
Depth-First Memory-Limited AND/OR Search and Unsolvability in Cyclic Search
Spaces

Akihiro Kishimoto , Adi Botea and Radu Marinescu
IBM Research, Ireland

{akihirok, adibotea, radu.marinescu}@ie.ibm.com

Abstract
Computing cycle-free solutions in cyclic AND/OR
search spaces is an important AI problem. Previ-
ous work on optimal depth-first search strongly as-
sumes the use of consistent heuristics, the need to
keep all examined states in a transposition table,
and the existence of solutions. We give a new the-
oretical analysis under relaxed assumptions where
previous results no longer hold. We then present a
generic approach to proving unsolvability, and ap-
ply it to RBFAOO and BLDFS, two state-of-the-
art algorithms. We demonstrate the performance in
domain-independent nondeterministic planning.

1 Introduction
When cost-optimal heuristic search cannot memorize the ex-
amined search space effectively, depth-first search (DFS) is
often preferred to best-first search (BFS), e.g., [Korf, 1985].
Depth-first memory-limited search (DFMLS) combines DFS
with a transposition table (TT). DFMLS thus caches previous
search results and reuses them for the nodes revisited dur-
ing search [Plaat et al., 1996; Reinefeld and Marsland, 1994].
When the TT is full and new results need to be saved, existing
TT entries are replaced with new entries [Nagai, 1999].

Bonet and Geffner’s Bounded Learning DFS (BLDFS) al-
gorithm (2005a; 2005b) keeps revising lowerbounds of the
optimal solution by a series of depth-first searches limited by
a threshold that is explicitly set at the root, until finding the
optimal solution. During search, the revised lowerbounds are
saved in the TT. BLDFS often outperforms BFS algorithms
such as AO* [Nilsson, 1980] and CFCREV ∗ [Jiménez and
Torras, 2000]. Although BLDFS can be regarded as DFMLS,
its theoretical properties assume monotonic lowerbounds in
the TT [Bonet and Geffner, 2005b]: the TT requires unlim-
ited capacity with consistent heuristics in use. This assump-
tion does not hold when the search space is larger than the TT
and TT entries need to be replaced. In this case, the effect is
equivalent to using an inconsistent heuristic.

RBFAOO [Kishimoto and Marinescu, 2014] is a depth-first
memory-limited AND/OR search algorithm based on ideas
of Recursive Best-First Search (RBFS) [Korf, 1993] with the
TT. It was shown to be complete (with respect to solvable or
unsolvable instances) if the search space is a finite DAG.

We focus on optimal DFMLS on finite cyclic AND/OR
search spaces where a solution must be cycle-free, assum-
ing an additive state model as well as inconsistent heuris-
tics and/or a limited size TT. First, we outline new challeng-
ing issues that arise under these relaxed assumptions, such
as returning suboptimal solutions due to the TT and cycles.
These issues are not considered in the previous work of Bonet
and Geffner (2005a; 2005b) and Kishimoto and Marinescu
(2014). Akagi et al. (2010) raise similar issues but analyzed
them for OR search. We then develop a generic approach to
prove unsolvability with cycles, and apply it to RBFAOO and
a BLDFS variant. Eriksson et al. (2017; 2018a; 2018b) have
studied proving unsolvability, but their approach is specific to
OR search.

Furthermore, we present theoretical properties of our ap-
proach and show that, if a solution exists, then an optimal
solution cost can eventually be found with limited memory.
In addition, our approach can also prove the unsolvability of
some instances in a cyclic search space but, in some other
unsolvable instances, the technique may fail due to an infi-
nite loop. While Akagi et al. (2010) consider the same as-
sumptions, their theoretical results are for IDA*+TT, which
is OR search. Our new theoretical results hold for two al-
gorithms of different behaviors in more general scenarios
than those of Akagi et al. (2010) and Bonet and Geffner
(2005a; 2005b). Moreover, as a corollary, our analysis ad-
ditionally includes RBFS+TT, which is a different OR search
compared to IDA*+TT.

Finally, we validate our theoretical analysis with exper-
iments in domain-independent nondeterministic planning,
showing that there are instances that require our approach to
prove unsolvability, and that the ability to find optimal solu-
tion costs is preserved for solvable instances.

2 Preliminaries
We consider a state model with fully-observable states and
nondeterministic actions. A tuple 〈S,A, s0, ST 〉 defines the
problem space, where S is a finite set of states, so ∈ S is
an initial state, A is a finite set of actions, and ST ⊆ S is
a set of terminal states. Unlike Bonet and Geffner (2005a),
we allow the case where ST is empty, for instances with no
solution. A(s) ⊆ A denotes a set of applicable actions to a
non-terminal state s. Each action a ∈ A(s) returns a set of
successor states denoted by Fs,a ⊆ S. If Fs,a has more than

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1280



one state, action a is nondeterministic. Otherwise, a is deter-
ministic. The cost of a transition from state s with action a,
denoted by c(s, a), is assumed c(s, a) > 0 and discretized to
an integer for any a and s. For simplicity, the costs for a ter-
minal state (aka a goal in [Bonet and Geffner, 2005a]) and a
deadend state are 0 and∞, respectively. Our results can eas-
ily be generalized for terminal states with non-negative costs.

Similarly to Bonet and Geffner (2005a), we map this state
model into an AND/OR graph G. An OR node is labeled by
a state s. An AND node is labeled by the set of states reached
by an action a, namely Fs,a. The root of G is an OR node
labeled by the initial state s0. The children of an OR node s
are AND nodes corresponding to the applicable actions A(s)
in state s, and the children of an AND node Fs,a are the OR
nodes corresponding to the states in Fs,a. The edge cost from
OR node s to AND node Fs,a is c(a, s), while the edge cost
from an AND node to an OR node is 0.

Definition 1 (solution tree). Given an AND/OR graph G, a
solution tree ST is a subtree of G such that: (1) the root node
of ST is the initial state s0, (2) for each internal OR node
n in ST , one of n’s children is in ST , (3) for each internal
AND node n in ST , all of n’s children are in ST , and (4) all
tip nodes in ST are terminal nodes (goals).

While Bonet and Geffner (2005a) introduce BLDFS for the
max state model (MAX), we consider here the additive state
model (ADD) of Bonet and Geffner (2005a) where the cost
of a solution tree ST is defined as the sum of the edge costs
in ST . An optimal solution has a minimal cost.

We can support the MAX with small changes. Yet, focus-
ing on the ADD in our setting is essential, because RBFAOO
and BLDFS face new challenges discussed in Section 3.

Each node n in ST is associated with a value V (n) cap-
turing the optimal solution cost of the subtree rooted at n.
V (n) can be computed recursively based on the values of
n’s successors: OR nodes by minimization, AND nodes by
summation. The ADD model has applications such as the
(dis)assembly domain [Jiménez and Torras, 2000] and web
service composition [Liang and Su, 2005]. Chemical syn-
thesis planning [Heifets and Jurisica, 2012] is a remarkable
example, when the objective is minimizing the reaction cost.

Path p = s0, a0 → · · · → sk−1, ak−1 → sk indicates a
path from the initial state s0 to an OR node sk by a sequence
of actions a0, · · · , ak−1. Path p = s0, a0 → · · · → sk, ak
leads to an AND node Fsk,ak

from s0 by a sequence of ac-
tions a0, · · · , ak. Path p + a indicates a path that extends p
with action a leading to an AND node Fn,a, where n is an
OR node reached by path p. Analogously, p+ s extends path
p by adding an OR child of an AND node reached by path p.

A cyclic path has si = sj for some i 6= j. The search space
can contain cyclic paths, but a solution tree has no cyclic path.
If no cycle-free solution tree exists, the solution cost is∞.

Since we solve a minimization task, the algorithms we
present attempt to improve a lowerbound L of the optimal
solution cost C∗.

When L = C∗, the solution is proven optimal. To prove
unsolvability, it is sufficient to ensure that L > U , where U
is an upperbound of the optimal solution. While computing
good U values is an important topic of research, in this paper,

we assume that such U cannot be calculated, and the algo-
rithms need to explicitly prove L =∞.

We say that an algorithm has an infinite loop if it runs for-
ever without finding C∗ or proving L = ∞. We assume that
∞− k < ∞ holds, where k is a small number. In the actual
implementation, a large finite number is often used to repre-
sent∞. We assume that V (n)�∞− k holds if an optimal
solution exists, and that no algorithm can gradually increase
L to∞− k in finite time if no solution exists.

RBFAOO and BLDFS
These algorithms maintain at each node n a lowerbound q(n)
(called a q-value) on V (n). During search, they improve and
cache in the TT q(n) which is calculated by backing up the q-
values of n’s children, until proving q(r) = V (r) at the root
r or q(r) =∞ (i.e., no solution). For an admissible heuristic
h, q(n) is computed as:

1. q(n) = 0, if n is a terminal OR node.

2. q(n) = h(n), if n is a non-terminal tip node.

3. q(n) = mina∈A(n)(c(n, a)+q(Fn,a)), if n is an internal
OR node and Fn,a is an AND child of n.

4. q(Fn,a) =
∑

s∈Fn,a
q(s), if Fn,a is an internal AND

node and s is an OR child of Fn,a.

Let th(n) be a threshold at node n. Both algorithms ex-
amine a subtree rooted at node n in a depth-first manner un-
til th(n) < q(n) holds or n is solved optimally (termina-
tion condition). RBFAOO employs a local threshold con-
trolling mechanism that initially sets th(r) = ∞ − 1 at the
root r. It updates q(n) at node n using q-values of n’s chil-
dren. If a termination condition holds, it backtracks to n’s
parent. Otherwise, it selects a child to examine further. For
q′(Fn,a) = c(n, a) + q(Fn,a), let q′(Fn,a1

) and q′(Fn,a2
) be

the smallest and second smallest values among the list of val-
ues of n’s children. If n has only one child, q′(Fn,a2

) = ∞.
RBFAOO selects a child as follows:

• At an OR node n, select Fn,a1 with a new threshold
th(Fn,a1) = min(th(n), q′(Fn,a2))− c(n, a1).

• At an AND node Fn,a, select any unsolved child s with
a new threshold th(s) = th(Fn,a)− q(Fn,a) + q(s).

BLDFS employs a global threshold controlling scheme
that gradually increases the threshold at the root. In each it-
eration, it sets th(r) = q(r) at the root r. At an OR node
n, if a child Fn,a holds q′(Fn,a) ≤ th(n), it examines Fn,a

with th(Fn,a) = th(n) − c(n, a). At an AND node, it up-
dates the threshold in the same way as RBFAOO, which is
also described in [Bonet and Geffner, 2005a].

3 Challenges under Relaxed Assumptions
In the ADD model with a consistent heuristic and unlimited
TT capacity, BLDFS can always return an optimal solution in
finite time if one exists in the finite cyclic search space. This
property is based on the fact that BLDFS does not need to
generate an action leading to a repeated state, since it never
enters into a cycle [Bonet and Geffner, 2005b]. However,
when using an inconsistent heuristic, even with an unlimited

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1281



Figure 1: Left: example where BLDFS and RBFAOO enter into a
cycle and return a suboptimal solution; Right: example that cannot
be proven unsolvable if cycles are unfolded.

TT, BLDFS may enter into a cycle. If the TT is updated with-
out carefully considering that repeated state, BLDFS may
lead to a suboptimal solution.

Example with Inconsistent Heuristic
In the example shown in Figure 1(left), both BLDFS and RB-
FAOO enter into a cycle when using an admissible, incon-
sistent heuristic whose values are shown in the figure. The
optimal solution opt is A → C → D → B → E → F
with solution cost 54. BLDFS sets th(A) = h(A) = 50. If
it does not detect a repeated state, th(A) is large enough to
reach B again via path p1 = A → B → D → B. In case of
RBFAOO, th(B) = q′(C) − c(A,A → B) = 40. As in the
case of BLDFS, th(B) is large enough to revisit B via p1.

Now assume that BLDFS generates no action forming a
cycle. Then, it incorrectly returns a suboptimal solution
sopt = A → B → E → F with cost 62, since it searches in
the following order: (1) Reach D via p2 = A→ B → D; (2)
No action is available at D, since D → B is not generated
since a cycle is formed. The value of ∞ (i.e., deadend) is
mistakenly saved in the TT for D; (3) Reach C via A → C,
and backup the value of∞ of D to C; (4) The only reachable
path to a goal is now sopt. RBFAOO suffers from the same
issue. It reaches D via p2 first and does not generate D → B.

The pathmax heuristic does not resolve the issue in our ex-
ample, since it is still an inconsistent heuristic [Holte, 2010].

In the ADD model, Bonet and Geffner (2005b) ensure
an algorithmic equivalence between LDFS with no explicit
threshold (i.e., use q(n) as a threshold for node n) and
BLDFS with an explicit threshold. However, the equivalence
no longer holds in our relaxed setting. For example, assume
that an OR node n has one AND node m that has two succes-
sors s1 and s2, where h(n) > c(n,m)+h(s1)+h(s2) due to
an inconsistent heuristic. Then, LDFS has an issue of setting
up a threshold that is large enough to strictly improve q(n) or
solve n after LDFS finishes examining s1 or s2. Hence, the
explicit threshold of BLDFS is necessary even in the ADD.

Example with Consistent Heuristic and Limited-Size TTs
If existing TT entries are overwritten with the lowerbounds of
new nodes, the heuristic estimates in the TT become incon-
sistent. This is equivalent to using an inconsistent heuristic.

We show an example only for RBFAOO, since an exam-
ple for BLDFS can be constructed analogously. The heuris-
tic shown in Figure 1(left) becomes consistent by replacing
h(A) = h(C) = 50 with h(A) = h(C) = 0. In this case,
RBFAOO first reaches D via p3 = A → C → D → B,

and only generates action B → E (i.e., B → D forms a cy-
cle). Then, RBFAOO backtracks to A and stores improved
q-values, i.e., q(B) = 51, q(D) = 52, and q(C) = 53, based
on h(E) = 50. Next, it examines B. Assume now that q(B)
and q(D) are removed from the TT before B is examined.
Then, it reaches D via p2, since th(B) = q′(C)− c(A,A→
B) = 43 is large enough. It stores the value of ∞ in the
TT entry of D since D → B forms a cycle. If the TT never
removes D, RBFAOO cannot reach a goal via opt.

One straightforward way to be able to return an optimal
solution with Figure 1 (left) is to perform so-called unfold-
ing cycles (keep examining a node), even if it encounters a
repeated state. While this approach returns an optimal solu-
tion if one exists, it cannot prove unsolvability of a problem
instance that involves cycles such as Figure 1(right).

4 Boosting Ability to Prove Unsolvability
We introduce a generic approach to proving unsolvability,
even for limited TTs and inconsistent heuristics, and com-
bine it with RBFAOO and BLDFS with an ADD model. The
heuristic h must be admissible, but can be inconsistent.

Generic Principles
The suboptimal solution returned in the example from Sec-
tion 3 is caused by saving in the TT a value of∞ calculated
by a cycle which holds only for that path. We bypass this in-
correctness by extending TTs to separately save two types of
values: q-values and r-values.

Since the q-value of a node n, q(n), described in Section
2, is a path-independent lowerbound on the node’s cost, it is
retrieved at n via any path. An r-value for a node n reached
via a path p, r(n, p), is a path-specific lowerbound. The value
r(n, p) is retrieved only when n is reached by path p. Since
r-values take into account that a repeated state is a deadend,
r(n, p) is computed as follows:

1. r(n, p) = 0, if n is a terminal OR node and p does not
form a cycle.

2. r(n, p) =∞, if n is an OR node and p forms a cycle.
3. r(n, p) = h(n), if n is a non-terminal tip node.
4. r(n, p) = mina∈A(n)(c(n, a) + r(Fn,a, p + a)), if n is

an internal OR node and Fn,a is an AND child of n.
5. r(Fn,a, p) =

∑
s∈Fn,a

r(s, p + s), if Fn,a is an internal
AND node and s is an OR child of Fn,a.

When a search reaches a node n via a path p, and further
explores the space rooted at n, it uses a threshold to control
the search underneath. Both q(n) and r(n, p) get updated
based on the search results. Because of the definition of the
state model, a repeated node is always an OR node. If the
search expands n and generates a child ch that belongs to
path p, then ch is a repeated node. It is a deadend along this
path, and not expanded further along this path. When updat-
ing q(n) and r(n, p), we set r(ch, p+a+ch) =∞. However,
computing q(n) uses q(ch), as shown in Section 2, as q is a
path-independent estimation.

When n is reached via a new path p′, q(n) is used to reduce
duplicate search effort. In addition, since q(n) is more con-
servative than r(n, p′), we set r(n, p′) = q(n) if r(n, p′) <

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1282



Algorithm 1 RBFAOOr: RBFAOO with our approach
Require: Root node root

1: root.th =∞− 1
2: r = RBFAOOSearch(root)
3: return r

q(n). This update is not uncommon, since r(n, p′) = h(n)
when n is reached via p′ for the first time.

Threshold for r-values. Typical DFMLS updates thresh-
olds based on the q-value. In contrast, we adjust a threshold
based on the r-value. The node to examine is selected by the
smallest r-value at each OR node, and the threshold is updated
to observe an improvement of the r-value as an indication of
search progress. While Akagi et al. (2010) use this idea, they
apply it only to IDA*+TT, and do not store r-values in the TT.

Reuse of proof trees. If a node n is optimally solved,
then typical DFMLS marks n as solved and saves it in
the TT. When n is reached via any path, n is regarded
as solved without re-examining the search space rooted at
n. However, care must be taken in this approach to en-
sure that no implicit cycles are created [Campbell, 1985;
Kishimoto and Müller, 2004]. For example, assume a node
n is saved in the TT as solved, and n’s solution tree has a
node c. If c is removed from the TT, n is reached by a path p,
and p contains c, then regarding n via p as solved is not cor-
rect due to a cyclic path c · · · → n · · · → c. We avoid implicit
cycles by checking both q-values and r-values when marking
a node as solved. Assume that a node n via path p is solved
or proven a deadend. If q(n) = r(n, p), the TT entry for q(n)
marks the flag as solved. This is used as a path-independent
solution. If q(n) 6= r(n, p), the TT entry for r(n, p) marks
the flag as solved, which is reused only for n via path p. The-
orem 4 in Section 5 ensures the correctness.

Space saving in the TT. The TT is typically implemented
as a hash table, and has a fixed number of entries to store
information on nodes. Compared to the TTs which take only
q-values, our approach manages q- and r-values of each node.
To save the TT entries, if r(n, p) = q(n), only q(n) is saved.
Otherwise, in addition to the TT entry for q(n), another TT
entry is used to save r(n, p). When r(n, p) is retrieved but no
information is available except q(n), q(n) is used for r(n, p).

Combination with RBFAOO
Algorithms 1-4 show a combination of our approach with

RBFAOO, denoted by RBFAOOr. We omit the overestima-
tion technique [Kishimoto and Marinescu, 2014], as automat-
ically setting an efficient overestimation parameter in cyclic
search spaces remains open. The essential differences from
original RBFAOO, using the r-values instead of q-values, are
highlighted in bold. Algorithm 2 focuses on searching for
a solution. Method FromTT (Algorithms 3 and 4) retrieves
from TT: r(n, p) where p is a path to reach n, q(n), and
a flag whether n is solved. If p forms a cycle due to n,
then set r(n, p) = ∞. If the TT has no entry for q(n) or
r(n, p), use h(n). Also, FromTT returns q(n) for r(n, p) if
r(n, p) < q(n).

Node n is a 3-field tuple: a threshold th, a flag slvd and a
path path to reach n. The flag is true if n is solved or proven

Algorithm 2 RBFAOOSearch with our approach
Require: Node n

1: if (HasNoChildren(n)) then
2: q = Evaluate(n) //Terminal node/deadend
3: SaveInTT(n, q, q) //Store search result
4: return q
5: GenerateChildren(n)
6: if (n is an OR node) then
7: loop
8: (Fn,a, r, r2, q) = BestChild(n)
9: SaveInTT(n, r, q)

10: if (n.th < r ∨ n.slvd) then
11: break
12: Fn,a.th = min(n.th, r2)− c(n, a);

Fn,a.path = n.path+ a
13: RBFAOOSearch(Fn,a)
14: else
15: loop
16: (r, q) = Sum(n) //n is an AND node
17: SaveInTT(n, r, q)
18: if (n.th < r ∨ n.slvd) then
19: break
20: (s, rs) = UnsolvedChild(n)
21: s.th = n.th− (r − rs); s.path = n.path+ s
22: RBFAOOSearch(s)
23: return r

Algorithm 3 BestChild
Require: Node n

1: n.slvd = ⊥ (⊥ stands for false)
2: r = r2 = q =∞; chbest = undefined
3: for (each child Fn,ai of n) do
4: (rchi , qchi

, fchi
) = FromTT(Fn,ai

)
5: qchi

= c(n, ai)+ qchi
; rchi = c(n, ai) + rchi ; q =

min(q, qchi
)

6: if (rchi < r ∨ (r = rchi ∧ ¬n.slvd)) then
7: r2 = r; r = rchi ; chbest = Fn,ai

; n.slvd = fchi

8: else if (rchi < r2) then
9: r2 = rchi

10: return (chbest, r, r2, q)

unsolvable. A node n also has state information, to enable to
retrieve q(n) from the TT. SaveInCache saves in the TT an
r(n, p), q(n), and whether n via p is solved.

Examining a node n includes a check whether n has chil-
dren or not. If not (lines 1–4 in Algorithm 2), the Evaluate
method sets n.slvd = > and checks if n is a terminal or a
path-independent deadend (i.e., deadend unrelated to cycles).
The q-value is set to 0 for a terminal node and to ∞ for a
deadend, and so is the r-value. These values are saved in the
TT. Lines 7–13 and 15–22 show respectively the cases when
n is an OR node or an AND node, which have similar steps:
• Update the q-value and r-value for n, based on the values

of the children (see lines 8 and 16, and Algorithms 3–4).
• Perform the backtracking test (lines 10–11 and 18–19).

RBFAOOr backtracks to n’s parent if either n.th <
r(n, p) or n.slvd = > holds.
• Select a child s (lines 8 and 20) otherwise. At OR nodes,
s = Fn,a is the child with the smallest r-value among
unsolved children (method BestChild). At AND nodes,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1283



Algorithm 4 Sum
Require: Node n

1: n.slvd = > (> stands for true)
2: r = q = 0
3: for (each child chi of n) do
4: (rchi , qchi

, fchi
) = FromTT(chi)

5: q = q + qchi ; r = r + rchi ; n.slvd = n.slvd ∧ fchi

6: n.slvd = n.slvd ∨ r =∞
7: return (r, q)

Algorithm 5 BLDFSr: BLDFS variant with our ap-
proach
Require: Root node root

1: root.slvd = ⊥; root.r = h(n)
2: while ¬root.slvd do
3: root.th = root.r
4: BLDFSDriver(root)
5: return root.r

choose any unsolved child s. Then, update th(s) (lines
12 and 21), and recursively examine s (lines 13 and 22).

A small yet efficient change to the original RBFAOO is to
store q(n) in the TT, immediately after it is updated (lines 9
and 17). This is necessary to quickly back-propagate a larger
q-value involving repeated states. Bonet and Geffner (2006)
use a similar idea for an MDP version of LDFS.

RBFAOOr correctly handles the example shown in Fig-
ure 1 left. RBFAOOr reaches B, via A → B, updates
q(B) = min(1 + h(E), 1 + h(D)) = 1, then reaches D
via p1 = A → B → D. It generates a cycle p1 + B, and
stores r(D, p1) = ∞ due to the cycle. On the other hand, it
sets q(D) = 1 + q(B) = 2. It updates r(B,A → B) =
min(1 + r(D, p1), 1 + r(E,A → B → E)) = 51, and
q(B) = min(1 + q(D), 1 + q(E)) = 3. It then selects C
and reaches D via p2 = A → C → D. Since r(D, p2) = 4,
which is different from r(D, p1) = ∞, it does not regard D
via this path as unsolved. Therefore, it reaches B via p2 +B,
eventually leading to optimal solution p2 +B + E + F .

Combination with Bounded LDFS Variant
BLDFS with our approach, denoted BLDFSr, controls its

threshold by r-values, based on the approach of Bonet and
Geffner (2005a) for the ADD model. While RBFAOOr and
BLDFSr share the same principles, BLDFSr examines the
space with a global threshold controlling scheme.

Let th(n, p) be a threshold for a node n reached via path
p, and rt be the root. In each iteration, BLDFSr starts ex-
amining the search space with th(rt, rt) = r(rt, rt), and ex-
amines n via p as long as r(n, p) ≤ th(n, p). At the start of
search, th(rt, rt) = h(rt), since r(rt, rt) = h(rt).

At each internal node, BLDFSr selects a child in the same
way as described in Section 2 except that it uses the r-values:

• At an OR node n via path p, for a child Fn,a via path
pF = p + a, if c(n, a) + r(Fn,a, pF ) ≤ th(n, p) holds,
examine Fn,a with th(Fn,a, pF ) = th(n, p)− c(n, a).

• At an AND node Fn,a via path pF , select any unsolved
child s with a new threshold th(s, ps) = th(Fn,a, pF )−
r(Fn,a, pF ) + r(s, ps), where ps = pF + s.

Algorithm 6 BLDFS Driver with our approach
Require: Node n

1: if (HasNoChildren(n)) then
2: q = Evaluate(n) //Terminal node/deadend
3: SaveInTT(n, q, q) //Store search results
4: n.r = n.q = q; n.slvd = >
5: return
6: GenerateChildren(n)
7: if (n is an OR node) then
8: slvd = ⊥; r = q =∞
9: for (each child chi = Fn,ai ) do

10: (rchi , qchi
, fchi

) = FromTT(chi)
11: qchi

= c(n, ai) + qchi
; rchi = c(n, ai) + rchi

12: if (n.th < rchi) then
13: q = min(q, qchi

); r = min(r, rchi)
14: else if (fchi

) then
15: slvd = >; //Solution within the threshold
16: q = min(q, qchi); r = rchi

17: //Update the threshold with this upperbound
18: n.th = rchi − 1
19: else
20: chi.th = n.th− c(n, ai)
21: chi.path = n.path+ ai
22: BLDFSDriver(chi)
23: q = min(q, c(n, ai) + chi.q);
24: r = min(r, c(n, ai) + chi.r)
25: if (chi.slvd ∧ chi.r ≤ chi.th) then
26: slvd = >; //Solution within the threshold
27: //Update the threshold with this upperbound
28: n.th = c(n, ai) + chi.r − 1
29: n.r = r; n.q = q; n.slvd = slvd ∨ n.r =∞
30: else
31: //n is an AND node
32: for (each child chi) do
33: (r, q) = Sum(n, chi)
34: if (n.th < r) then
35: break
36: if (¬chi.slvd) then
37: chi.th = n.th− (r − chi.r);
38: chi.path = n.path+ chi
39: BLDFSDriver(chi)
40: SaveInTT(n, r, q)

The q- and r- values are back-propagated to the root in the
same way as RBFAOOr. For theoretical analysis, we modify
slightly the original BLDFS. If a solution is found at node n,
our BLDFS variant delays to back up the solved flag of >
to n’s parent, until the solution cost at n is proven optimal
within the threshold. It is when BLDFS marks the solved flag
at the root as solved that the optimal solution cost is proven at
the root. Theoretical analysis with the original BLDFS under
our relaxed assumptions is left as future work.

Algorithms 5–6 show the pseudocode of BLDFSr, which
is a combination of BLDFS with our approach. We use nota-
tions that are familiar in the heuristic search community. To
explain in detail how r-values and q-values are managed, our
pseudocode is represented in a more detail than in the work
of Bonet and Geffner (2005a; 2005b). The essential differ-
ences from original BLDFS are highlighted in bold. Node
n includes the threshold th, called the bound in [Bonet and
Geffner, 2005a]. In addition, n contains r and q, an r-value
and a q-value stored after n is examined, and a path path to n

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1284



from the root. The Sum method in Algorithm 4 is extended to
receive a child si and sets si.slvd, indicating if si is marked
as solved in the TT. Sum also updates n.r, n.q and n.slvd.

5 Theoretical Properties
We define the notion of memory requirement linear in the
search depth and the branching factor along the path.
Definition 2. Given a search problem and an amount of mem-
ory available, we say that the reasonable memory require-
ment is satisfied if, for any path that could be explored in the
search, the memory is sufficient to store all nodes along the
current paths, together with all their siblings.

If b is the maximum branching factor, and d is the max-
imum depth of a path explored in the problem at hand, we
need at least O(bd) memory, as discussed in [Korf, 1993].

We prove theoretical properties about our approach com-
bined with RBFAOO and our BLDFS variant that require only
reasonable memory, denoted by RBFAOOr and BLDFSr, re-
spectively. Our results ensure that our approach can be en-
hanced with a TT that has any strategies to replace the TT
entries of any nodes previously examined, unless these TT
entries are for the nodes/their siblings of the path currently
examined. For example, assume that a search path p1 changes
to a new one p2. Let n be a node on p1 that is neither on p2
nor any of the siblings of the nodes on p2. Then, the q- and r-
values for n can be safely removed from the TT.

The reasonable memory requirement is close to the theo-
retically minimum memory requirement to return an optimal
solution cost. Note that the size of the solution tree is needed
as a memory requirement to return a solution tree.

Let C(n, p) be an optimal solution cost for node n via path
p, Tq(n) be q(n) in the TT, and Tr(n, p) be r(n, p) in the
TT. If no result is saved, Tq(n) = h(n) where h is an ad-
missible heuristic. So is Tr(n, p), but if p forms a cycle, then
Tr(n, p) = ∞. Since Tr(n, p) is increased to Tq(n) as dis-
cussed in Section 4, clearly Tq(n) ≤ Tr(n, p) holds.
Lemma 1. Tr(n, p) always has admissible values for any
path p leading to node n, i.e., Tr(n, p) ≤ C(n, p).
Theorem 2 (Correctness). The solution cost returned by
RBFAOOr/BLDFSr is always optimal.
Lemma 3. Assume that RBFAOOr/BLDFSr marks a node n
as always solved, i.e., n via path p is solved and Tq(n) =
Tr(n, p) holds. Then, Tq(n) = C(n, n) holds, where C(n, n)
is the optimal solution cost of the subtree rooted at n.

Theorem 4 guarantees that an optimal solution cost at n
can be transposed from one path to another (see Section 4).
Theorem 4. Assume that node n via path p is solved and
Tq(n) = Tr(n, p). Then, marking n as solved via any path
does not affect the optimal solution cost.

Proof. Let s0 be the root. We prove the theorem by showing
that a node n marked as always solved is not a part of the op-
timal solution cost at s0, if Tq(n) causes an implicit cycle. In
this case, Tq(n) merely prunes away duplicate search rooted
at n, even if marked as solved.

Assume that n via p is marked as always solved. Let ST be
the (optimal) solution tree rooted at n and Tq(n) = C(n, n).

By Lemma 3 ST has no cyclic path, since the solution cost at
each internal OR node m in ST is C(m,m) and c(m, a) > 0.

Let Q(n, p) be the set of OR nodes on the non-cyclic path
p from s0 to node n, and P (n, p) = Q(n, p)\{n}. The cor-
rectness of the theorem is ensured as follows: (1) If s 6∈ ST
for every s ∈ P (n, p), C(n, p) = C(n, n). No cycle is cre-
ated from s0 to reach any node in ST . (2) Otherwise, a node
s ∈ P (n, p) may be in ST . That is, ST cannot be used to cal-
culate C(n, p), since s creates a cycle. Let m ∈ P (n, p) be
the closest node to s0 on p which creates a cycle in ST . Let
pm be the prefix of p from s0 to m. Since m is included in ST
and c(n, a) > 0 for a ∈ A(n), C(m,m) < Tq(n) = C(n, n)
holds. In addition, no node in P (m, pm) creates a cycle in
ST . Therefore, C(m, pm) = C(m,m) < Tq(n), indicating
that Tq(n) is never a part of the optimal solution at s0.

We prove the admissibility of BLDFSr with more relaxed
assumptions than [Bonet and Geffner, 2005b].

Lemma 5. If Algorithm 6 (BLDFSDriver) starts with s0.th =
b � ∞ at the root s0, then it terminates in finite time with
either s0.r > b or s0.slvd = >.

Theorem 6 (Admissibility). BLDFSr finds an optimal solu-
tion cost in finite time, if one exists in the finite search space.

Proof sketch. If s0.th ≥ C(s0, s0), BLDFSDriver returns an
optimal solution cost C(s0, s0) in finite time, since: (1) The-
orems 2 and 4 ensure solution optimality. (2) Each node n in
the optimal solution tree is examined, which is easily proven
by induction on the number of chains of the recursive calls.

If s.th < C(s0, s0), by Lemma 5, BLDFSDriver strictly
increases s0.th in finite time, since BLDFSDriver cannot
mark s0 as solved (see line 12 in BLDFSDriver). Since
C(s0, s0) � ∞, in a finite number of iterations, BLDFSr

sets s0.th = b ≥ C(s0, s0), enabling to optimally solve any
solvable instance in finite time.

The results in [Kishimoto and Marinescu, 2014] hold only
for finite DAGs (i.e., no cycles involved). On the other hand,
RBFAOOr focuses on finite cyclic spaces.

Lemma 7. Assume that RBFAOOr examines a node n via
path p with th(n) = b � ∞. Then, RBFAOOr backtracks to
n in finite time with either Tr(n, p) > b and/or n is marked
as solved.

Theorem 8 (Admissibility). RBFAOOr finds an optimal so-
lution cost in finite time, if one exists in the finite search space.

Proof sketch. Let s0 be the root and ST be an optimal so-
lution tree rooted at s0. If no path exists which makes
RBFAOOr deviate from ST (i.e., ST is the whole search
space), since C(s0, s0)� th(s0) =∞− 1, RBFAOOr finds
an optimal solution cost in finite time. This is easily veri-
fied by the fact that (1) RBFAOOr requires only reasonable
memory and (2) Tr(n, p) ≤ C(n, p) � th(n) = ∞ − k
for each n ∈ ST , where k is a small number. This th(n)
is large enough to cover all terminal nodes in ST . Other-
wise, let n via path p be the first OR node in ST at which
RBFAOOr generates two children Fn,a1

and Fn,a2
, where

Fn,a1
∈ ST but Fn,a2

6∈ ST . Here, we show only the case
with two children, since more general cases are proven in an

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1285



analogous way. Fn,a2 may or may not lead to another opti-
mal solution, but because of the optimality of ST , C(n, p) =
c(n, a1) + C(Fn,a1

, pa1
) ≤ c(n, a2) + C(Fn,a2

, pa2
) holds,

where pa = p+a . RBFAOOr reaches n with th(n) =∞−k
where k is a small number.

Tr(Fn,a2
) = ∞ means that RBFAOOr cannot deviate

from ST . Hence, we consider the case where Tr(Fn,a2
) �

∞− k, i.e., c(n, a2) +Tr(Fn,a2
)�∞− k. Since Fn,a1

has
an optimal solution, c(n, a1) + Tr(Fn,a1

, pa1
) ≤ C(n, p)�

∞−k holds (see Lemma 1 as well). Therefore, the threshold
t set to examine Fn,a1 and Fn,a2 always satisfies t�∞− k.

If RBFAOOr examines Fn,a1 with t < C(n, p) −
c(n, a1) = C(Fn,a1 , pa1), by Lemmas 7, RBFAOOr back-
tracks to n in finite time. It holds that Tr(Fn,a1 , pa1) is
strictly increased, or/and Fn,a1

is solved. If Fn,a1
is solved

but v = c(n, a1)+C(Fn,a1
, pa1

) > c(n, a2)+Tr(Fn,a2
, pa2

)
still holds, Fn,a2

is examined with th(Fn,a2
) = v −

c(n, a2) � ∞. By Lemma 7, this step completes in finite
time, proving that a1 leads to an optimal solution cost.

Analogously, if RBFAOOr examines Fn,a2
with t <

C(n, p) − c(n, a2), by Lemma 7, RBFAOOr backtracks
to n in finite time and Tr(Fn,a2 , pa2) is strictly increased,
or/and Fn,a2 is solved. If Fn,a2 is solved, Tr(Fn,a2 , pa2) =
C(Fn,a2 , pa2) ≥ C(n, p)− c(n, a2).

Since RBFAOOr requires only reasonable memory, it
remembers Tr(Fn,a1

, pa1
) and Tr(Fn,a2

, pa2
). By Lem-

mas 1 and 7, even if Fn,a1
remains unsolved, RBFAOOr

strictly increases Tr(Fn,a1
, pa1

) and Tr(Fn,a2
, pa2

), even-
tually leading to c(n, a1) + Tr(Fn,a1

, pa1
) ≤ C(n, p) ≤

c(n, a2) + Tr(Fn,a2
, pa2

) = b in finite time. When this
happens, RBFAOOr examines Fn,a1

with th(Fn,a1
) =

min(b, th(n)) − c(n, a1). If Tr(Fn,a2
, pa2

) = ∞ (i.e. Fn,a2

is proven unsolvable), RBFAOOr cannot deviate from ST .
If b � ∞, th(Fn,a1) = b − c(n, a1), since th(n) =
∞ − k. By Lemma 7, RBFAOOr returns to Fn,a1 in fi-
nite time. Since Tr(Fn,a1 , pa1) ≤ C(Fn,a1 , pa1) ≤ b −
c(n, a1), Tr(Fn,a1 , pa1) cannot be strictly increased. There-
fore, RBFAOOr must mark Fn,a1 as solved, resulting in solv-
ing n in finite time. If a2 also leads to another optimal solu-
tion, RBFAOOr may choose Fn,a2

rather than Fn,a1
. How-

ever, the same discussion holds, resulting in RBFAOOr mak-
ing Fn,a2

as solved in finite time.
Theorem 2 ensures the solution optimality, once

RBFAOOr finds it. Hence, RBFAOOr returns an opti-
mal solution cost for s0 in finite time if a solution exists.

Theorem 8 leads to a new corollary for RBFS [Korf, 1993]
with the TT and our approach, denoted by RBFSr. While the
admissibility of RBFS assumes that the search space is a tree,
RBFSr further reduces duplicate search on cyclic spaces.
Corollary 9. If a solution exists in the finite search space,
RBFSr finds an optimal solution in finite time.

RBFAOOr and BLDFSr can prove unsolvability for the
graph in Figure 1(right), but have limitations in other cases:
Theorem 10. RBFAOOr and BLDFSr are incomplete when
proving unsolvability in the cyclic search space.

Proof sketch. The example shown in Figure 2 cannot be
solved. An explicit cycle cannot be detected due to large val-

Figure 2: Example for incompleteness, shown in [Akagi et al. 2010].

ues of r(B,A→ B) and r(C,A→ C). This is easily proven
in by induction in a similar way to [Akagi et al., 2010].

6 Experimental Results
We use domain-independent nondeterministic planning with
unit edge costs and the ADD model to evaluate RBFAOOr

and BLDFSr. Baselines RBFAOO and BLDFS unfold re-
peated states, ensuring solution optimality with the limited
TT size or inconsistent heuristics. We modified slightly the
original BLDFS [Bonet and Geffner, 2005a] to delay saving a
solution cost in the TT until it is proven optimal, as discussed
in Section 4. To the best of our knowledge, this change has
not empirically impacted the performance, since a first solu-
tion our BLDFS returned is optimal in all cases we observed.
We coded all algorithms in C++ (64-bit) and ran experiments
on an Intel Xeon CPU X5690 processor at 3.47GHz. The
TT is limited to 1GB. The time per instance is 30 minutes.
When the TT is full, SmallTreeGC [Nagai, 1999] discards
R% TT entries with small subtrees. As in [Akagi et al., 2010;
Kishimoto and Marinescu, 2014], we set R to 30.

We extended the hmax heuristic [Bonet and Geffner, 2001;
Haslum and Geffner, 2000] to nondeterministic planning,
which is consistent. In constructing an inconsistent heuris-
tic from hmax, we perform the perturbation as follows: We
represent a state as a bit vector of true or false values of
grounded predicates. Among the algorithms compared, the
same heuristic values are returned when the same states are
evaluated. A set of grounded predicates are randomly se-
lected with the same seed among the algorithms, before
search is performed. Whether a small value is subtracted or
not is determined by whether one of the selected predicates is
true or false. We select 5% of the grounded predicates.
Unsolvable Instances and Inconsistent Heuristics. We
use instances from the Uncertainty Track in the 6th Inter-
national Planning Competition in 2008, consisting of BWD
(blocksworld, 30 instances), FLTS (faults, 55 instances) and
FRES (first-responders, 100 instances). All these instances
admit solutions with cycles. They are unsolvable under the
cycle-free solution requirement. Table 1(top) shows the num-
ber of instances proven unsolvable. Without any search, the
inconsistent heuristic proves that 26 instances in BWD, and
all 100 instances in FRES are unsolvable. That is, no further
improvement can be achieved on these instances even with a
better search algorithm. For the remaining four instances in
BWD, and all 55 instances in FLTS, the heuristic cannot prove
unsolvability at their initial states. In these 59 instances, RB-
FAOO and BLDFS time out, since all they can do is to unfold
repeated states until exceeding their thresholds. On the other
hand, both RBFAOOr and BLDFSr successfully prove un-
solvability of all instances in BWD and 14 instances in FLTS
(i.e., a total of 18 additional instances proven successfully),

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1286



RBFAOOr RBFAOO BLDFSr BLDFS
BWD (30) 30 26 30 26
FLTS (55) 14 0 14 0

FRES (100) 100 100 100 100

RBFAOOr RBFAOO BLDFSr BLDFS
BWD (30) 10 (2.83) 10 (3.05) 10 (2.68) 10 (2.67)
FLTS (55) 48 (4344) 48 (4233) 47 (2326) 47 (2247)
FRES (73) 26 (4452) 26 (4497) 27 (5156) 27 (5072)

Table 1: Performance on unsolvable instances (top) and solvable
instances (bottom).

clearly demonstrating the effectiveness of our approach. The
p7 2 instance in FLTS is the most difficult that RBFAOOr

and BLDFSr could prove as unsolvable: RBFAOOr expands
288,862,627 nodes (589 seconds), while BLDFSr expands
184,513,049 nodes (351 seconds).

Solvable Instances and Inconsistent Heuristics. Since the
instances considered in the previous subsection are unsolv-
able, we modified them to admit cycle-free solutions, as de-
scribed in [Fu et al., 2013]. Specifically, in BWD, we make
only the pick-up action nondeterministic to ensure that the
optimal solution is a tree. In FRES, we additionally allow
hospitals to accept victims at status dying. This change al-
lows to have cases where a solution is not always a sequence
of actions but a tree. However, 27 instances are proven to
be unsolvable, resulting in 73 solvable instances. These three
domains have different characteristics. Nondeterministic ac-
tions tend to be selected much more frequently in FRES than
in BWD. While the search spaces of BWD and FRES con-
tain cycles, the search space of FLTS is a DAG. For DAGs,
since r(n, p) = q(n) always holds for any node n and path
p, RBFAOOr and BLDFSr have no advantage over RBFAOO
and BLDFS but incur extra overhead due to calculating both
r-values and q-values. Table 1(bottom) shows the number
of instances solved optimally by each algorithm, where the
number inside the parentheses is the total search time of the
solved instances in seconds. When finding an optimal solu-
tion cost, our approach preserves the solving ability of RB-
FAOO and BLDFS without sacrificing their running time.
RBFAOOr and RBFAOO solve the same set of instances, and
so do BLDFSr and BLDFS. Search time differences range
from 1 to 7%, which is a small overhead, compared to ben-
efits pointed out earlier. For example, in FLTS where the
search space is a DAG, RBFAOOr and RBFAOO examine
the same portions of the search space, resulting in RBFAOOr

running 2% slower than RBFAOO due to the extra compu-
tational overhead. We observed a similar phenomenon for
BLDFSr and BLDFS.

Limited TT and Consistent Heuristics. We selected 5 dif-
ficult instances (four have optimal solutions and one does
not), and ran an experiment using the consistent hmax, a
TT limited to 30 MB, and a 2-hour time limit per instance.
Table 2 shows the runtimes in seconds. Both RBFAOOr

and BLDFSr solve three instances including the one (p 7 2)
which has no solution in the cyclic search space. On the other
hand, RBFAOO and BLDFS solve only two instances which

RBFAOOr RBFAOO BLDFSr BLDFS
FRES p4 2 153 153 113 111
FLTS p8 7 834 818 724 712
FLTS p7 2 1786 ≥ 2h 1608 ≥ 2h

Table 2: Runtime with consistent heuristic and limited TT. The in-
stances not shown here are not solved by any method.

have optimal solutions due to a lack of the cycle detection
scheme. We also see that our approach does not sacrifice the
ability to solve solvable instances.

7 Related Work
Value Iteration (VI) can optimally solve search problems by
solving the Bellman equation using dynamic programming
[Bellman, 1957]. However, it is limited to solving problems
with relatively small search spaces that fit into memory, and
may not be able to prove unsolvability due to cycles.

CFCREV ∗ [Jiménez and Torras, 2000] is a best-first search
like AO* [Nilsson, 1980] that can handle cyclic search spaces
to find a cycle-free optimal solution but it needs to keep the
examined search space in memory. Liang and Su (2005)
presents an algorithm that assumes all terminal nodes are
known beforehand and available in memory, which does not
hold in domains such as nondeterministic planning.

MAO* [Chakrabarti et al., 1989] is an AO* variant that can
operate with limited memory but assumes the search space
is a DAG and uses a specific strategy to remove nodes from
memory. Our approach makes no specific assumption about
the replacement strategies of the TT, and the search space can
be cyclic as long as an optimal solution is a tree.

LAO* [Hansen and Zilberstein, 2001] combines AO* with
dynamic programming (value or policy iteration) to handle
optimal solutions involving cycles. LAO* does not operate
with limited memory. In addition, in our setting, cycles need
to be regarded as unsolvable, and optimal solutions may not
contain cycles if they exist. LDFS(MDP) [Bonet and Geffner,
2006] extends LDFS to solve MDP, allowing for cyclic op-
timal solutions as LAO* does. Extensions of LAO* and
LDFS(MDP) to our scenario remain open.

8 Conclusions
In this paper, we focused on finding optimal acyclic solutions
in cyclic AND/OR search spaces. We showed in detail how to
integrate our ideas into two state-of-the-art algorithms. Our
new theoretical analysis addresses important gaps for cases of
insufficient cache memory or inconsistent heuristics. Exper-
iments in domain-independent planning demonstrate a boost
in the ability to prove unsolvable difficult instances.

In future work we plan to investigate complete algorithms
across unsolvable instances. As previously mentioned, an
analysis of the original BLDFS technique in combination
with our enhancements is another interesting direction.

Acknowledgments
We would like to thank Masataro Asai for his constructive
comments on the paper.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1287



References
[Akagi et al., 2010] Yuima Akagi, Akihiro Kishimoto, and

Alex Fukunaga. On transposition tables for single-agent
search and planning: Summary of results. In Proceedings
of the 3rd Symposium on Combinatorial Search, pages 1–
8, 2010.

[Bellman, 1957] Richard E. Bellman. Dynamic Program-
ming. Princeton University Press, 1957.

[Bonet and Geffner, 2001] Blai Bonet and Héctor Geffner.
Planning as heuristic search. Artificial Intelligence, 120:5–
33, 2001.

[Bonet and Geffner, 2005a] Blai Bonet and Héctor Geffner.
An algorithm better than AO*? In AAAI, pages 1343–
1348, 2005.

[Bonet and Geffner, 2005b] Blai Bonet and Héctor Geffner.
Learning in depth-first search: A unified approach to
heuristic search in deterministic, non-deterministic, prob-
abilistic, and game tree settings. Technical report, Univer-
sidad Simon Bolivar, 2005. Available at https://bonetblai.
github.io/#publications.

[Bonet and Geffner, 2006] Blai Bonet and Héctor Geffner.
Learning depth-first search: A unified approach to heuris-
tic search in deterministic and non-deterministic settings,
and its application to MDPs. In ICAPS, pages 142–151,
2006.

[Campbell, 1985] Murray Campbell. The graph-history in-
teraction: On ignoring position history. In 1985 ACM An-
nual Conference, pages 278–280, 1985.

[Chakrabarti et al., 1989] Partha P. Chakrabarti, Sujoy
Ghose, Arup Acharya, and S. C. De Sarkar. Heuristic
search in restricted memory. Artificial Intelligence,
41(2):197–221, 1989.

[Eriksson et al., 2017] Salomé Eriksson, Gabriele Röger,
and Malte Helmert. Unsolvability certificates for classi-
cal planning. In ICAPS, pages 88–97, 2017.

[Eriksson et al., 2018a] Salomé Eriksson, Gabriele Röger,
and Malte Helmert. Inductive certificates of unsolvability
for domain-independent planning. In IJCAI, pages 5244–
5248, 2018.

[Eriksson et al., 2018b] Salomé Eriksson, Gabriele Röger,
and Malte Helmert. A proof system for unsolvable plan-
ning tasks. In ICAPS, pages 65–73, 2018.

[Fu et al., 2013] Jicheng Fu, Andres C. Jaramillo, Vincent
Ng, Farokh B. Bastani, and I-Ling Yen. Fast strong plan-
ning for FOND problems with multi-root directed acyclic
graphs. In Proceedings of the 25th IEEE International
Conference on Tools with Artificial Intelligence, pages 87–
94, 2013.

[Hansen and Zilberstein, 2001] Eric A. Hansen and Shlomo
Zilberstein. LAO*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129:35–62,
2001.

[Haslum and Geffner, 2000] Patrik Haslum and Héctor
Geffner. Admissible heuristics for optimal planning.

In Proceedings of the 5th International Conference on
Artificial Intelligence Planning Systems, pages 140–149,
2000.

[Heifets and Jurisica, 2012] Abraham Heifets and Igor Ju-
risica. Construction of new medicines via game proof
search. In J. Hoffmann and B. Selman, editors, AAAI,
pages 1564–1570, 2012.

[Holte, 2010] Robert C. Holte. Common misconceptions
concerning heuristic search. In Proceedings of the 3rd
Symposium on Combinatorial Search, pages 46–51, 2010.

[Jiménez and Torras, 2000] Pablo Jiménez and Carme Tor-
ras. An efficient algorithm for searching implicit AND/OR
graphs with cycles. Artificial Intelligence, 124:1–30, 2000.

[Kishimoto and Marinescu, 2014] Akihiro Kishimoto and
Radu Marinescu. Recursive best-first AND/OR search for
optimization in graphical models. In UAI, pages 400–409,
2014.

[Kishimoto and Müller, 2004] Akihiro Kishimoto and Mar-
tin Müller. A general solution to the graph history interac-
tion problem. In AAAI, pages 644–649, 2004.

[Korf, 1985] Richard E. Korf. Depth-first iterative deepen-
ing: An optimal admissible tree search. Artificial Intelli-
gence, 27(1):97–109, 1985.

[Korf, 1993] Richard E. Korf. Linear-space best-first search.
Artificial Intelligence, 62:41–78, 1993.

[Liang and Su, 2005] Qianhui A. Liang and Stanley Y. W.
Su. AND/OR graph and search algorithm for discover-
ing composite web services. International Journal of Web
Services Research, 2(4):48–67, 2005.

[Nagai, 1999] Ayumu Nagai. A new depth-first search algo-
rithm for AND/OR trees. Master’s thesis, The University
of Tokyo, 1999.

[Nilsson, 1980] Nils J. Nilsson. Principles of Artificial Intel-
ligence. Tioga Publishing Co, Palo Alto, CA, 1980.

[Plaat et al., 1996] Aske Plaat, Jonathan Schaeffer, Wim Pi-
jls, and Arie de Bruin. Best-first fixed-depth minimax al-
gorithms. Artificial Intelligence, 87(1-2):255–293, 1996.

[Reinefeld and Marsland, 1994] Alexander Reinefeld and
T. Anthony Marsland. Enhanced iterative-deepening
search. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 16(7):701–710, 1994.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1288


