Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Graph Mining Meets Crowdsourcing: Extracting Experts for Answer Aggregation

Yasushi Kawase'®, Yuko Kuroki??, Atsushi Miyauchi®

ITokyo Institute of Technology
2The University of Tokyo
SRIKEN AIP

kawase.y.ab@m.titech.ac.jp, ykuroki@ms.k.u-tokyo.ac.jp, atsushi.miyauchi.hv@riken.jp

Abstract

Aggregating responses from crowd workers is a
fundamental task in the process of crowdsourcing.
In cases where a few experts are overwhelmed by
a large number of non-experts, most answer aggre-
gation algorithms such as the majority voting fail to
identify the correct answers. Therefore, it is crucial
to extract reliable experts from the crowd workers.
In this study, we introduce the notion of expert core,
which is a set of workers that is very unlikely to
contain a non-expert. We design a graph-mining-
based efficient algorithm that exactly computes the
expert core. To answer the aggregation task, we
propose two types of algorithms. The first one in-
corporates the expert core into existing answer ag-
gregation algorithms such as the majority voting,
whereas the second one utilizes information pro-
vided by the expert core extraction algorithm per-
taining to the reliability of workers. We then give
a theoretical justification for the first type of algo-
rithm. Computational experiments using synthetic
and real-world datasets demonstrate that our pro-
posed answer aggregation algorithms outperform
state-of-the-art algorithms.

1 Introduction

Crowdsourcing, which has become popular in recent years,
is a process that requires completion of specific tasks by
crowd workers. In crowdsourced single-answer multiple-
choice questions, workers are asked to select one answer
out of multiple candidates for each given question. Such a
scheme is used, for instance, in annotating named entities for
microblogs [Finin et al., 2010], sentiment classification on
political blogs [Hsueh et al., 20091, and image tagging [Lin
etal., 2015].

For the purpose of quality control, crowdsourcing systems
usually assign multiple workers to the same questions and
then aggregate their answers using some rule or algorithm.
A critical fact here is that the workers often have different
levels of expertise, skills, and motivation; some workers may
guess the correct answers with their rich knowledge, while
others may answer almost randomly to get a reward without
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w1 D CD E B C A E

Experts{ w2 D C B E B C A C
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Wy C B AAETCTDB
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We C A B E B B A C

Table 1: A small example of crowdsourced single-answer multiple-
choice questions.

any effort. Let us call the workers of the former and latter
type experts and non-experts, respectively.

When only a few experts are overwhelmed by a large num-
ber of non-experts, the most intuitive answer aggregation
rule, majority voting, often fails to acquire the correct an-
swers. Consider a small example in Table 1. There are six
workers wy, ..., ws assigned to eight questions ¢, ..., qs.
For each question, the candidate answers are A, B, C, D, and
E. Among these workers, w1, weo, and ws are experts who al-
most always give the correct answers, while the others, wy,
ws, and wg, are non-experts who give random answers. Let
us apply the majority voting to their answers. The majority
answer for ¢; is D, which is the correct answer. However, the
majority answer for gg is C, which is not the correct answer.
In addition, we need tie-breaking for q3 because B and D get
the same number of votes. It is very likely that as the fraction
of non-experts increases, the quality of the majority voting
answers deteriorates.

Various answer aggregation algorithms exist in addition to
the majority voting (see Related Work). However, most of
these algorithms implicitly strengthen the majority answers
and therefore fail to provide the true answers when the ma-
jority answers are incorrect. To overcome this issue, Li et
al. [2017] recently proposed a sophisticated answer aggrega-
tion algorithm for such a hard situation. More specifically,
they introduced the notion of hyper questions, each of which
is a set of single questions. Their algorithm applies the major-
ity voting (or other existing answer aggregation algorithms)
for the hyper questions and then decodes the results to votes
on individual questions. Finally, it applies the majority voting
again to obtain the final answers. The results of their exper-
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iments demonstrate that their algorithm outperforms existing
algorithms.

1.1 Our Contribution

In this study, we further investigate the above-mentioned hard
situation. Our contribution can be summarized as follows:

1. We introduce a graph-mining-based efficient algorithm
that accurately extracts the set of experts;

2. We propose two types of answer aggregation algo-
rithms based on the above experts extraction algorithm;

3. We provide a theoretical justification of our proposed
algorithms;

4. We conduct thorough computational experiments using
synthetic and real-world datasets to evaluate the perfor-
mance of our proposed algorithms.

First result. To design a powerful answer aggregation al-
gorithm for the above hard situation, it is crucial to extract re-
liable experts from the crowd workers. In the example above,
if we recognize that w1, we, and w3 are experts, we can ob-
tain the correct answers for all questions by simply applying
the majority voting to the answers of the experts. The fun-
damental observation we use is as follows: as the experts al-
most always give the correct answers, each pair of experts
frequently gives the same answer to a question. Let us now
consider constructing an edge-weighted complete undirected
graph in which each vertex corresponds to a worker and each
edge weight represents the agreement rate of the answers of
two workers. From the above observation, it is very likely that
there is a dense component consisting of the experts, which
we call the expert core. Note that the formal definition of
the expert core will be given in Section 2. Figure 1 depicts
an edge-weighted graph constructed from the example in Ta-
ble 1. As can be seen, experts w1, ws, and w3 form a dense
component. Although, in this example, we simply set the
edge weight to the number of same answers of two workers,
we will use more suitable values in our algorithm. To ex-
tract the expert core, we use a well-known dense subgraph
extraction algorithm called the peeling algorithm [Asahiro et
al., 2000], which removes the most unreliable worker one by
Experts

L

Figure 1: An edge-weighted graph constructed from the example in
Table 1.

Second result. Based on the expert core extraction algo-
rithm, we propose two types of answer aggregation algo-
rithms. The first one incorporates the expert core into existing
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answer aggregation algorithms such as the majority voting.
Indeed, once we extract the expert core, we can apply ex-
isting algorithms to the answers of the workers in the expert
core. The second one utilizes the information pertaining to
the reliability of workers provided by the expert core extrac-
tion algorithm, which is quite effective when the task is very
hard.

Third result. We first demonstrate that the expert core is
very unlikely to contain a non-expert if the number of ques-
tions is sufficiently large (Theorem 2). We then prove that
the majority voting is asymptotically correct if there are only
experts (Theorem 3), but not reliable if there are a large num-
ber of non-experts (Theorem 4). Theorems 2 and 3 provide a
theoretical justification for the first type of our algorithm. In
fact, combining these two theorems, we see that if the num-
ber of questions and the number of workers in the expert core
are sufficiently large, our proposed algorithm (i.e., the ma-
jority voting among the workers in the expert core) gives the
correct answer with high probability. On the other hand, The-
orem 4 provides the limitation of the majority voting, which
implies that it is quite important to exclude non-experts when
we use the majority voting.

Fourth result. We conduct thorough computational exper-
iments using synthetic and real-world datasets to evaluate
our proposed algorithms. To simulate the hard situation in
this study, we use six datasets recently collected by Li et
al. [2017] as real-world datasets, all of which have diffi-
cult heterogeneous-answer questions that require specialized
knowledge. We demonstrate that the expert core counterparts
of existing answer aggregation algorithms perform much bet-
ter than their original versions. Furthermore, we show that
our novel algorithm based on the information of the reliabil-
ity of workers outperforms the other algorithms particularly
when the task is quite hard.

1.2 Related Work

To date, a large body of work has been devoted to developing
algorithms that estimate the quality of workers [Dawid and
Skene, 1979; Whitehill et al., 2009; Welinder et al., 2010;
Raykar et al., 2010; Karger et al., 2011; Wauthier and Jor-
dan, 2011; Bachrach et al., 2012; Demartini et al., 2012;
Kim and Ghahramani, 2012; Liu et al., 2012a; Liu et al.,
2012b; Zhou et al., 2012; Aydin et al., 2014; Li et al., 2014b;
Venanzi et al., 2014; Ma et al., 2015; Li et al., 2017;
Zheng et al., 2017; Li et al., 2018]. In most existing work, the
quality of workers and correct answers are estimated by an it-
erative approach comprising the following two steps: (i) infer
the correct answers based on the quality of workers estimated
and (ii) estimate the quality of workers based on the correct
answers inferred. For example, Whitehill et al. [2009] mod-
eled each worker’s ability and each task’s difficulty, and then
designed a probabilistic approach, which they called GLAD
(Generative model of Labels, Abilities, and Difficulties).
Finding a dense component in a graph is a fundamen-
tal and well-studied task in graph mining. A typical ap-
plication of dense subgraph extraction is to identify com-
ponents that have some special role or possess important
functions in the underlying system represented by a graph.
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Examples include communities or spam link farms extrac-
tion in Web graphs [Dourisboure et al., 2007; Gibson et
al., 2005], identification of molecular complexes in protein—
protein interaction graphs [Bader and Hogue, 2003], and
expert team formation in collaboration graphs [Tsourakakis
et al., 2013], The peeling algorithm [Asahiro et al., 2000]
is known to be effective in various optimization problems
for dense subgraph extraction (e.g., the densest subgraph
problem and its variations [Andersen and Chellapilla, 2009;
Charikar, 2000; Kawase and Miyauchi, 2018; Miyauchi and
Kakimura, 2018; Khuller and Saha, 2009] as well as other
related problems [Tsourakakis et al., 2013; Miyauchi and
Kawase, 2015]).

2 Model

An instance of our problem is a tuple (W, Q,C, L), where
each component is defined as follows: There is a finite set of
workers W = {wy, ..., w,} and a finite set of questions Q =
{q1,--.,qm}. Each question ¢ has a set of candidate answers
C, = {cl,...,c%} (s > 2). Suppose that, for each question
¢, worker w answers [,,q € Cq4 and let £ = (Lyg)wew, gc0-
Our task is to estimate the unknown correct answers to the
questions.

Suppose that, among the workers W = {wy,...,w,},
there are ney experts £ (C W) who give the correct answer
with probability pex (> 1/5), and the other npon (= 1 —Nex)
workers are non-experts who give an answer independently
and uniformly at random. If an expert makes a mistake, she
selects a wrong answer independently and uniformly at ran-
dom. Thus, for a question ¢ € Q with a correct answer
aq € Cq and an answer ¢ € Cg, it holds that

Dex (c=aq, weéf),
15_%;" (c#aq, wel),

1/s (weW\E).

Prilyg =] =

It should be noted that, by showing the candidate answers in
random order for each worker, we can handle some biases
(e.g., some non-expert workers always choose the first candi-
date of answers) using this model.

Let us consider the probability that a pair of workers u, v €
W (u # v) gives the same answer for a question g € Q. If at
least one of u and v is a non-expert, then we have Pr[luq =
lyq] = 1/s. On the other hand, if both workers are experts,
then Pr(l,, = l,4] = % + L, which is strictly larger
than 1/s.

For each pair of workers u,v € W, let 7(u,v) be the
number of questions such that v and v give the same an-
swer, that is, 7(u,v) = |[{¢g € Q : lug = lug}|- Here, if
Pr[lyq = lug] = p, then w and v give the same answers for at
least 7(u, v) questions with probability 337", ()" (1~
p)" "

For a given p € (0,1), a subset of workers W C W is
called a 6-expert set with respect to p if

n > (T)#(l i<

veW\{u} i=7(u,v)

1274

Algorithm 1: Peeling algorithm
Input: Edge-weighted graph G = (V, E,w)
Output: S C V (k-core with maximum k)
1 S‘V| —V;
2 fori < |V|,...,2do
3 | Findv; € argmin, g, ds,(v) and S; 1 < S; \ {vi};
4 return S; € {51, ..

-S|y} that maximizes ds, (v;);

holds for all w € W. Intuitively, a 6-expert set with small
0 is a set of workers that is very unlikely to contain a non-
expert. Let 6(W') be the minimum threshold such that W is a
f-expert set, that is,

o) —mae [ % (T)pmp)mi.

veW\{u} i=7(u,v)

Then, we employ W C W that minimizes §(W) as the esti-
mated set of experts. We refer to such a set as the expert core
(with respect to p). As will be shown in Theorem 2, the expert
core is very unlikely to contain a non-expert if the number of
questions is sufficiently large.

3 Algorithms

In this section, we design an algorithm to compute the expert
core, and then propose two types of answer aggregation algo-
rithms. Our expert core extraction algorithm first constructs
an edge-weighted complete undirected graph that represents
the similarity of the workers in terms of their answers. Then,
it extracts a dense component in the graph using the peeling
algorithm [Asahiro et al., 2000].

3.1 Peeling Algorithm

We first revisit the peeling algorithm. The algorithm itera-
tively removes a vertex with the minimum weighted degree
in the current graph until we are left with only one ver-
tex. Let G = (V, E,w) be an edge-weighted graph. For
S C Vandv € S, let dg(v) denote the weighted de-
gree of v in the induced subgraph G[S], that is, dg(v) =
> e—{uw}er: ues w(€). Then, the procedure can be sum-
marized in Algorithm 1. Note that the algorithm here re-
turns S; € {Si1,...,S)v|} that maximizes dg,(v;), al-
though there are other variants depending on the prob-
lem at hand [Charikar, 2000; Kawase and Miyauchi, 2018;
Miyauchi and Kawase, 2015; Tsourakakis et al., 2013]. Al-
gorithm 1 can be implemented to run in O(|E| + |V |log |V])
time.

Algorithm 1 indeed produces the k-core decomposition of
graphs. For G = (V| E,w) and a positive real k, a subset
S C V is called a k-core if S is a maximal subset in which
every vertex v € S has a weighted degree of at least k in
the induced subgraph G[S]. Note that a k-core is unique for
a fixed k. The k-core decomposition reveals the hierarchical
structure of k-cores in a graph and is particularly focused on
finding the k-core with maximum k. Algorithm 1 is suitable
for this scenario; in fact, it is evident that the algorithm returns
the k-core with maximum £.
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3.2 Expert Core Extraction Algorithm

Here, we present an algorithm to compute the expert core. In
particular, we explain the construction of an edge-weighted
graph, which represents the similarity of the workers in terms
of their answers.

In our algorithm, we set p to the average agreement proba-
bility, that is,

1 n
p=- ZH{%U} € (1/2\1) tlug = Lo}/ (5),
q€Q
where (1/2\1) = {{w,v} : w,v € W, u # v}, and extract
the expert core with respect to this p via the peeling algo-
rithm. We construct a complete graph (W, (V;)) with weight

v(u,v) = —log sz(u,u) ("Mp'(1 — p)™", where recall
that 7(u,v) = [{¢ € Q : lug = lyg}|- Then, we com-
pute the k-core with maximum k for the edge-weighted graph
w, (1/2\)),7) using Algorithm 1. As a result, we can obtain
a set of workers W C W such that the following value is
maximized:

wp 3

veEW\{u}

m
. m 7 m—1
—wp (o5 T % (T)a-n
veW\{u} i=7(u,v)
= —log ().

As —log z is monotone decreasing, the obtained set mini-
mizes 6(W') and hence is the expert core.
Note that we can construct the edge-weighted graph

W, (%)) in O(n?*m) time and Algorithm 1 for the graph
runs in O((}) + nlogn) = O(n?) time. Thus, we have the

following theorem.

Theorem 1. The expert core can be found in O(n?m) time.

3.3 Answer Aggregation Algorithms

Once we extract the expert core, we can apply existing an-
swer aggregation algorithms (e.g., the majority voting) to the
answers of the workers in the expert core, which implies the
expert core counterparts of the existing algorithms. In addi-
tion, we propose a novel answer aggregation algorithm. The
peeling algorithm produces the ordering that represents the
reliability of the workers. With this ordering, we can obtain
a majority-voting-based algorithm as follows. At the begin-
ning, we obtain the ordering of workers using the peeling al-
gorithm for (W, (1/2\/) ,7). Then we pick the most reliable pair
of workers, that is, the pair left until the second last round of
the peeling algorithm. For each question, if the two workers
select the same answer, then we employ this answer. If the
two workers select different answers, then we add the next
most reliable worker one by one according to the ordering un-
til two of them give the same answer. Our algorithm, which
we call Top-2, is summarized in Algorithm 2. Note that the
algorithm runs in O(an) time, which is the same as that of
the expert core extraction algorithm.
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Algorithm 2: Top-2
Input: Worker set W; Question set Q; Answer set £

Output: Estimated true answers (z4)qec0
1 Calculate the average agreement probability p;

2 Construct the edge-weighted graph WV, (VQV) ' Y)s

3 Let Sq,...,.5, be the sets computed in Algorithm 1;
4 forqg € Qdo
5 | fori<2,...,ndo

then z, < c* and break ;

6 if 3c* € Cyst. [{weW; @ lyg=c"} =2
else if i = n then z, < l,,,, where {w} = 57 ;

7

s return (z;)qc0;

4 Theoretical Results

In this section, we provide a theoretical justification for the
first type of our proposed algorithm. Owing to space limita-
tions, we omit the proofs, all of which can be found in the
full version [Kawase et al., 2019]. Suppose that each worker
gives answers according to the model described in Section 2.

The following theorem states that the expert core does not
contain any non-expert with high probability if the number of
questions is sufficiently large.

Theorem 2. Let W* C W be the expert core. If nex > 2 and
4, n2
m > %fore > 0, then we have Pr[W* C £] > 1—-«.

The next theorem states that the majority voting gives the
correct answer with high probability if the number of workers
is sufficiently large and all of them are experts. Let MV, be the
output of the majority voting for question ¢ € Q.

o 2log Z—j
Theorem 3. If‘ n = Nex Z m
have Pr MV, = a4] > 1 —€ (Vg € Q).

Finally, the following theorem states that, the majority vot-
ing does not provide the correct answer with high probability
if the number of non-experts is much larger than the number
of experts.

o2
Theorem 4. If nnon > 525 for € > 0, then we have
PrMV, = ag] < 1 +€ (Vg€ Q).

It should be noted that when the number of candidate an-
swers is 2, even the random choice gives the correct answer
with probability 1/2. Thus, the above theorem indicates that
the majority voting is no better than the random choice if the
number of non-experts is much larger than the number of ex-
perts.

for € > 0, then we

S Experiments

In this section, we report the results of computational ex-
periments. The objective of our experiments is to examine
the performance of our proposed algorithms from various
aspects using both synthetic and real-world datasets. The
main component of our experiments comprises comparing
our proposed answer aggregation algorithms with the fol-
lowing three existing algorithms: MV (the majority voting),
GLAD [Whitehill et al., 2009], and Hyper-MV [Li et al.,
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Dataset m n s BEST
Chinese 24 50 5 0.79
English 30 63 5 0.70
T 25 36 4 0.84
Medicine 36 45 4 0.92
Pokémon 20 55 6 1.00
Science 20 111 5 0.85

Table 2: Real datasets used in our experiments. The last column
gives the best accuracy rate (i.e., the fraction of the number of correct
answers) among the workers.

2017]. As our proposed algorithms, we employ the expert
core counterparts of the above three algorithms, which we de-
note by Ex-MV, Ex-GLAD, and Ex-Hyper-MV, respectively,
in addition to Top-2.

5.1 Datasets

As for synthetic datasets, we generate a variety of instances
using the model described in Section 2. Recall the follow-
ing five parameters: number of workers n = |W)|, number
of questions m = |Q|, number of candidate answers (for
each question) s, number of ground-truth experts ney, and
the probability pex that an expert gives the correct answer.
Throughout the experiments, we set s = 5.

Table 2 summarizes six datasets that we use as real-world
datasets. They were recently collected by Li et al. [2017] us-
ing Lancers, a commercial crowdsourcing platform in Japan.
Consistent with the hard situation being addressed here, these
datasets have difficult heterogeneous-answer questions that
require specialized knowledge. In fact, as shown later, the
majority voting performs poorly on these datasets. Note
that the classical datasets used in other previous work (e.g.,
Bluebird and Dog in image tagging [Welinder ef al., 2010;
Zhou et al., 2012], Web in Web search relevance judg-
ing [Zhou et al., 2012], Price in product price estima-
tion [Liu ef al., 2013], and RTE and Temp in textual entail-
ment recognition [Snow et al., 2008]) usually have relatively
easy homogeneous-answer questions, which are not within
the scope of this study. During the collection of the above
six datasets, all workers were asked to answer all questions.
This may not be the usual assumption in crowdsourcing but
is effective in the current hard situation. Indeed, if we can
identify reliable experts by asking all workers to answer a
small number of questions at an early stage, then it is pos-
sible to ask only the identified experts to answer to the re-
maining questions, which may reduce the overall cost. This
scenario has been studied in previous work [Li et al., 2017;
Li et al., 2014al.

5.2 Experts Extraction

To evaluate the performance of our expert core extraction al-
gorithm in terms of extracting reliable experts, we conducted
simulations using synthetic datasets. We set the number of
workers as n to 20 and the number of experts as ney to 4. In
these settings, we generated two types of instances to simu-
late different situations. In the first type, to investigate the ef-
fect of the number of questions, we vary the number of ques-
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Figure 2: Results of experts extraction for synthetic datasets, where
n = 20 and nex = 4.

tions m from 5 to 50 (in increments of 5) under a fixed value
of pex = 0.8. In the second type, to investigate the effect of
the expertise of workers, we vary the probability pe, from 0.5
to 1.0 (in increments of 0.05) under a fixed value of m = 25.

As the sets of workers extracted by our peeling algorithm,
we employ the Top-2 pair (i.e., a pair of workers left until
the second last round of the peeling algorithm) and the expert
core. To evaluate the quality of the set of workers at hand,
we adopt the following two measures: the precision (number
of ground-truth experts in the set divided by the size of the
set) and the recall (number of ground-truth experts in the set
divided by the number of all ground-truth experts).

The results are shown in Figure 2. Each point corresponds
to an average over 100 data realizations. As can be seen, the
precision of the expert core becomes better as the number of
questions m or the probability pey increases. Moreover, the
expert core is robust in terms of the recall; in fact, even when
Pex 18 small (i.e., pex < 0.7), the expert core achieves an
average recall of 0.8. The Top-2 pair achieves better precision
in all parameter settings.

5.3 Ordering Defined by Peeling

The objective here is to demonstrate that the ordering of
workers defined by the peeling algorithm for (W, (1/2\/) ,7y) re-
flects the accuracy rate of the workers. To this end, we per-
form the peeling algorithm for the real-world datasets. The
results are shown in Figure 3. In the subfigures, the horizontal
axis represents the ordering of workers defined by the peeling
algorithm; specifically, the peeling algorithm has removed the
workers from right to left. The vertical axis represents the ac-
curacy rate of the workers. The bars corresponding to the
workers contained in the expert core are colored black, while
those corresponding to the other workers are colored gray.

As can be seen, workers with smaller order tend to have
higher accuracy rates, In addition, the expert core contains al-
most all workers with significantly high accuracy rates. which
demonstrates the reliability of our peeling algorithm. In par-
ticular, for Pokémon and Science, the ordering defined by the
peeling algorithm correctly reproduces the ordering of the top
five workers in terms of accuracy rates.

5.4 Comparison with Existing Algorithms

Using both synthetic and real-world datasets, we compare the
performance of our proposed answer aggregation algorithms,
that is, Top-2, Ex-MV, Ex-GLAD, and Ex-Hyper-MV, with
existing algorithms, that is, MV, GLAD, and Hyper-MV. We
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(Pexs Mex) Top-2 Ex-MV Ex-GLAD Ex-Hyper-MV MV GLAD Hyper-MV

0.519 0.285 0.277 0.276 0.273 0.264 0.272
(077 2) +0.218 40.079 +0.098 40.079 +0.058 +0.092 +0.062
07 4 0.892 0.388 0.563 0.513 0.348 0.549 0.514
( < ) +0.047 +0.120 +0.212 +0.120 +0.070 +0.212 +0.131

0.911 0.624 0.886 0.782 0.426 0.865 0.755
(077 6) +0.040 10.247 +0.073 +0.247 +0.066 +0.083 +0.106
08.2 0.750 0.320 0.300 0.405 0.284 0.303 0.380
( it ) +0.097 +0.110 +0.131 40.110 +0.069 +0.139 +0.126
0.8.4 0.956 0.783 0.896 0.866 0.373 0.814 0.813
( it} ) +0.026 40.259 +0.138 +0.259 +0.069 +0.160 +0.095

0.958 0.984 0.982 0.969 0.484 0.950 0.962
(087 6) +0.028 +0.018 +0.020 +0.018 +0.065 +0.031 +0.030
0.9 2 0.879 0.356 0.384 0.702 0.290 0.353 0.704
( e ) +0.048 +0.172 +0.214 +0.172 +0.067 +0.180 +0.146
0.9.4 0.991 0.989 0.991 0.988 0.416 0.941 0.982
( * ) +0.014 +0.015 +0.014 +0.015 +0.063 +0.091 +0.021

0.989 0.998 0.998 0.996 0.550 0.984 0.997
(097 6) +0.014 40.005 +0.006 40.005 +0.073 +0.016 +0.007

Table 3: Results of answer aggregation algorithms for synthetic datasets, where n = 100 and m = 50. Each cell gives the average and

standard deviation of the accuracy rate over 100 data realizations. For each setting, the best average accuracy rate is written in bold.

Dataset Top-2 Ex-MV Ex-GLAD Ex-Hyper-MV MV GLAD Hyper-MV
Chinese 0.750 0.667 0.667 0.700 (£0.026) 0.625 0.542 0.696 (£0.042)
English 0.733 0.400 0.533 0.490 (£0.049) 0.467 0.567 0.542 (£0.060)
IT 0.800 0.760 0.800 0.802 (£0.008) 0.760 0.720 0.828 (+£0.018)
Medicine 0.944 0.972 0.972 0.951 (£0.022) 0.667 0.694 0.848 (£0.019)
Pokémon 1.000 1.000 1.000 1.000 (£0.000) 0.650 0.850 1.000 (£0.000)
Science 0.900 0.650 0.650 0.603 (£0.025) 0.550 0.550 0.606 (£0.018)

Table 4: Results of answer aggregation algorithms for real-world datasets. Each cell gives the accuracy rate. The average and standard
deviation over 100 runs are listed for the hyper-question-based algorithms. For each dataset, the best accuracy rate is written in bold.

first explain the details of GLAD and Hyper-MV. GLAD is
a method that takes into account not only the worker exper-
tise, denoted by «, but also the difficulty of each question,
denoted by 8, We set &« ~ A (1,1) and 8 ~ N (1,1) as in Li
et al. [2017]. It is known that GLAD runs in O(nmsT) time,
where 7' is the number of iterations to converge. Hyper-MV
is a method that applies the majority voting to the hyper ques-
tions rather than the original individual questions. Because
the number of possible hyper questions may be too large, Li
et al. [2017] suggested to apply the following random sam-
pling procedure for r times: (i) shuffle the order of all single
questions uniformly at random to generate a permutation and
(ii) from this permutation, pick every k single questions from
the beginning of the queue to generate hyper questions as long
as they can be picked. Then, the overall time complexity of
Hyper-MV is given by O(rmn). We performed the sampling
procedure with k = 5 for » = 100 times, as suggested by Li
etal. [2017].

Table 3 shows the results for synthetic datasets. We list the
results for nine settings in which the probability pey varies in
{0.7,0.8,0.9} and n.y varies in {2,4,6}. We set the num-
ber of workers n to 100 and the number of questions m to

50. As can be seen, each expert core counterpart achieves
better performance than the original algorithm. In particular,
Ex-MV significantly improves the performance of MV. Top-2
outperforms the other algorithms particularly when the prob-
lem is quite difficult, although Ex-MV performs better when
the problem is relatively easy.

Table 4 summarizes the results for the six real-world
datasets. As can be seen, for all datasets except /7, our pro-
posed algorithms achieve the best performance. In fact, for
almost all datasets, the performance of the existing algorithms
is improved by using the expert core. Among our proposed
algorithms, Top-2 provides the best performance; in partic-
ular, for English and Science, the accuracy rate of Top-2 is
even higher than those of the other algorithms. It should be
noted that, for English, Medicine, and Science, the accuracy
rate of Top-2 is strictly higher than the best accuracy rate
among workers (presented in Table 2), which emphasizes the
power of answer aggregation in crowdsourcing. According to
the trend observed in synthetic datasets, it is very likely that
the high performance of Top-2 stems from the high fraction
of non-experts in real-world datasets.
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Figure 3: Ordering defined by our peeling algorithm for real-world
datasets.

6 Conclusion

In this study, we addressed the answer aggregation task in
crowdsourcing. Specifically, we focused on a hard situation
wherein a few experts are overwhelmed by a large number
of non-experts. To design powerful answer aggregation algo-
rithms for such situations, we introduced the notion of expert
core, which is a set of workers that is very unlikely to contain
a non-expert. We then designed a graph-mining-based effi-
cient algorithm that exactly computes the expert core. Based
on the expert core extraction algorithm, we proposed two
types of answer aggregation algorithms. The first one incor-
porates the expert core into existing answer aggregation algo-
rithms. The second one utilizes the information provided by
the expert core extraction algorithm pertaining to the reliabil-
ity of workers. In particular, we provided a theoretical justi-
fication for the first type of algorithm: if the number of ques-
tions and the number of workers in the expert-core are suffi-
ciently large, our proposed algorithm gives the correct answer
with high probability. Computational experiments using syn-
thetic and real-world datasets demonstrated that our proposed
answer aggregation algorithms outperform state-of-the-art al-
gorithms.

There are several directions for future research. Our model
assumes that all experts give the correct answer with the same
probability and all non-experts give an answer independently
and uniformly at random. However, in reality, experts them-
selves may have different levels of expertise and non-experts
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may not be completely random. Although we have already
confirmed that our proposed algorithms work well on real-
world datasets, it is interesting to extend our model to such
a more general scenario. Another direction is to generalize
our model in a higher-level perspective. This study has fo-
cused on crowdsourced closed-ended questions, where work-
ers can select an answer from candidates. On the other hand,
there are often cases where we wish to handle crowdsourced
open-ended questions, where workers have to answer with-
out any candidates. We believe that our proposed algorithms
may be applicable to this more general scenario by introduc-
ing a measure of similarity of answers (and thus similarity of
workers).
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