
Heuristic Search for Homology Localization Problem and Its Application in
Cardiac Trabeculae Reconstruction

Xudong Zhang1 , Pengxiang Wu2 , Changhe Yuan1,3 , Yusu Wang4 ,
Dimitris Metaxas2 and Chao Chen5

1 CUNY Graduate Center, New York, NY, United States
2 Rutgers University, New Brunswick, NY, United States
3 CUNY Queens College, New York, NY, United States
4 Ohio State University, Columbus, OH, United States

5 Stony Brook University, Stony Brook, NY, United States
xzhang5@gradcenter.cuny.edu, pw241@rutgers.edu, changhe.yuan@qc.cuny.edu,

yusu@cse.ohio-state.edu, dnm@cs.rutgers.edu, chao.chen.1@stonybrook.edu

Abstract
Cardiac trabeculae are fine rod-like muscles whose
ends are attached to the inner walls of ventricles.
Accurate extraction of trabeculae is important yet
challenging, due to the background noise and lim-
ited resolution of cardiac images. Existing works
proposed to handle this task by modeling the tra-
beculae as topological handles for better extraction.
Computing optimal representation of these handles
is essential yet very expensive. In this work, we
formulate the problem as a heuristic search prob-
lem, and propose novel heuristic functions based
on advanced topological techniques. We show in
experiments that the proposed heuristic functions
improve the computation in both time and memory.

1 Introduction
Cardiac trabeculae are fine muscle columns, whose ends at-
tache the ventricular walls (Figure 1(a) [Edwin P. Ewing,
2016]). Those fine structures make up a large portion of left
ventricle (23% volume at end-diastolic state), and thus play
an important role in diagnosis of cardiac diseases and under-
standing of cardiac functionality. Modern imaging techniques
(e.g., Computed Tomography (CT)) make it possible to cap-
ture the trabeculae, within cardiac ventricles (Figure 1(b)).
However, it is challenging to accurately extract these com-
plex structures due to the heterogeneity of their intensity and
geometry. Existing segmentation models, which typically
rely on smoothness and global shape priors [Zhu et al., 1995;
Boykov et al., 2001; Cootes et al., 1995], are insufficient for
handling this task and tend to remove fine geometric details.

To solve this problem, Gao et al. [2013] proposed a topo-
logical method, in which salient topological handles (i.e.,
thickened loops) are detected as trabeculae. Figure 1(c)
shows an example of topological handles in a 2D synthetic
image. One major weakness with this method is that the de-
tected handles are not ideally represented. A topological han-
dle can be represented by any loop it contains. For exam-
ple, the handle in Figure 1(c) can be represented by any of

the red, green, and cyan cycles. A sub-optimal representative
cycle leads to inaccurate geometric description of the han-
dle, and thus impair downstream analysis. Figure 1(d) shows
low-quality reconstruction of trabeculae which are not fully
stretched as expected. Wu et al. [2017] showed that by find-
ing the optimal representative cycle of each handle, we can
obtain the ideal reconstruction results (Figure 1(e)).

However, computing the optimal representative cycle is in-
deed a very challenging problem. It has been proven that
this problem, called homology localization, is NP-hard, and
even NP-hard to approximate within constant ratio [Chen
and Freedman, 2010a]. Various approximate algorithms
[Chen and Freedman, 2010b] have been proposed, but can-
not achieve the optimal result. Known exact algorithms, e.g.,
[Busaryev et al., 2012], are exponential to the Betti number
and thus are impractical. To efficiently solve this problem, we
formulate it as a search problem. We assign a binary vector,
called the homological annotation, to each edge of the un-
derlying graph. In the graph, a loop represents the handle of
interest if and only if its edge annotations sum up to a desired
vector. This way, the problem of finding the shortest repre-
sentative cycle of a handle is reduced into finding the shortest
loop in a graph with a given sum of edge annotation.

This problem can be solved using an A* searching frame-
work. Wu et al. [2017] proposed a heuristic function for the
A* search. It takes the maximum over a set of heuristic func-
tions, each of which focusing on matching one single bit of
the given annotation. However, such scheme ignores the rela-
tionship between different bits, and may not be a tight approx-
imation of the real cost. In this paper, we design two novel
heuristic functions, which merges multiple bits in edge anno-
tations when calculating the heuristic values, thus leading to a
tighter estimation. The experimental results demonstrate that
the proposed heuristic functions enable the A* algorithm to
reduce the searching time by exploring less nodes, and con-
sume less memory than previous methods.

Our improved hierarchical-clustering heuristic is an ex-
ample of the disjoint pattern database technique developed
in [Korf and Felner, 2002]. The optimal homology cycle has
to satisfy the constraint that the sum of all bit-vector represen-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1312



(a) (b) (c) (d) (e)

Figure 1: (a): interior of LV. (b): input CT image. (c): topological handles belong to the same homology class and its representative cycles.
The yellow one is the shortest and best describes its geometry. (d): trabeculae segmentation without optimal cycles. (e): successfully captures
the trabeculae with shortest homology cycles [Wu et al., 2017].

tations of the edges in the cycle satisfy a particular homology
cycle class. The naive heuristic in [Wu et al., 2017] relaxes
the constraint so that each bit sums to its desired value inde-
pendently. Our improved heuristic clusters the bits into ex-
haustive and exclusive groups so that each group of bits sums
to desired values, thus producing a tighter lower bound than
the naive heuristic. Also, the naive heuristic and the optimal
homology cycle can be considered two extreme cases of our
heuristic, with the group size equal to one or the total number
of bits respectively.

The rest of this paper is organized as follows. Section 2 in-
troduces the background theories in algebraic topology. Sec-
tion 3 formulate the problem and explore its solutions via an-
notation and covering graph. Section 4 presents the search
method and the proposed heuristic function. Section 5 pro-
vides the experimental results and discussions.

2 Background
In this section, we introduce the theoretical background of al-
gebraic topology [Munkres, 1984; Edelsbrunner and Harer,
2010]. We are particularly interested in 1-dimensional topo-
logical structures, i.e., handles. A d-dimensional simplex or
d-simplex σ, is the convex hull of d + 1 affinely indepen-
dent points. A vertex, edge, triangle and tetrahedron are
0-simplex, 1-simplex, 2-simplex and 3-simplex in topology
respectively. A face of a d-simplex is the convex hull of
a nonempty subset of its d + 1 vertices. A tetrahedron has
four 2-dimensional faces, corresponding to four triangles en-
closing the tetrahedron. A triangle has three 1-dimensional
faces, i.e., the three edges bounding it. The two end ver-
tices of a edge are its faces. A simplicial complex K =
{σ1, σ2, ..., σn} is a collection of simplices satisfying two
conditions: 1. any face of a simplex in K is also in K. 2. the
intersection of any two simplices inK is either empty or their
common face. The dimension of a simplicial complex is the
maximum dimension of its elements.

A d-chain c is a formal sum of d-simplices in K, c =∑
σ∈K aσσ, aσ ∈ Z2. Note that Z2 is the binary field with

only 0 and 1 as its elements and uses Z2 arithmetic as the
addition rule (mod 2). A d-chain c is also a subset of the sim-
plicial complex K, C ⊆ K. A d-chain can be represented
by a nd long binary vector, in which n0 is the number of d-
simplices in K. The i-th entry is 1 if and only if σi ∈ c. All
d-chains form the group of d-chain, Cd(K), which is equiva-
lent to a nd-dimensional binary vector space.

The boundary of a d-simplex is the formal sum of its
(d − 1)-faces. The boundary of a d-chain, c, is the sum of
boundaries of all d-simplices in c, ∂d(c) =

∑
σ∈c ∂d(σ).

When the chain is represented by a nd-dimensional vector,
the boundary operator is equivalent to a nd−1 × nd binary
matrix, whose columns are the boundaries of individual d-
simplices. See Figure 2 for an example simplicial complex
and its boundary matrices. The boundary of c is equals to
multiplying the boundary matrix to c, ∂dc. The group of d-
boundaries is the image of the (d+1)-dimensional boundary
matrix, Bd = im(∂d+1).

A d-cycle is a d-chain with zero boundary. The group
of d-cycles is the kernel of boundary operator Zd(K) =
ker(∂d). In fact, A d-boundary z is a d-cycle, formally,
Bd(K) ⊆ Zd(K). A d-cycle z is a non-boundary cycle if
z ∈ Zd(K)− Bd(K).

The group of all d-cycles are partitioned into different ho-
mology classes. A homology class is an equivalent set of
cycles, whose difference is a boundary. Formally, given a cy-
cle z0 belonging to the class h, the class is h = {z | z =
z0 + ∂d+1c, c ∈ Cd+1(K)}. The homology class can also
be a coset [z0] = z0 + Bd(K). Any two cycles in the same
homology class are homologous. Any cycle in the homol-
ogy class can be the representative cycle, z0. When z0 is
a boundary, [z0] is the boundary group Bd(K). All the d-
dimension homology classes form the d-dimension homology
group Hd(K), which is equal to the quotient of Zd(K) over
Bd(K), formally, Hd(K) = Zd(K)/Bd(K). As mentioned
before, Cd(K) is isomorphic to a vector space (Z2)

nd , where
nd is the number of d-simplex in K. In fact, Zd(K), Bd(K),
and Hd(K) are all vector space (Z2)

nd . The dimension of
the homology group Hd(K) is called Betti number, βd. For
convenient, we focus on 1-dimensional homology and denote
g = β1. A set of g cycles, representing a set of linear inde-
pendent classes, is called a homology cycle basis.

3 Problem
We formulate the localization problem. Given a simplicial
complex and a homology class [z0], the localization problem
is to find the shortest cycle within the class [z0], formally,

argmin
z∈[z0]

length(z). (3.1)

For convenience, we assume all edges have length 1.
length(z) is then the number of edges in a cycle z. We use

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1313



(a)

(b) (c)

Figure 2: A simplicial complex K (a) and its 1-dimensional (b) and
2-dimensional (c) boundary matrices.

advanced techniques called the homology annotation to con-
vert the localization problem into a shortest path problem.

3.1 Homology Annotations
Let g be the Betti number of dimension 1. A homology
annotation is a mapping from edges to binary vectors with
length g, A(e) ∈ {0, 1}g , so that for any two cycles, z1
and z2, their annotations are identical if and only if z1 and
z2 belong to the same homology class. The annotation of a
path or a cycle is equal to the sum of the edge annotations,
A(z) =

∑
e∈z A(e). The sum is over Z2 field. The edge an-

notations can be used to identify whether two cycles belong
to the same homology class. For example, Figure 3(a)(right)
shows an annotation of the complex in Figure 3(a)(left). An
edge with no numbers associated has annotation (0, 0). The
cycle (e1, e2, e5, e7) and the cycle (e1, e6, e7) belong to the
same homology class, as their annotations are both (0, 1).

The annotation can be computed as follows [Busaryev et
al., 2012]: Firstly, a spanning tree was created from the in-
put simplicial complex. Any of the rest of edges which do
not belong to that spanning tree creates a cycle by connecting
two nodes on the tree. Secondly, a homology cycle basis H
was calculated from those created cycles. Finally, the anno-
tation of any edge, e, which does not belong to that spanning
tree is calculated as a binary vector x, from a linear function
Hx = z, where H is the homology cycle basis, and z is a
cycle composed by a path on the spanning tree and the edge
e. Any edge belonging to the spanning tree has annotation
zero. Figure 3(a) shows the construction of an annotation.

With the annotation, we may reformulate the localization
problem as finding the shortest cycle with the same annota-
tion as z0:

argmin
A(z)=A(z0)

length(z). (3.2)

Intuitively, we are searching for the shortest cycle with a spe-
cific annotation. The annotation can be considered as an ad-
vanced constraint one has to satisfy.

(a)

(b)

Figure 3: (a) Using a spanning tree T = {e5, e6, e7, e8} (black
edges), we compute the annotation. All blue edges, e1, e2, e3, and
e4, have nonzero annotations. (b) A covering graph constructed
from this annotation [Busaryev et al., 2012].

3.2 Covering Graph

To compute the shortest cycle within a given homology class,
a covering graph withN2g many nodes, whereN is the num-
ber of vertices of the simplicial complex. The covering graph
is built on a computed annotation. See Figure 3(b) for an ex-
ample. In the covering graph, 2g subgraphs are created by
copying the spanning tree for 2g − 1 times. In this cover-
ing graph, vertices in each subgraph corresponds to a vertex
in the original complex associated with an annotation, e.g.,
u× (0, 0). Edges with non-zero annotation connects vertices
cross different subgraphs. An edge e connects two vertices
u×A1 and v ×A2 if and only if A1 +A(e) = A2.

3.3 Dijkstra’s Algorithm

Using the covering graph, we have an algorithm for the
localization problem: for a vertex v, find a shortest path
from v × (0, . . . , 0) at the subgraph with zero annotation to
v × A(z0) at the subgraph with annotation A(z0). This path
is essentially the shortest cycle with the desired annotation,
A(z0), that passes v. Repeating this procedure over all possi-
ble v’s will find the shortest cycle with annotation A(z0).

However, this straightforward algorithm is very expensive.
In particular, assume the number of vertices in the original
complex is N , the covering graph has size 2gN . Solving the
shortest path problem for N times will need to run the Dijk-
stra’s algorithm for N times over the covering graph, with a
total complexity of O(2gNg logN).

For the remainder of the paper, we solve this problem using
A∗ search with specially designed heuristic functions. With
good heuristic functions, we do not need to exhaust the whole
covering graph in order to find the shortest path as desired.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1314



4 Heuristic Search
In this section, we present an A∗ algorithm to solve the prob-
lem. In particular, we design heuristic functions based on the
underlying topology and geometry.

In [Wu et al., 2017], A* algorithm was employed to search
on the covering graph to find the optimal cycle. In this work,
we propose a novel heuristic function which is much tighter
approximation of the real cost compared with the previous
one. We first introduce the previous heuristic functions in-
troduced in [Wu et al., 2017]. Let Ã = A(z0) be the de-
sired annotation. We focus on the search problem where we
have a fixed starting point u = u′ × (0, . . . , 0) and end point
ω = u′× Ã in the covering graph, and need to find the short-
est path between them. Denote by p(u, ω) the path from node
u to node ω, and its cost is c(u, ω). Let A(p) represent the
annotation for path p. Denote the heuristic estimation from
ω to v as h(ω, v). Then the total estimated cost of the target
path is c(u, ω) + h(ω, v), which needs to be minimized.

Here h(ω, v) is the maximum of sub-heuristic functions
hi(ω, v), each of which is the estimated shortest distance
between ω and v. Such estimation should satisfy the con-
straint that the i-th bit of the annotation A(p(ω, v)) and
Ã − A(p(u, ω) are identical. Formally,

h(ω, v) = max {h1(ω, v), h2(ω, v), ..., hg(ω, v)} , (4.1)

hi(ω, v) = minα∈P (ω,v), Ai(α)=Ãi−Ai(p(u,ω))
c(α), (4.2)

where P (ω, v) is the set of paths between ω and v, Ai(α) is
the value of the i-th bit of annotation of path α, p(u, ω) is the
existing optimal path from u to ω.

4.1 The Proposed Heuristic Function
In order to design a tighter heuristic approximation for A* al-
gorithm, we propose to combine two or three annotation bits
in a single heuristic function. Given that each annotation bit
corresponds to a certain homology class, intuitively it should
be more efficient for A* search employing bit combination
when some homology classes/handles are tangled. The over-
all workflow of our method is as follows. We first analyze
the input simplicial complex to obtain an optimal homology
cycle basis, i.e., a homology cycle basis whole total length
is the shortest [Dey et al., 2010]. Then a hierarchical clus-
tering is applied to cycles in this optimal basis. Note that
each cycle in the basis corresponds to one annotation bit. By
finding a hierarchical clustering of cycles based on their ge-
ometrical proximity, we decide which annotation bits should
be grouped together. We use single linkage clustering tech-
nique to cluster the bases. We set the maximum number of bit
combination to 3. The reason is that more bit combinations
would lead to an increase of the expense for computing the
heuristic values.

The steps of our method are as follows. First, the opti-
mal cycle bases are calculated from the input complex (see
Figure 4). Second, we compute the spatial centers of these
basis cycles (see Figure 4(b)). Then a tree is created by it-
eratively merging two basis cycles whose centers are closest,

until only one cycle is left. This process builds clusters and
progressively creates a merging tree of cycles. Finally, the
constructed tree is iteratively cut from the top level to form
several sub-trees, until the number of leaves of all sub-trees
is less than or equal to 3. The number of leaves in each re-
maining subtree decides the number of bits combined in the
corresponding heuristic function.

After combining the single-bit heuristics based on the hier-
archical clustering strategy. The set of g bits of the annotation
vector is partitioned into m ≤ g disjoint sets, s1, · · · , sm, so
that {1, . . . , g} = s1 ∪ s2 ∪ · · · ∪ sm. The heuristic function
can be written as a maximum of m sub-heuristic functions,
each of which is constrained by a set of bits, si. Formally, we
have

h(ω, v) = max {hs1(ω, v), hs2(ω, v), ..., hsm(ω, v)}
hsi(ω, v) =

minα∈P (ω,v),Aj(α)=Ãj−Aj(p(u,ω)),∀j∈si c(α). (4.3)

When si only contains a single bit, hsi is a single-bit function
as in Equation (4.2). Others are combinations of k bits. In
experiments, we set k ≤ 3.

Those proposed heuristic functions are able to reduce the
searching time, due to theirs intrinsic tighter estimation. In
particular, for our problem, the time consumption of A*
search mainly consists of three parts, including the time for
creating the covering graph, calculating the heuristic value
and searching. While the new heuristic function improves
search efficiency (thus decreases search time), it is more time-
consuming to compute. In particular, to compute a single-bit
heuristic function, hi, as in Equation (4.2) is equivalent to
compute the shortest path in a graph of size 2N . The graph
is built similar to the covering graph. We use the original
graph and a copy of it, corresponding to A = (· · · , 0, · · · )
andA = (· · · , 1, · · · ), respectively. The i-th bit with 0 or 1 is
the bit of interest. To run Dijkstra’s algorithm on this 2N size
graph takes O(N logN) time. In the new proposed method,
a particular heuristic function hsi may involve k different bits
of interest. To compute it requires building a size 2kN graph,
consisting of 2k different copies of the original graph, with
different combinations of annotations on the k bits of inter-
est. The computation is then O(2kN(k log 2 + logN)). In
other words, our method is able to achieve a better trade-off
among different factors and therefore obtain better practical
performance. Using smaller k will save heuristic function
computation time. Using larger k will lead to tighter bound
and thus save search time. We will evaluate the cases when k
is upperbounded by 2 and 3, respectively.

The proof of admissibility is relatively straightforward; the
problem is essentially a shortest path problem over the cover-
ing graph with constraints on the allowable paths (specified in
terms of homology annotation). Each heuristic function is the
shortest path distance to the destination with only partial con-
straints (a few bits of the annotation) satisfied. Each heuristic
function hsi is naturally a lower-bound of the true shortest
path distance. The admissibility will then follow. Also, be-
cause the shortest paths over the covering graph are essen-
tially distances in an euclidean space, which automatically
satisfy the triangular inequality, the proof of consistency im-
mediately follows. Since the new heuristic combines several

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1315



bits for heuristic function, it is guaranteed to provide a tighter
bound than the previous one (which takes the maximum of
all single-bit heuristic functions). We will demonstrate the
improvement in experiments.

(a) (b)

Figure 4: Illustration of clustering the cycles. (a) The input synthetic
image with several cycles. (b) 4 cycles are identified and clustered
from input image (the green color represents the topological space).

5 Experimental Results and Discussion
We evaluate the performance of the A* search with pro-
posed heuristic functions. After calculating the persistence
diagram, we compare different searching strategies to locate
the optimal homology cycles on synthetic and real images,
including (1) the NaiveTopo [Gao et al., 2013], which pro-
duces non-optimal cycles; (2) OptTopoDij [Wu et al., 2017],
which employs Dijkstra’s algorithm on searching; (3) Opt-
TopoA* [Wu et al., 2017], which uses A* algorithm with less
tighter heuristic function; (4) the proposed methods, which
use tighter heuristic functions.

We measure the performance of the following metrics:
number of nodes expended (Nodes), and the total time and
memory consumption (Mem). In particular, for the total (To-
tal) time cost we further define the following fine-grained
metrics: the time on constructing the covering graph (Graph),
calculating the heuristic value (H Val) and searching (Search)
with A* algorithm, where those terms in the parenthesis, are
used from Table 1. Dij, A*, method (1), and method (2), rep-
resent the OptTopoDij, OptTopoA*, proposed 2-bit annota-
tion combination in heuristic function, and proposed 3-bit an-
notation combination in heuristic function, respectively. We
conduct the experiments on Intel i5-3427U CPU with 8GB
memory.

5.1 Synthetic Experiments
We use randomly generated 2D synthetic images of size
300 × 300 (see Figure 5). The synthetic images have dif-
ferent numbers of cycles, from 3 (easy) to 7 (hard task). Ex-
perimental results are shown in Table 1. It can be observed
that, the A* based searching methods, including OptTopoA*,
and the proposed method (1) and (2), expand less number of
nodes than OptTopoDij, and consume less memory for all the
synthetic images.

For creating the covering graph, the time consumption of
OptTopoDij is more than that of other methods, and is larger
when the cycle number is larger (e.g., on harder task). The
reason is that the size of covering graph created by Opt-
TopoDij is exponential to the Betti number, g. However, A*
based searching methods only create the covering graph with

Figure 5: Randomly generated synthetic 2-dimension images with
3,4,5,6,7 cycles.

vertices belonging to the edge of specific homology class, and
thus consume much less time.

OptTopoDij does not need to calculate heuristic values.
The proposed method (2) shows better performance on calcu-
lating the heuristic. The reason is method (2) uses the heuris-
tic function with 3-bit combination on annotation. The pro-
posed method (1) and method (2) are only effective when the
image has sufficiently complex topology. As a result, the ad-
vantage of time consumption of method (2) on calculating the
heuristic values, varies depending on the images. The search-
ing time consumption mainly depends on how many nodes
explored. A* based methods always have better performance,
especially method (2).

We can see the proposed heuristic function drastically im-
proved the performance. For the total time consumption and
node expended, the speedup of the proposed methods are 2.8,
1.8, 1.3, 1.5 and 1.6 for the 3-, 4-, 5-, 6- and 7-cycle images,
respectively. The number of nodes are reduced by 5.6, 1.2,
2.1, 1.2 and 1.7 times, respectively. Except for the 3-cycle
case, the improvement is consistent even for larger problems.
Those results are the average performance. If we only focus
on the most difficult handle (i.e., the one requiring the most
time to optimize), the improvement is even more significant.
For the 3-, 4-, 5-, 6- and 7-cycle images, the speedup on the
most difficulty handle are 3.4, 2.6, 1.6, 4.7 and 3.8, respec-
tively. The number of expanded nodes are reduced by 5.8,
1.3, 16.1, 7.6 and 2.4 times, respectively.

This selective way of combining bits is critical. We can
show that it is much more effective than randomly combining
bits. For synthetic input images, we evaluate the baseline of
randomly combining bits. For the 3-cycle synthetic image,
using the baseline of combining two random bits, the total
run time and number of expanded nodes are 73.51 seconds
and 47769 respectively. This baseline is much worse than
the proposed methods, and are even worse than the previous
A* heuristic method. For the 7-cycle synthetic image, the
baseline of combining two random bits has 280.52 seconds
total time and 141309 expanded notes. It is even worse than
the previous A* heuristic method. Randomly combining 3
bits only performs worse.

5.2 Real World Data
We also validate the proposed method on trabeculae segmen-
tation on cardiac CT images (30× 17× 22), as shown in Fig-
ure 6. A standard segmentation method (Figure 6(a)) fails
to segment the trabeculae. Although the NaiveTopo (Fig-
ure 6(b)) is able to identify the trabeculae, it produces results
with wiggling morphology due to the non-optimal homol-
ogy cycles obtained. In contrast, heuristic search algorithms
generate high quality segmentation (Figure 6(c)). Also, the
proposed methods achieves better performance in total time

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1316



consumption and node expanded among different A* based
searching methods, as shown in Table 1. Note that for the
real world image, Dijkstra’s algorithm cannot finish. Only
heuristic search methods can find optimal cycles. The ex-
perimental results indicate that the A* search with proposed
heuristic functions, consume less time and explore less nodes
than the existing methods, while identify the same topologi-
cal handles.

6 Conclusion
We propose a novel heuristic function for the computation
of optimal representative cycles of topological handles. The
method is validated on synthetic data and applied to real
world cardiac image data. Topology-inspired methods can
be useful in other applications where we need to reconstruct
fine-scale structures with large variation in geometry and ap-
pearance. Examples include but are not limited to neurons
[Uzunbas et al., 2016; Li et al., 2017] and vessels [Rudyanto
et al., 2014].

More advanced topological information such as persis-
tent homology can be used in training classifiers [Chen et
al., 2019] and improving clustering [Ni et al., 2017]. In
these contexts, optimal persistent homology cycles [Wu et al.,
2017] add geometric information to topological descriptors
and can improve analytical power.

Acknowledgments
We thank reviewers for their insightful comments and sug-
gestions. We thank Dr. David Mount for suggesting us to
look into this problem deeper. This work was partially sup-
ported by NSF IIS-1855759, CCF-1855760, CCF-1733843,
IIS-1829560, CCF-1733798 and CCF-1740761.

References
[Boykov et al., 2001] Yuri Boykov, Olga Veksler, and Ramin

Zabih. Fast approximate energy minimization via graph
cuts. IEEE Transactions on pattern analysis and machine
intelligence, 23(11):1222–1239, 2001.

(a) (b) (c)

Figure 6: Segmentation results by (a) region competition, (b) Naive-
Topo, (c) Result using heuristic search (OptTopoA* [Wu et al.,
2017] or the proposed methods). The bottom row illustrate the corre-
sponding segmentation error, which is rendered against ground truth.

3-cycle Dij A* Method 1 Method 2

Mem(GB) 0.77 0.67 0.68 0.70
Nodes 1.52e6 23979 23979 4320
Graph(S) 83.52 2.03 1.83 2.23
H Val(S) 0 64.07 43.24 21.04
Search(S) 10.66 2.42 2.48 0.89
Total(S) 94.29 69.31 48.33 25.03

4-cycle Dij A* Method 1 Method 2

Mem(GB) 1.59 0.89 0.90 0.93
Nodes 2.24e6 24162 24162 19400
Graph(S) 88.85 3.13 2.89 3.18
H Val(S) 0 74.48 55.76 38.12
Search(S) 21.24 2.13 2.13 1.62
Total(S) 110.32 80.74 61.77 44.07

5-cycle Dij A* Method 1 Method 2

Mem(GB) 1.63 0.61 0.62 0.64
Nodes 2.48e6 22888 22888 10932
Graph(S) 90.85 2.13 1.88 2.13
H Val(S) 0 86.99 73.92 66.74
Search(S) 30.83 4.38 4.40 4.00
Total(S) 121.95 94.21 80.90 73.73

6-cycle Dij A* Method 1 Method 2

Mem(GB) 15.44 0.95 0.95 0.97
Nodes 2.58e6 54792 54792 46915
Graph(S) 146.18 3.06 2.47 2.76
H Val(S) 0 152.63 127.23 100.66
Search(S) 57.57 2.59 2.63 1.81
Total(S) 204.60 159.17 133.18 106.15

7-cycle Dij A* Method 1 Method 2

Mem(GB) 23.79 1.45 1.46 1.47
Nodes 3.20e6 81002 81002 46315
Graph(S) 217.13 7.15 6.96 7.46
H Val(S) 0 218.84 173.41 131.73
Search(S) 89.26 9.54 9.51 5.76
Total(S) 306.65 237.65 191.89 147.16

3D Image Dij A* Method 1 Method 2

Mem(GB) N/A 20692 20694 20725
Nodes N/A 1521164 973784 908513
Graph(S) N/A 84.69 81.70 85.10
H Val(S) N/A 267.49 220.54 215.78
Search(S) N/A 92.25 56.81 53.55
Total(S) N/A 459.19 374.73 372.62

Table 1: Performance comparison between Dij, A* and the proposed
methods on a 2D synthetic image with 3, 4, 5, 6 and 7 cycles, as well
as real world 3D CT images.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1317



[Busaryev et al., 2012] Oleksiy Busaryev, Sergio Cabello,
Chao Chen, Tamal K Dey, and Yusu Wang. Annotating
simplices with a homology basis and its applications. In
Scandinavian workshop on algorithm theory, pages 189–
200. Springer, 2012.

[Chen and Freedman, 2010a] Chao Chen and Daniel Freed-
man. Hardness results for homology localization. In Pro-
ceedings of the twenty-first annual ACM-SIAM symposium
on Discrete algorithms, pages 1594–1604. Society for In-
dustrial and Applied Mathematics, 2010.

[Chen and Freedman, 2010b] Chao Chen and Daniel Freed-
man. Measuring and computing natural generators for
homology groups. Computational Geometry, 43(2):169–
181, 2010.

[Chen et al., 2019] Chao Chen, Xiuyan Ni, Qinxun Bai, and
Yusu Wang. A topological regularizer for classifiers via
persistent homology. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, pages 2573–
2582, 2019.

[Cootes et al., 1995] Timothy F Cootes, Christopher J Tay-
lor, David H Cooper, Jim Graham, et al. Active shape
models-their training and application. Computer vision
and image understanding, 61(1):38–59, 1995.

[Dey et al., 2010] Tamal K Dey, Jian Sun, and Yusu Wang.
Approximating loops in a shortest homology basis from
point data. In Proceedings of the twenty-sixth annual
symposium on Computational geometry, pages 166–175.
ACM, 2010.

[Edelsbrunner and Harer, 2010] H. Edelsbrunner and
J. Harer. Computational topology: an introduction. Amer
Mathematical Society, 2010.

[Edwin P. Ewing, 2016] Jr. Edwin P. Ewing. Gross pathol-
ogy of idiopathic cardiomyopathy — Wikipedia, the free
encyclopedia, 2016. [Online; accessed 09-December-
2016].

[Gao et al., 2013] Mingchen Gao, Chao Chen, Shaoting
Zhang, et al. Segmenting the papillary muscles and the tra-
beculae from high resolution cardiac ct through restoration
of topological handles. In International Conference on In-
formation Processing in Medical Imaging, pages 184–195.
Springer, 2013.

[Korf and Felner, 2002] Richard E Korf and Ariel Felner.
Disjoint pattern database heuristics. Artificial intelligence,
134(1-2):9–22, 2002.

[Li et al., 2017] Yanjie Li, Dingkang Wang, Giorgio A As-
coli, Partha Mitra, and Yusu Wang. Metrics for comparing
neuronal tree shapes based on persistent homology. PloS
one, 12(8):e0182184, 2017.

[Munkres, 1984] James R Munkres. Elements of algebraic
topology, volume 2. Addison-Wesley Menlo Park, 1984.

[Ni et al., 2017] Xiuyan Ni, Novi Quadrianto, Yusu Wang,
and Chao Chen. Composing tree graphical models with
persistent homology features for clustering mixed-type

data. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, pages 2622–2631.
JMLR. org, 2017.

[Rudyanto et al., 2014] Rina D Rudyanto, Sjoerd Kerkstra,
Eva M Van Rikxoort, et al. Comparing algorithms for
automated vessel segmentation in computed tomography
scans of the lung: the vessel12 study. Medical image anal-
ysis, 18(7):1217–1232, 2014.

[Uzunbas et al., 2016] Mustafa Gokhan Uzunbas, Chao
Chen, and Dimitris Metaxas. An efficient conditional ran-
dom field approach for automatic and interactive neuron
segmentation. Medical image analysis, 27:31–44, 2016.

[Wu et al., 2017] Pengxiang Wu, Chao Chen, Yusu Wang,
et al. Optimal topological cycles and their application in
cardiac trabeculae restoration. In International Conference
on Information Processing in Medical Imaging, pages 80–
92. Springer, 2017.

[Zhu et al., 1995] S.C. Zhu, T.S. Lee, and A.L. Yuille. Re-
gion competition: unifying snakes, region growing, en-
ergy/Bayes/MDL for multi-band image segmentation. In
ICCV, pages 416 –423, June 1995.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1318


