et al., 2018] introduces a general
reinforcement learning framework, which is able to master
chess, go, and shogi without human knowledge via self-play.

Imperfect information games, where players cannot ob-
serve the full state of game, is still very challenging. Deep-
Stack [Moravéik et al., 2017] and Libratus [Brown and
Sandholm, 2018] achieve super-human level in Heads-Up
No-Limit Texas Hold’em using Counterfactual Regret Min-
imization (CFR). CFR relies on a complete traversal of the
game tree, and the traversal would be difficult for some games
with large state space.

In this paper, we describe how to create an expert-level
Al player for the game of Doudizhu by integrating two tech-
niques into an AlphaZero-like self-play framework.

The first technique is an asymmetric Monte Carlo Tree
Search (MCTS) on information set for each player, called
Fictitious Play MCTS (FPMCTS). To alleviate state explo-
sion problem, we construct a game tree of information set
nodes for each player. The acting player chooses his action
in a PUCT [Silver et al., 2016] fashion, and the other two

1265

players’ actions are sampled from their own policy networks.
This approach avoids the issues of Strategy Fusion and Non-
Locality. Moreover, FPMCTS converges very fast, since the
branching factor is the size of the action space instead of the
size of possible determinizations.

The second technique is a policy-based inference algo-
rithm. [Buro ef al., 2009] proposes a good inference algo-
rithm that improves performance of their Skat Al drastically.
We developed our own inference algorithm in our self-play
framework, and found that policy network is a better fit than
hand-crafted features in our case.

FPMCTS and the inference algorithm are integrated into a
self-play framework. Each self-play episode takes all players’
neural networks as input. The search phase returns a vector of
probability distribution over moves, and the resulting distri-
bution along with the game results are then used to update the
neural network of each player. In the next episode, this up-
dated neural network used in inference and looking-forward
search. To bootstrap the reinforcement learning procedure,
we first generate a policy network from the self-play results
of a heuristic AL

Our algorithm is evaluated by two sets of experiments,
with existing Doudizhu AI’s and human players respectively.
We observe that our algorithm improved itself through self-
play, and made significant progress after days of training
with modest computational power. It dominates all other
Doudizhu AI’'s we are aware of, and shows a comparable
strength against human experts. The playing style of our pro-
gram looks more like human than other Als.

The main contributions of this paper are:

e FPMCTS that enables policy iteration framework to
work for multi-player imperfect-information games;

e Inference algorithm that takes advantage of players’
policies directly;

e AlphaZero-like deep reinforcement learning framework
that combines neural networks with FPMCTS and the
inference algorithm in a self-play procedure;

e An expert-level Doudizhu Al via self-play.

2 Related Works

Perfect Information Monte Carlo (PIMC) is used by the clas-
sical bridge algorithms like GIB [Ginsberg, 1999]. Despite

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

its success on imperfect information games [Long er al.,
2010], PIMC still suffers from problems like Strategy Fusion
and Non-Locality in reality.

MCTS is a popular search framework in perfect informa-
tion games. In imperfect information games, the main chal-
lenge is that the asymmetry of information in an extensive
form game makes constructing a single collective search tree
problematic.

Several approaches are proposed to fix the problems caused
by imperfect information. Information Set MCTS (ISMCTS)
[Cowling ef al., 2012] aimed to resolve the fusion prob-
lems. It grows a tree over information sets for each player
instead of constructing a separate tree for each determiniza-
tion. ISMCTS suffered from the information leaking prob-
lem, as pointed out by [Furtak and Buro, 2013]. [Heinrich
and Silver, 2015] introduced Self-play MCTS and used a sep-
arate search tree for each player. The tree was grown on each
player’s own information state and was guaranteed to be a
proper tree by perfect recall. Although each node in self-play
MCTS contained an information set, the algorithm still had
convergence problems. Smooth-UCT introduced a smoother
action choosing scheme for better convergence property, but
the algorithm might still need a lot of simulation steps to con-
verge because of the iterative tree structure.

There are attempts to solve imperfect information games
using deep reinforcement learning. [Heinrich et al., 2015]
and [Heinrich and Silver, 2016] introduced Neural Fictitious
Self-Play (NFSP), it calculated the best response for a given
stationary policy and used a deep reinforcement learning ap-
proach to update that policy.

Doudizhu has not seen too many efficient solutions. [Pow-
ley et al., 2011] observed that games like Doudizhu with large
branching factor were difficult for ISMCTS.

Our work combined the thoughts of self-play MCTS and
NFSP. We proposed FPMCTS, a variant of MCTS which uses
a neural network to store the policy. The best responses were
computed via FPMCTS and the neural networks were up-
dated in an AlphaZero-like framework. We implemented this
idea and got a strong Doudizhu Al

3 Background

3.1 Doudizhu

Doudizhu (a.k.a. Fight the Landlord) is one of the most pop-
ular card games in China. There are more than 800 million
registered users and 40 million daily active players on the
Tencent mobile platform for Doudizhu. The game is in the
genre of climbing and shedding, and is described as easy to
learn but hard to master.

The standard version of Doudizhu is played by three play-
ers with a pack of 54 cards including two jokers, red and
black. The cards rank from high to low: Red Joker(B), Black
Joker(L) 2, A, K, Q,J, 10(T7), 9, 8,7, 6, 5, 4, 3. Suits are irrel-
evant. The game begins with each of the three players being
dealt 17 cards, with the remaining 3 cards dealt face-down.

The play of the game consists of two phases: bidding and
cardplay. The bidding phase, which is not considered in this
paper, designates one of the players as the landlord, which is
analogous to the declarer in bridge. Unlike bridge, there are

1266

no permanent alliances of players cross games, and the two
players who lose the bidding become partners (i.e. peasants)
for the current game. We use letters to denote the positions:
C for the landlord, D and E for the peasant on the right-hand
side and left-hand side of the landlord respectively.

Once the landlord picks up the three face-down cards, card
play begins. The game is played in rounds, and the land-
lord starts the first round. In any round, the first player may
play any legal combination (single, pair, chain, etc.). Each
subsequent player must either pass or beat the previous hand
by playing a higher combination of the same hand category.
There are just two exceptions: a rocket (a pair of jokers) can
beat any combination, and a bomb (four cards of the same
rank) can beat any combination except a higher bomb or
rocket. The round continues until two consecutive players
pass. When one round ends, the person playing the last cards
in current round leads the next round.

The landlord wins the game if she gets rid of all cards on
hand first; the peasants win otherwise. Each bomb or rocket
played during the card play phase doubles the score for every-
one. More thorough introductions to Doudizhu are available
online at http://www.pagat.com/climbing/doudizhu.html.

3.2 Extensive-Form Games

Extensive-form games are a model of sequential interaction
involving multiple agents. The representation is based on a
game tree and consists of the following components: N =
{1,2,...,n} denotes the set of players. S is a set of states
corresponding to nodes in a finite rooted game tree. For each
state node s € S the edges to its successor states define a set
of actions .A(s) available to a player in state s. The player
function p : S — N determines who is to act at a given state.
For each player ¢ who cannot observe the full state, there is
corresponding set of information states ¢ and an informa-
tion function Z° : S — U® that determines which states are
indistinguishable for the player by mapping them on the same
information set v € U*. Finally, R : S — R"™ maps termi-
nal states to a vector whose components correspond to each
player’s payoff. The reward vector sums to zero for zero-
sum games. A policy 7 for player i maps each state s with
p(s) =i to a probability distribution over A(s).

For Doudizhu, each player can only observe his own cards
cé and action history H; = ag,a, ...,a; at time j. There-
fore, the decision-making process in v is a single agent MDP
since other players’ actions can be treated as feedback from
the environment.

4 Extending AlphaZero to Multi-Player
Imperfect-Information Game

In this section we describe the components introduced to
make the AlphaZero-like training possible. The first com-
ponent is FPMCTS, which is a variation of MCTS in an im-
perfect information game. The second component is policy-
value networks that serve as opponents strategies. The third
component is inference of other players’ cards. Last but not
least, we describe how to adjust self-play in our case.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4.1 Fictitious Play MCTS

The computational complexity brought by updating other
players’ choice recursively [Heinrich and Silver, 2015] mo-
tivated us to grow a separate search tree for each player. The
fact that human players might choose pre-determined over
rational actions [Ponsen et al., 2010] made us believe we
could use policy network to approximate opponent responses.
We call our algorithm Fictitious Play MCTS (FPMCTS). The
term fictitious play [Brown, 1951] stands for our assumption
that other players would always adhere to static but powerful
strategies. We designed FPMCTS to make AlphaZero work
for Doudizhu. [Ponsen et al., 2010] proposed a similar idea
in the setting of Poker. These two approaches were devel-
oped independently for different purposes. Despite their sim-
ilarities at the top-level, the two approaches have some dif-
ferences: [Ponsen et al., 2010] used traditional MCTS with
rollout and UCT. We use a value network to approximate the
value of the leaf node, and p-UCT with a prior probability
computed from a neural network for each action.

In the search tree for a specific player, there are two types
of nodes: The decision nodes are the ones where the current
player acts, and the rest are chance nodes. We merge the two
opponents’ consecutive actions into one chance node. In the
section below, we use ¢ to denote the current player.

At decision nodes, we use p-UCT to select actions:

Tiree(u') = argmax |Q(u', a) + 7'(u', a)

a€A(u?)

14+ N(ut,a)

where Q(u',a) is the average Q-value by choosing action
a, N(u') is the number of times u’ has been visited, and
N(u®,a) is the number of times a has been taken. Values of
decision nodes are estimated by a function v7. To avoid the
non-locality problem, we choose several deterministic worlds
at the root node before the search begins by an inference al-
gorithm, which we will describe in Section 4.3. During the
expansion phase, traditional MCTS expands a node by one
level, and FPMCTS expands a node by two levels so that
new leaf nodes are decision nodes unless the game ends at
a chance node at next level.

At chance nodes, other players’ moves are sampled from
their policies. The network is updated after the self-play
episode ends.

4.2 Policy-Value Network

Doudizhu has some specific hand categories that can make
the action space very large. One example is Trio with single
card, where any trio can be combined with an individual card
as kicker, e.g.: 3334, 3335. This combination with kicker
leads combinatorial explosion of the action space. To reduce
the action space size, we only encode rank and category in
the policy output. After the policy network produces answers,
we use a kicker network and several heuristic rules to convert
policy outputs to actual moves.

Since the neighboring relations between different card
ranks are quite crucial in Doudizhu, we use 1D-convolutional
layers. The network fy(s) = (p,v) contains 10 residual
blocks with batch normalization and rectifier non-linearities.
The parameters of fy are adjusted by the gradient of a loss

1267

Algorithm 1 FPMCTS in Doudizhu

1: function SEARCH(u?, 7)

2 foriin (1,..., simulate_num) do

3: s~ u > determinization
4 SIMULATE(s)

5 end for

6: end function
7: function SIMULATE(s)
8: if ISTERMINAL(s) then

9. return REWARD(s)
10: end if
11: while v is not leaf do
12: (a,u’) = SELECT(T%(u')) ® using p-UCT

13: end while 4
14: if ISTERMINAL(u*) then

15: v =R(u?) > return reward
16: else

17: v = vi(u?) > value function
18: EXPANDTREE(T", u’, 5, a)

19: end if

20: UPDATE(u!, a, v)

21: end function

22: function EXPANDTREE(T?, u%, s,)
23: a ~ i (ut)

24: s=G(s,a)

25: foriin (1..2) do

26: k= pgcs)
27: a~ 7F(IF(s))
28: s=G(s,a)

29: end for

30: u' = T'(s)

31: update chance node with
32: end function

function that sums the over mean-squared error and cross-
entropy losses.

1=Ci(z =)y — 7" logp + Calf]]2

where C is used to rescale the value error since v is normal-
ized, and C5 is a parameter controlling the level of Lo weight
regularization.

The input of the network is a condensed 15 x 7 matrix
of current information state, including current player’s cards,
union of other players’ cards, recent three actions, and union
of played cards. The output is a matrix of legal moves classi-
fied into n separate buckets according to the hand categories.

Our input and output encoding can be viewed as a trade-
off between precision and speed. In practice, the encoding
has dramatically improved the training efficiency with few
issues.

4.3 Inference

Players involved in imperfect information games can only
observe a portion of the world, so making a good inference
about the unseen portion can usually result in better action
selections. A straightforward way to generate a determin-
istric world is random selection, but it fails to incorporate
valuable knowledge from current game history. Therefore,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

200 simulations

20 simulations

2 simulations

08) (05) (o7 &

(8,2) (an,P) (9,2)

Peasnant D’s round: E,C

My(D’s) Cards: LJJ555443

Landlord C’s cards count: 9

Peasant E’s cards count: 3

C and E’s cards: B2AAK9988833 D
Subgame

Figure 1: DeltaDou’s search algorithm. This graph shows the D’s initial choice 3 was corrected by the FPMCTS to 44, a cooperating
approach with his teammate E. This action led E whose cards was inferred as AA8 or AA9 with 99%confidence got rid of all his cards first,
and thus, peasants won the game. Each node would be an information set, storing its value and visit number. Edges from hollowed nodes
mean explored choices of D ,and arrows stand for D’s best choices in corresponding nodes. Within each iteration, responses from other
players would be determined by the inference and policy, and each node would be updated to track the average value of all evaluations ()

and vy () in expanded subtrees below it

researchers have designed several ways to bias the cards’ dis-
tribution. Ponsen [Ponsen et al., 2010] has shown that the
Bayesian Method equipped with a dependable policy regres-
sion model would be quite effective in Poker Games. Simi-
larly, in Doudizhu, we take the output of policy-value network
as a policy approximator to improve our inference.

Theoretically, the probability distribution for the real world
could be computed precisely by the Bayesian Formula. We
use S to denote all possible worlds of a specific information
state. For any determinized situation s € S, its prior proba-
bility could be denoted as p(s), and its history could be de-
noted by sequence h(S) = h(s) = aj,aqz,- - ,a. The pol-
icy could be denoted as Pr(a|s) = Pr(a|Z?(*)(s)). History
situations {s1, s2,- - , s} of this current situation s would
be derived by adding the played cards back. Therefore, the
posterior probability p(s|H) of the situation s in the view of
the current player could be computed as follows.

p(s)p(H]|s)
p(s|H) =
) = 5 copls w(HTY)
in which for any H = a1, a9, - - , ay,
plavag, -+ apls) = [Priayls;)
s5,0(85)#x

However, in practice, there still exist several challenges
[Buro ef al., 2009]. First, calculating p(s|H = h(s)) for a
large number of possible worlds is intractable. Second, a tight
policy would make the prediction brittle in the face of players
who do not play like us. Therefore, we designed a two-phase
inference algorithm which can offer credible sampled worlds
using modest hardware resources.

1268

In Phase 1, a large number of deterministric worlds are ran-
domly generated, then a small portion of the generated worlds
would be retained based on filter scores. The scores are given
by a 6-layer 1D-convolutional neural network trained from
self-play games.

In Phase 2, the Bayesian method and the policy-value net-
work are used to compute approximate posterior probabilities
of samples generated in Phase 1. In detail, the policy Pr(als)
for a certain s could be derived from fy(s) = (p(s),v) by
applying a temperature operator. The temperature operator is
used to make the inference algorithm more robust when the
human opponents have different play styles.

others

others

AAKKS

BAAAA
D plays P
L 14% E plays KK
KKKJ8 14% C plays AA AAS
BKKS88
KKKIJ9 AA3

Figure 2: Inference example. This scenario shows the change of
peasant D’s guess on peasant E’s cards. After a round of play, the
probability of peasant E having exactly two A’s increased from 40%
to 93% from the point of view of D.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

T T T

05 o
~E

04 |

3

o

£ \ ~ A/ .

5 R ; AN~
" W |
0.2 B

| | | | | |

0 10 20 30 40 50

episode

Figure 3: WP of DeltaDou each position in self-play games. WP of
C is up to 50% in early period of self-play, while D wins more than
E. As D learns how to let E wins by send him the hand he wants,
Winning rate of E goes up and up to 35% in around episode 20. The
tactic of E to use an appropriate move to let D wins is learned later
and D’s WP goes up while D and E forms a more stronger peasants
pair.

4.4 Self-play

Self-play is the key process to improve the performance of
DeltaDou. Our procedure is similiar to that of AlphaZero
except that we maintain one network for each positions(C, D,
and E) respectively. We use randomly generated deck in each
game for self-play. During self-play, We find that DeltaDou
struggles to play correctly in some rare cases.

Strategies for each state during self-play and game results
are stored in a reservoir that is used to train the policy-value
network for each player. The algorithm then updates itself
iteratively as what is done in AlphaZero.

5 Experiments

In this section, we first describe how to train the policy-value
network in DeltaDou. Then we show that DeltaDou is much
stronger than other existing programs and appears to have
reached human expert strength using performance results.

5.1 Training Process

We used a hand-coded heuristic algorithm to bootstrap the
training process. In the first phase, 200,000 games were self-
played by the heuristic algorithm, then the game results were
used to generate the initial policy-value network under super-
vised learning.

During self-play, each episode contains 8000 games, and
FPMCTS contains 400 playouts. Inference is used when any
player has fewer than 15 cards in hand. At the beginning of
the self-play process, a high temperature is used to reduce the
overfitting problem of policy, and the temperature cools down
during self-play.

In order to check the progress of the self-play, we need
to evaluate the performance of the agent. Our approach is
inspired by teams tournament for duplicate bridge. When two
teams A and B are compared with each other, the same hand
is played twice: First, Team A plays as the landlord and Team

1269

0.5

ADP

—05F /

—— Jandlord 0.6} - Initial Heuristic AL |
—— peasants
3 :

0 10 20 30 40 50 0 10 20 30 40 50

episode episode

(a) ADP by position (b) overall ADP

0.6 |

WP

] —— landlord
0.3 —— peasants | _|

| I I I 031 I ! I I L
0 10 20 30 40 50 0 10 20 30 40 50

episode episode

(d) overall WP

(c) WP by position

Figure 4: Learning curve of the self-play training. The testing data
set consists of a fixed set of 100 games. The benchmark program is
a strong heuristic algorithm XDou. We also mark the performance
of the heuristic algorithm that was used to generate the initial neu-
ral network for self-play. DeltaDou beated the initial heuristic AL
and XDou after 3 and 10 episodes respectively. Also note that the
advantage of DeltaDou against XDou is mainly from the peasants
side.

B as the peasants, and then Team A plays as the peasants and
Team B as the landlord. The following two metrics are used
to compare the performances of the teams:

o ADP (Average Difference in Points): The difference of
the points scored per game of the two teams for the given
hand set. For each game, the winning team gets 1 point
and the losing team gets -1 point. Every bomb played
during the game doubles the score.

e WP (Winning Percentage): The fraction of games a
team won, i.e. number of games won divided by number
of games played. A team has a better performance than
the opponent team if the former got a WP higher than
50%.

The performance gain of the learning process was mea-
sured against XDou, our strongest heuristic program. The
learning curve of DeltaDou is shown in Figure 4.

5.2 Comparison to Doudizhu Baseline

We launched a tournament that include the two opponent side
each play at landlord position and peasants position for 100
decks. WP and ADP will be used as playing strength metrics.

We are not aware of any Al competition where strong
Doudizhu AI’s can compete with each other. Therefore, we
chose two Doudizhu solvers to benchmark DeltaDou. The
fisrt one is RHCP, an open source heuristics-based algorithm
available online (https://blog.csdn.net/sm9sun/article/details/
70787814). It decides the hand to play purely by some hand-
crafted hand value estimation function. The second one is

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

WP ADP

XDouvs RHCP 79% +0.88
DeltaDou vs RHCP 75% +0.72
DeltaDou vs XDou 59% +0.28

Table 1: Head-to-head tournament results between DeltaDou and
baseline programs. DeltaDou and XDou are both much stronger
than RHCP. In fact, XDou performed even better by exploiting the
weak opponent more. However, DeltaDou showed statistically sig-
nificant margin over XDou when they faced each other directly.

RHCP XDou
WP ADP WP ADP
Policy 58% 4+0.19 49% —0.08
DeltaDou 75% +0.72 59% +0.28

Table 2: DeltaDou vs Policy against baseline. The policy algorithm
achieves comparable performance as XDou, and it is still left far
behind by DeltaDou, which used both looking forward search and
inference.

XDou, a strong Doudizhu Al program developed by our team.
It integrates sophisticated heuristics and a PIMC-based end-
game solver.

The version of DeltaDou used for the evaluation contains a
neural network trained for 80 episodes (i.e. 640,000 games).
It took 2 months to train the network on 68 CPUs. The num-
ber of simulations in MCTS is set to 600 and c-pUCT is set
to 2.

As neural network computation is required by both look-
ing forward search and inference, DeltaDou is a quite heavy
method. Extracting the policy from the neural network greed-
ily resulted in a pretty fast solution. We measured this algo-
rithm against our base line programs. Table 2 shows that the
pure policy algorithm is comparable with XDou, and is dom-
inated by DeltaDou as expected.

The agent with inference got WP 54.5% and ADP +0.145
in the heads-up game against the agent without inference. The
result shows that our inference algorithm is quite effective.

5.3 Comparison to Human Player

Several winners of online Doudizhu tournaments were
teamed up to play with DeltaDou. The experiments with hu-
man players is sort of time-consuming, especially when the
human team plays on the peasant side. Both DeltaDou and
the human team played the same 100 games on landlord and
peasant side. Human players need to remember what cards
has been played, since there is no hint about what cards are
not shown yet from the user interface of the game. There is
no timing constraints for playing a hand. The DeltaDou used
for this experiment is the same version as in the experiment
against other AI’s. It was ran on a single 8-core computer
with the average time for a move of roughly 5 to 8 seconds.
When a team won 5 more games out of 100 games against
the opponent, we treat them as teams at different skill levels.
DeltaDou won 3 less games out of the 100 games to the hu-
man team, and has achieved comparable performance as our

1270

WP (landlord) ADP (landlord)
D-D 39% —0.44
D-H 33% —0.61
H-D 36% —-0.47

(a) Results of different position combinations

WP ADP
48.5% —0.07

DeltaDou vs Human

(b) Overall performance

Table 3: DeltaDou’s tournament results vs human team. X-Y means
X plays as the landlord and Y plays as the peasants. D and H denotes
DeltaDou and the human team respectively. DeltaDou is stronger
than human as the landlord (39% vs 36%, -0.44 vs -0.47) and is
weaker than human as the peasants (61% vs 67%, 0.44 vs 0.61). The
overall performance of DeltaDou is slightly worse than the human
opponents, with 48.5% and -0.07 for WP and ADP respectively.

human experts. A drawback of DeltaDou is that sometimes
it misses a straight win that is obvious for the human play-
ers. On the other side, some nice play by DeltaDou are very
impressive. Most of the time, these plays require precise anal-
ysis and calculation, and are difficult to be found by human
experts.

6 Conclusion and Future Work

In this paper, we present our Doudizhu Al, DeltaDou, which
dominates existing Doudizhu programs and plays roughly at
human expert level. DeltaDou successfully integrates FPM-
CTS and inference algorithm into an AlphaZero-like frame-
work. As far as we know, it is the first reinforcement learning
algorithm that reaches expert level in a difficult multi-player
imperfect information game with limited hardware resource
and training time.

In future work, we would like to remove the heuristic-
based neural network for bootstrapping so that the training
process can start from scratch without any human knowl-
edge. We have started experimenting with opponent mod-
eling, which may help the Al to reach super-human level
strength by exploiting the weakness of opponents more and
by better understanding its partner. Finally, we will try to
adapt our framework to other imperfect information card
games such as bridge or skat.

Acknowledgments

The authors would like to thank the anonymous reviewers for
their valuable comments. Our colleagues, Guangxin Ren,
Chang Wu, and Wen Xu, shared their know-how on the
Doudizhu AI and contributed code libraries and other useful
tools.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Brown and Sandholm, 2018] Noam Brown and Tuomas
Sandholm. Superhuman AI for heads-up no-limit poker:
Libratus beats top professionals. Science, 359(6374):418-
424, 2018.

[Brown, 1951] George W Brown. Iterative solution of games
by fictitious play. Activity analysis of production and allo-
cation, 13(1):374-376, 1951.

[Buro et al., 2009] Michael Buro, Jeffrey Richard Long,
Timothy Furtak, and Nathan R Sturtevant. Improving
state evaluation, inference, and search in trick-based card
games. In IJCAI, pages 1407-1413, 20009.

[Campbell et al., 2002] Murray Campbell, A Joseph
Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial
intelligence, 134(1-2):57-83, 2002.

[Cowling et al., 2012] Peter I Cowling, Edward J Powley,
and Daniel Whitehouse. Information set monte carlo tree

search. IEEE Transactions on Computational Intelligence
and Al in Games, 4(2):120-143, 2012.

[Furtak and Buro, 2013] Timothy Furtak and Michael Buro.
Recursive monte carlo search for imperfect information
games. In Computational Intelligence in Games (CIG),
2013 IEEE Conference on, pages 1-8. IEEE, 2013.

[Ginsberg, 1999] Matthew L Ginsberg. Gib: Steps toward
an expert-level bridge-playing program. In IJCAI, pages
584-593. Citeseer, 1999.

[Heinrich and Silver, 2015] Johannes Heinrich and David
Silver. Smooth uct search in computer poker. In IJCAI,
pages 554-560, 2015.

[Heinrich and Silver, 2016] Johannes Heinrich and David
Silver. Deep reinforcement learning from self-
play in imperfect-information games. arXiv preprint
arXiv:1603.01121, 2016.

[Heinrich et al., 2015] Johannes Heinrich, Marc Lanctot,
and David Silver. Fictitious self-play in extensive-form
games. In International Conference on Machine Learn-
ing, pages 805-813, 2015.

[Long et al., 2010] Jeffrey Richard Long, Nathan R Sturte-
vant, Michael Buro, and Timothy Furtak. Understanding
the success of perfect information monte carlo sampling in
game tree search. In Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

[Morav¢ik et al., 2017] Matej Morav&éik, Martin Schmid,
Neil Burch, Viliam Lisy, Dustin Morrill, Nolan Bard,
Trevor Davis, Kevin Waugh, Michael Johanson, and
Michael Bowling. Deepstack: Expert-level artifi-
cial intelligence in heads-up no-limit poker. Science,
356(6337):508-513, 2017.

[Ponsen et al., 2010] Marc Ponsen, Geert Gerritsen, and
Guillaume Chaslot. Integrating opponent models with
monte-carlo tree search in poker. In Workshops at the
Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

1271

[Powley et al., 2011] Edward J Powley, Daniel Whitehouse,
and Peter I Cowling. Determinization in monte-carlo tree
search for the card game dou di zhu. Proc. Artif. Intell.
Simul. Behav, pages 17-24, 2011.

[Schaeffer et al., 2007] Jonathan Schaeffer, Neil Burch, Yn-
gvi Bjornsson, Akihiro Kishimoto, Martin Miiller, Robert
Lake, Paul Lu, and Steve Sutphen. Checkers is solved.
science, 317(5844):1518-1522, 2007.

[Silver et al., 2016] David Silver, Aja Huang, Chris J Maddi-
son, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, loannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. Mastering the game

of go with deep neural networks and tree search. nature,
529(7587):484, 2016.

[Silver et al., 2018] David Silver, Thomas Hubert, Julian
Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. A general reinforcement learning
algorithm that masters chess, shogi, and go through self-
play. Science, 362(6419):1140-1144, 2018.

[Tesauro, 1995] Gerald Tesauro. Td-gammon: A self-
teaching backgammon program. In Applications of Neural
Networks, pages 267-285. Springer, 1995.

