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Abstract
This paper is concerned with the class of non-
convex optimization problems with orthogonal-
ity constraints. We develop computationally effi-
cient relaxations that transform non-convex orthog-
onality constrained problems into polynomial-time
solvable surrogates. A novel penalization tech-
nique is used to enforce feasibility and derive cer-
tain conditions under which the constraints of the
original non-convex problem are guaranteed to be
satisfied. Moreover, we extend our approach to a
feasibility-preserving sequential scheme that solves
penalized relaxation to obtain near-globally opti-
mal points. Experimental results on synthetic and
real datasets demonstrate the effectiveness of the
proposed approach on two practical applications in
machine learning.

1 Introduction
Consider the following optimization problem

minimize
P∈Rn×m

f̄0(P ) + g0(P ) (1a)

subject to f̄k(P ) ≤ 0, k ∈ {1, . . . , p}, (1b)

P>P = Im, (1c)

where g0 : Rn×m → R is a convex piecewise linear func-
tion and f̄k : Rn×m→ R is an arbitrary quadratic function
of the form f̄k(P ), 〈Mk,PP

>〉+〈Nk,P 〉+qk, for every
k ∈ {0, 1, . . . , p}, and {Mk ∈ Sn}pk=0, {Nk ∈ Rn×m}pk=0
and {qk ∈ R}pk=0 are given. With no loss of general-
ity, we assume that q0 = 0 and write g0 in the form of
g0(P ) = ‖α(P ) + b‖1, where b ∈ Rw is a given vector,
α : Rn×m → Rw is a linear matrix function defined as
α(Y ) ,

∑w
i=1〈Ai,Y 〉ei, the matrices {Ai ∈ Rn×m}wi=1

are given, and {ei ∈ Rw}wi=1 represent the standard basis
for Rw. The formulation (1a) – (1c) encompasses a broad
class of computationally-hard optimization problems with
a variety of practical applications in discriminative dimen-
sionality reduction [Bian and Tao, 2011], graph matching
[Jiang et al., 2017], feature selection [Tang and Liu, 2012;
Yang et al., 2011], compressed modes [Ozoliņš et al., 2013;
Chen et al., 2016], among other areas of machine learning.

The majority of methods in the literature are focused on
a special case of (1a) – (1c) that involves the minimization
of a convex and smooth objective function over non-convex
sets of the form Sn,m , {P ∈ Rn×m | P>P = Im},
known as the Stiefel manifolds. There are various itera-
tive local search algorithms which preserve the structure of
Stiefel manifolds via geodesics steps [Edelman et al., 1998;
Abrudan et al., 2008] or retractions [Absil et al., 2009;
Wen and Yin, 2013]. Although these algorithms exhibit
satisfactory performance in dealing with orthogonality con-
straints, they mostly restrict the objective function to the class
of smooth functions and are not compatible with additional
constraints [Gao et al., 2018]. To overcome these limitations,
general algorithms are proposed that work with either smooth
or non-smooth objective functions [Bian and Tao, 2011;
Chen et al., 2016]. The paper [Bian and Tao, 2011] uses
a family of semidefinite programming (SDP) problems to
generate a converging sequence of points Stiefel manifolds.
The paper [Chen et al., 2016] introduces an inner-outer it-
eration scheme for solving `1-regularized optimization prob-
lems with orthogonality constraints based on the augmented
Lagrangian method from [Fortin and Glowinski, 2000] and
the proximal alternating minimization technique from [At-
touch et al., 2013]. Moreover, a series of splitting techniques
are proposed in [Ozoliņš et al., 2013; Lai and Osher, 2014;
Kovnatsky et al., 2016] that can efficiently handle non-
smooth objective functions. They partition the problem into
multiple sub-problems with analytical solutions and employ
Bregman iterations [Yin et al., 2008] or its variants [Boyd
et al., 2011] to obtain optimal solutions for orthogonality-
constrained problems. In the more recent paper [Zhu et al.,
2017], an extended proximal alternating linearized minimiza-
tion method is introduced to minimize convex functions sub-
ject to linear constraints and generalized orthogonality con-
straints.

The success of related sequential frameworks and pe-
nalized relaxations for non-convex optimization is demon-
strated in [Ibaraki and Tomizuka, 2001; Kheirandishfard et
al., 2018b; Kheirandishfard et al., 2018a]. In [Ibaraki and
Tomizuka, 2001], a sequential framework is introduced for
solving bilinear matrix inequalities without theoretical guar-
antees. In [Kheirandishfard et al., 2018b; Kheirandishfard
et al., 2018a], this approach is further investigated and the-
oretical results are offered through the notion of general-
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ized Mangasarian-Fromovitz regularity condition. Another
sequential SDP-based algorithm for pattern recognition is in-
troduced in [Bian and Tao, 2011] that is not feasibility pre-
serving.

1.1 Contributions

Differentiated from the existing literature, we propose a
computational approach with theoretical analysis for solving
problems of the form (1a) – (1c), that guarantees the recov-
ery of feasible points. The proposed approach generalizes
the existing literature by including additional quadratic in-
equality constraints. The core of our approach is based on a
novel and computationally efficient convex relaxation which
transforms the non-convex problem (1a) – (1c) into a convex
quadratically-constrained quadratic program (QCQP). To en-
sure that the solution of the relaxed problem is feasible for
(1a) – (1c), we incorporate a penalty term into the objective
function and derive certain conditions that guarantee the re-
covery of feasible points. Moreover, under certain conditions,
we prove that by starting from any arbitrary initial point on
a Stiefel manifold (not necessarily feasible), a sequence of
penalized relaxations can be solved to find a feasible and
near-optimal point. Unlike the existing algorithms, if mild
assumptions are satisfied, the proposed sequential scheme is
feasibility-preserving and improves the objective monotoni-
cally at every step. To corroborate the effectiveness of our
method, we perform experiments on two practical applica-
tions with both synthetic and real datasets. The experimental
results demonstrate that the proposed approach exhibits com-
parable results for both applications.

1.2 Notation

Throughout this paper, the scalars, vectors, and matrices are
shown by italic, bold lower-case and bold upper-case letters,
respectively. The symbols Rn, Rn×m, Sn, and S+

n denote
the set of real n-dimensional vectors, real n × m matrices,
real symmetric n × n matrices, and real positive semidefi-
nite matrices, respectively. The symbols tr{.} and (.)> are
indicative of the trace and transpose operators, respectively.
Given a vector a and a matrix A, the symbols ai and Aij ,
respectively, refer to the ith element of a and the (i, j)th

element of A. The notation A � 0 states that A is sym-
metric positive semidefinite. Given matrices A and B of the
same size, 〈A,B〉 , tr{A>B} and A ◦ B, respectively,
denote the Frobenius inner-product and the Hadamard prod-
uct of A and B. The operator diag(.) gets a vector and
forms a diagonal matrix with its input on the diagonal el-
ements. The notation ‖.‖p refers to either matrix norm or
vector norm depending on the context, ‖.‖F shows the Frobe-
nius norm, and |.| indicates the absolute value or the cardi-
nality of a set depending on the context. The symbol Im de-
notes the identity matrix of size m and the letter K is used
as a shorthand for the set {1, . . . , p}. The symbol Sn,m as
the set of real n × m matrices with orthonormal columns,
i.e., Sn,m , {P ∈ Rn×m | P>P = Im}. The pro-
jection operator projSn,m

: Rn×m → Sn,m is defined as
projSn,m

H = arg min{‖P −H‖F | P ∈ Sn,m}.

2 Problem Formulation
Optimization problems of the form (1a) – (1c) can be compu-
tationally challenging due to the non-convexities of the ob-
jective function and constraints. In order to derive convex re-
laxations, we first lift the problem into a higher dimensional
space by introducing an auxiliary variable X ∈ Sn, account-
ing for the quadratic term PP>. For every k ∈ {0} ∪ K,
define fk : Rn×m × Sn → R as:

fk(P ,X) , 〈Mk,X〉+ 〈Nk,P 〉+ qk. (2)

Using the auxiliary variable X , the optimization problem
(1a) – (1c) can be equivalently reformulated as

minimize
P∈Rn×m

X∈Sn

f0(P ,X) + g0(P ) (3a)

subject to fk(P ,X) ≤ 0 k ∈ K, (3b)

P>P = Im, (3c)

P P>= X , (3d)

with a convex objective function and convex linear inequal-
ity constraints (3b). The above formulation is still not convex
due to the presence of the constraints (3c) and (3d) that cap-
ture all non-convexities of the problem.

2.1 Convex Relaxation
In order to convexify the lifted problem (3a) – (3d), we relax
the constraints (3c) and (3d) to

Im−P>P ∈C ∧ X−PP> ∈D ∧ tr{X}=m, (4)

where C ⊆ Sm and D ⊆ Sn are convex cones to be defined.
In this work, we consider the common-practice semidefinite
programming (SDP) relaxation and introduce a novel convex
relaxation that transforms the problem (3a) – (3d) into a con-
vex quadratically-constrained quadratic program (QCQP).

Semidefinite Programming Relaxation
This relaxation provides a powerful method for tackling non-
convex polynomial optimization problems [Boyd and Van-
denberghe, 2004]. The SDP relaxation of the problem (3a) –
(3d) can be derived by having C = S+

m and D = S+
n . Despite

the effectiveness of this relaxation in providing high-quality
solutions, its applicability is limited to the problems of mod-
erate size due to the computational cost of imposing high-
dimensional conic constraints.

Convex Quadratic Relaxation
We propose a computationally efficient convex relaxation as
an alternative to the SDP relaxation. In order to formulate the
proposed relaxation for the problem (3a) – (3d), we need to
have C = Vm and D = Vn, where for every positive integer
o, set Vo ⊆ So is defined as follows

Vo,
{
H ∈ So

∣∣Hii+Hjj≥2|Hij |, ∀i,j∈{1, . . . , o}
}
.

Remark 1. It can be easily observed that if (C,D)=(Vm,Vn),
the constraints (3c) and (3d) boil down to convex quadratic
inequalities. Hence, the proposed relaxation reduces (3a) –
(3d) to a convex QCQP.
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Notice that either of the aforementioned relaxations may
fail to produce a feasible point for (1a) – (1c), because in gen-
eral, an optimal solution to a convex relaxation does not nec-
essarily satisfy the constraints (3c) and (3d). In what follows,
we propose a penalization technique that guarantees the re-
covery of feasible points for (1a) – (1c) under certain condi-
tions.

3 Penalization
In this section, we show that by including a penalty term
in the objective, one can obtain feasible points for the non-
convex problem (3a) – (3d). Given an arbitrary initial point
P̌ ∈ Sn,m, that is not necessarily feasible, we transform the
problem (3a) – (3d) into the following convex relaxation with
revised objective function:

minimize
P∈Rn×m

X∈Sn

f0(P ,X) + g0(P )− µ〈P , P̌ 〉 (5a)

subject to fk(P ,X) ≤ 0 k ∈ K, (5b)

Im − P>P ∈ C, (5c)

X − P P>∈D, (5d)
tr{X} = m, (5e)

where (C,D) ∈ {(S+m, S+n ), (Vm,Vn)}, and the fixed param-
eter µ > 0 sets a trade-off between the original objective
function and the linear penalty term 〈P , P̌ 〉.

Remark 2. If an optimal solution (
∗
P ,

∗
X) of the problem

(5a) – (5e) satisfies the constraints (3c) and (3d), then
∗
P is

feasible for (1a) – (1c).
In the remainder of this section, certain conditions are in-

troduced to guarantee that the penalized relaxation (5a) – (5e)
produces feasible points for the non-convex problem (3a) –
(3d).

Definition 1. Define feasibility distance dF :Rn×m →R as

dF (P ) , inf{‖C − P ‖F | C∈F}, (6)

where F denotes the feasible set of the problem (1a) – (1c).

Definition 2. Define the singularity function s :Sn,m→R as:

s(P ) , sup
D∈ZP

{
min
k∈K

{
−〈2MkP+Nk,D〉

}}
, (7)

where ZP , {D ∈ Rn×m | P>D = 0 ∧ ‖D‖F ≤ 1}. A
point P ∈ Sn,m is said to satisfy the Mangasarian-Fromovitz
constraint qualification (MFCQ) condition if it is feasible for
the problem (1a) – (1c) and s(P ) > 0.

Theorem 1. Define the constants

β , max
P∈Sm,n

{∣∣g0(P )+〈M0,PP
>〉+〈N0,P 〉

∣∣}, (8a)

ψ , 2‖M0‖F+‖N0‖F+
w∑
i=1

‖Ai‖F, (8b)

κ , 4 max
k∈K
{‖Mk‖F}+ max

k∈K
{‖Nk‖F} (8c)

and let P̌ ∈F be a feasible point for the problem (1a) – (1c)
that satisfies the MFCQ condition. If

µ > max{β−1ψ2, β(26κ)2s(P̌ )−2, 144β}, (9)

then the penalized relaxation (5a) – (5e) has a unique optimal
solution (

∗
P ,

∗
X), that satisfies (3c) and (3d). Moreover,

∗
P is

feasible for (1a) – (1c) and f̄0(
∗
P )+g0(

∗
P ) ≤ f̄0(P̌ )+g0(P̌ ).

Proof. See Section 5 for the proof.

Remark 3. For every point P ∈ Sm,n, it is straightforward
to calculate s(P ) by solving the following convex problem:

maximize
t∈R,D∈ZP

t

subject to t ≤ −〈2MkP +Nk,D〉, k ∈ K.

Notice that β can be simply lower- and upper-bounded by
any arbitrary member of the set Sm,n and the constant Ψ, re-
spectively. This certifies the existence of a bounded µ that
satisfies (9). In practice, there is no need to compute s(P )
for fine-tuning parameter µ, since (9) offers a conservative
sufficient condition and there mostly exist smaller µ that sat-
isfies Theorem 1. In Section 4, we assess the sensitivity of
our approach with respect to different choices of µ.

Theorem 1 is concerned with the case where the initial
point P̌ is feasible for the original problem (1a) – (1c). How-
ever, finding a feasible starting point can be difficult due to the
presence of the non-convex quadratic inequality constraints
(1b). The next theorem states that even if P̌ is not feasible,
the proposed penalized relaxation can still result in a feasible
point for the non-convex problem (1a) – (1c).

Theorem 2. Consider an initial P̌ ∈ Sn,m that satisfies

dF (P̌ ) < 1, (11a)

s(P̌ ) > κ dF(P̌ )
[
1 + (1− dF (P̌ ))−1

]
, (11b)

where κ is defined in (8c). If µ is sufficiently large, then the
penalized convex relaxation (5a) – (5e) has a unique optimal
solution (

∗
P ,

∗
X) that satisfies (3c) and (3d). Moreover,

∗
P is

feasible for (1a) – (1c).

Proof. See Section 5 for the proof.

3.1 Sequential Penalized Relaxation
Motivated by Theorems 1 and 2, this section presents a se-
quential approach that solves a sequence of penalized relax-
ations of the form (5a) – (5e) to infer high-quality feasible
points for the non-convex problem (1a) – (1c). The proposed
scheme starts from an initial point P̌ on the Stiefel mani-
fold. In each round, the solution of the penalized relaxation
(5a) – (5e) is projected onto the Stiefel manifold and then the
projected point is employed as an initialization for the next
round. Once a feasible point for (1a) – (1c) is obtained, ac-
cording to Theorem 1, the proposed scheme preserves fea-
sibility and generates a sequence of points whose objective
values monotonically improves. The details of the sequential
scheme are delineated in Algorithm 1.
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Figure 1: Two dimensional data representation on a training set from the synthetic data set. Left: MMDA [Bian and Tao, 2011], middle: SPR-
S, right: SPR-Q. The results show that the SPR-S and SPR-Q algorithms have provided more discriminative 2D representations compared to
the MMDA method.

Algorithm 1 Sequential Penalized Relaxation

Input: P̌ ∈Sn,m, a fixed parameter µ > 0, and k = 0,
1: repeat
2: k ← k + 1
3: P k ← solve (5a) – (5e) with the penalty µ〈P , P̌ 〉
4: P̌ ← projSn,m

P k

5: until stopping criteria is met
Output: P k

4 Experimental Results
In this section, we conduct numerical experiments on real and
synthetic datasets to verify the effectiveness of the proposed
sequential approach, termed SPR, in solving non-convex op-
timization problems with orthogonality constraints. In Sec-
tions 4.1 and 4.2, we apply SPR on two practical problems
involving orthogonality constraints. We use SPR-S and SPR-
Q to refer to the combination of Algorithm 1 with the SDP
relaxation and the proposed convex quadratic relaxation, re-
spectively. To solve the penalized relaxations in each round
of the algorithm, we use MOSEK version 7.0 [Mosek, 2015].
Through the experiments, we leverage the inherent sparsity
patterns of the problems to reduce the computational cost
of solving large-scale semidefinite programs. This enables
us to break down large-scale conic constraints into a set of
smaller ones [Nakata et al., 2003]. Since finding a feasible
point for (1a) – (1c) can be computationally demanding, we
initialize Algorithm 1 with an arbitrary starting point on the
Stiefel manifold and aim to improve the quality of the point.
If the algorithm can recover a feasible point for (1a) – (1c),
according to Theorem 1, it can generate a sequence of feasi-
ble points whose objective values monotonically improve. To
measure the level of infeasibility, define tr{X̄ − P̄ P̄>} as
the feasibility violation of an arbitrary feasible point (P̄ , X̄)
of the problem (5a) – (5e). We terminate the sequential algo-
rithm once the feasibility violation and objective value im-
provement are less than 10-5 or if the round number exceeds
100. Notice that the Nesterov acceleration technique can be
employed to improve the convergence behaviour of the SPR
algorithm. However, in this case, the algorithm may fail to
preserve the monotonically decreasing order of the objective
values even if the initial point is feasible.

We apply the sequential algorithm on two fundamental ma-
chine learning problems of discriminative dimensionality re-
duction and graph clustering. Notice that each of these prob-
lems are well-studied in the literature and several approaches
have been developed to efficiently target these applications.
Therefore, it is not the intent of this work to compete with
these state-of-the-art problem-specific approaches, but rather
to demonstrate the potential of Algorithm 1 in solving the
problems of form (1a) – (1c) that widely arise in different ar-
eas of machine learning.

4.1 Experiment I: Discriminative Dimensionality
Reduction

Given a collection of high-dimensional data points from c dif-
ferent classes, the problem of discriminative dimensionality
reduction aims to learn a low-dimensional subspace on which
the projection of different classes are well-separated. To this
end, [Bian and Tao, 2011] proposed a max-min distance anal-
ysis (MMDA) that maximizes the minimum distance between
all class pairs. This problem can be cast as a non-convex and
non-smooth optimization problem of form

maximize
P∈Rn×m

min
1≤i<j≤c

〈Aij ,PP>〉 (12a)

subject to P>P = Im, (12b)

where eachAij ∈ Sn is a given weighted distance matrix be-
tween the ith and jth classes. In this experiment, we evaluate
the performance of the SPR algorithm for solving the prob-
lems of form (12a) – (12b). Closely related to our work, [Bian
and Tao, 2011] uses a sequence of local SDP relaxations to
find the solution of problem (12a) – (12b). We benchmark the
SPR method against the MMDA on both real and synthetic
datasets. To ensure the comparison is fair, both methods use
the same initial point and the same distance matrices Aij

which are computed based on [Bian and Tao, 2011]. Other
parameter settings of the MMDA are set to their default val-
ues. Following [Bian and Tao, 2011], we conduct 100 inde-
pendent experiments on 10-dimensional synthetic data from
seven classes. For each class i, a mean vector ηi ∈ R10 is
sampled from 10-dimensional zero mean Gaussian distribu-
tion with co-variance matrix 2I10 and then a pair of training
and testing sets, each with 100 members, is generated based
on the Gaussian distribution N (ηi, I10).
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Figure 2: Performance of SPR comparing to MMDA [Bian and Tao,
2011] on synthetic dataset (left), YALE dataset (right) [Georghiades
et al., 2001]. Best viewed in color.

To compare the classification error rate, we project each
test set into subspaces with varying dimensions, learned on its
corresponding training set. The projected instances are then
classified using the nearest mean classifier. Figure 2 (left)
shows the average classification error rate with respect to the
reduced dimensionality on the synthetic datasets. To run the
experiment on the synthetic datasets, we set µ to 100 and 200
for SPR-S and SPR-Q, respectively. Moreover, we conduct
this experiment on the YALE dataset consisting of 165 frontal
face images of 15 individuals under different illumination and
lightening conditions [Belhumeur et al., 1997]. Each image is
of size 32×32 pixels. The results of this experiment are illus-
trated in Figure 2 (right). According to Figure 2, SPR-S and
SPR-Q perform on par or better than the MMDA algorithm on
both real and synthetic datasets in the problem of discrimina-
tive dimensionality reduction. In the experiment on the YALE
dataset, we set µ to 5000 and 10000 for SPR-S and SPR-Q,
respectively. To qualitatively compare the methods, Figure 1
visualizes the results of projecting a randomly chosen train-
ing set from the synthetic dataset on the 2D space. Observe
that comparing to the MMDA method, the SPR-based algo-
rithms learn more discriminative 2D representations that are
suitable for classification tasks.

To assess the sensitivity of the SPR algorithm with respect
to the parameter µ, we perform the discriminative dimension-
ality reduction experiment with m = 2 on YALE dataset and
report the results in Figure 3 for various choices of µ. Ob-
serve that the final solution obtained by the proposed algo-
rithm is not very sensitive to the choice of µ. According to
the figure, the SPR-S requires smaller values of µ to recover
feasible points, e.g. µ = 5000, while SPR-Q fails to find fea-
sible points for such choice of µ. Moreover, it can be seen
that if µ exceeds a certain threshold, both SPR-S and SPR-Q
provide the same sequence of feasible points.

4.2 Experiment II: Graph Clustering

Given a weighted graph G with n vertices, the graph cluster-
ing problem aims to partition G into a set of sub-graphs such
that the vertices within each one are more densely connected
to each other than those belonging to different sub-graphs. In-
spired by the well-known spectral clustering technique [Ng et
al., 2002], this experiment incorporates a set of non-negative
constraints to formulate the graph clustering problem as the
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Figure 3: Sensitivity analysis of SPR-S (left) and SPR-Q (right) with
respect to different choices of parameter µ for the discriminative
dimensionality reduction problem, where m=2. This experiment is
performed on the YALE dataset. Best viewed in color.

following optimization [Han et al., 2017]:

minimize
P∈Rn×m

〈L,PP>〉 (13a)

subject to P>P = Im, (13b)
P ≥ 0, (13c)

where L denotes the Laplacian matrix of the weighted graph
G and ≥ is the element-wise inequality operator. Compar-
ing to the spectral clustering, formulation (13a) – (13c) offers
a more interpretable clustering framework which requires no
further post-processing steps to identify the cluster members.
Given

∗
P , the optimal solution of the above problem, each

vertex i is assigned to a cluster with label argmaxj

∗
Pij . [Han

et al., 2017] proposed a fast and scalable heuristic, denoted
by ONGR, to solve large-scale instances of the form (13a) –
(13c). Due to the fact that this problem is a special case of
(1a) – (1c), we apply the SPR algorithm to find the solution
of (13a) – (13c) and use the same procedure as [Han et al.,
2017] to create the Laplacian matrix L. To make a fair com-
parison between the ONGR and SPR, we use the same ini-
tialization for both methods. Table 1 reports the clustering
performance of the SPR against [Han et al., 2017] on well-
known datasets from the UCI machine learning repository
[Dua and Graff, 2017] and shape sets [Gionis et al., 2007;
Jain and Law, 2005]. For each dataset, n, Dim, andm refer to
the number of sample points, dimension of each point, and the
number of classes, respectively. The scores for each method
is computed by averaging over 30 independent runs for each
dataset. As the results indicate, SPR-S and SPR-Q exhibit
better performance compared to [Han et al., 2017] on most of
the datasets. Through this experiment, we set µ= 1000 in the
SPR algorithm and use the default parameter settings for the
ONGR algorithm.

5 Proofs
This section presents the proof of Theorems 1 and 2. Be-
fore proceeding with the proofs, we provide some prerequi-
site lemmas. We defer the proofs of the lemmas to the full
version of the paper which would be posted on the authors
webpage.

Using the well-known epigraph technique [Boyd and Van-
denberghe, 2004], the non-smooth term g0(P ) in (3a) can
be removed by adding a pair of linear constraints and incor-
porating an additional term into the objective function. This
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Dataset n Dim. m ONGR SPR-S SPR-Q

Iris 150 4 3 79.84 86.71 81.23
Spiral 312 2 3 87.44 95.76 94.15
Jain 373 2 2 88.42 92.33 90.26
Compound 399 2 6 74.57 74.25 76.48
R15 600 2 15 86.07 85.36 86.94
Aggregation 788 2 7 87.84 86.39 84.66

Table 1: Clustering performance (%) on the UCI datasets [Dua and
Graff, 2017] and shape sets [Gionis et al., 2007; Chang and Yeung,
2008; Jain and Law, 2005].

reformulation of (3a) – (3d) leads to the following penalized
non-convex problem:

minimize
P∈Rn×m

t∈Rw

1>t+〈M0,PP
>〉+〈N0,P 〉−µ〈P̌ ,P 〉 (14a)

subject to γ̄ :+α(P ) + b ≤ t, (14b)

¯
γ :−α(P )− b ≤ t, (14c)

λ :〈Mk,PP
>〉+〈Nk,P 〉+qk≤0, k∈K, (14d)

Ω :P>P = Im, (14e)

with γ̄ ∈ Rw,
¯
γ ∈ Rw, λ ∈ R|K|, and Ω ∈ Sm as the dual

variables associated with the constraints (14b), (14c), (14d),
and (14e), respectively. Observe that the problems (14a) –
(14e) and (1a) – (1c) are equivalent, if µ=0. In what follows,
we show that under certain conditions, the optimal solution of
(14a) – (14e) can be obtained in polynomial time via convex
relaxation.

The next lemma guarantees the existence of Lagrange
multipliers corresponding optimal solutions of the problem
(14a) – (14e).

Lemma 1. Consider an arbitrary P̌ ∈ Sn,m that satisfies

s(P̌ )− κ dF (P̌ ) > 0. (15)

If the following inequality holds true,

µ > 4β[κ−1s(P̌ )− dF (P̌ )]−2, (16)

then for every primal optimal pair (
∗
P ,
∗
t) of (14a) – (14e),

there exists Lagrange multipliers (
∗
γ̄,
∗

¯
γ,
∗
λ,
∗
Ω) ∈ Rw×Rw×

R|K|× Sm that satisfy the following Karush–Kuhn–Tucker
(KKT) conditions

∇PL(
∗
P ,
∗
t,
∗
γ̄,
∗

¯
γ,
∗
λ,
∗
Ω) = 0, (17a)

1 +
∗
γ̄ +

∗

¯
γ = 0, (17b)

∗
γ̄ ◦ (+α(

∗
P ) + b−

∗
t) = 0, (17c)

∗

¯
γ ◦ (−α(

∗
P )− b−

∗
t) = 0, (17d)

∗
λk(〈Mk,

∗
P
∗
P>〉+ 〈Nk,

∗
P 〉+ qk) = 0 k ∈ K, (17e)

∗
γ̄ ≤ 0,

∗

¯
γ ≤ 0,

∗
λ ≤ 0, (17f)

where L(P , t, γ̄,
¯
γ,λ,Ω) represents the Lagrangian func-

tion of (14a) – (14e), defined as

L(P, t,γ̄,
¯
γ,λ,Ω),1>t+〈M0,PP

>〉+〈N0,P 〉−µ〈P̌ ,P 〉
− γ̄>(α(P )+b−t) +

¯
γ>(α(P )+b+t)

−
∑
k∈K

λk(〈Mk,PP
>〉+〈Nk,P 〉+qk)−〈Ω,P>P−Im〉.

and, β and κ are defined in (8a) and (8c).

The next lemma provides an upper bound on the Lagrange
multipliers of the problem (14a) – (14e), that will be used to
show that this problem can be relaxed to (5a) – (5e) with no
effect on the solution.

Lemma 2. Consider an arbitrary P̌ ∈ Sn,m that satisfies
(15) and let µ satisfy (16). For every solution (

∗
P ,
∗
t) of (14a) –

(14e), there exist Lagrange multipliers (
∗
γ̄,
∗

¯
γ,
∗
λ,
∗
Ω) ∈ Rw×

Rw×Rp×Sm that satisfy the KKT conditions (17a) – (17f) as
well as the inequalities:

−1>
∗
λ

µ
≤ dF(P̌ ) + µ−1ψ+2

√
βµ−1

s(P̌ )− κ(dF (P̌ ) + 2
√
βµ−1)

(18a)

∥∥ 2

µ

∗
Ω+Im

∥∥
F
≤κ2

(
− 1>

∗
λ

µ

)
+dF (P̌ )+µ−1ψ+2

√
βµ−1

(18b)

where constant κ2 is given by

κ2 , 2 max
k∈K
{‖Mk‖F}+ max

k∈K
{‖Nk‖F}, (19)

and β, ψ and κ are defined in (8a) – (8c).

Using Lemma 2, the next lemma offers conditions to
guarantee that penalized relaxations give feasible points for
(14a) – (14e).

Lemma 3. Consider an initial point P̌ ∈ Sn,m and µ > 0.
Let (

∗
P ,
∗
t) be a primal optimal solution of (14a) – (14e) with

the corresponding Lagrange multipliers (
∗
γ̄,
∗

¯
γ,
∗
λ,
∗
Ω) that sat-

isfy the KKT conditions (17a) – (17e). Define

ε ,
1

4

(
1− dF (P̌ )− κ dF(P̌ )

s(P̌ )− κ dF (P̌ )

)
. (20)

If the following inequalities hold true

2µ−1‖M0‖ ≤ ε, (21a)

−1>
∗
λ

µ
≤ dF(P̌ )

s(P̌ )− κ dF (P̌ )
+

ε

2κ2
, (21b)

∥∥ 2

µ

∗
Ω + Im

∥∥
F
≤ κ2

(
− 1>

∗
λ

µ

)
+ dF(P̌ ) + ε, (21c)

then the pair (
∗
P ,

∗
P
∗
P>) is the unique primal solution of the

penalized convex relaxation (5a) – (5d), where κ and κ2 are
defined in (8c) and (19), respectively.
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Proof of Theorem 1. Due to the main assumption, it is
straightforward to verify the following three inequalities:

µ−1ψ <
√
βµ−1, (22a)

2κ
√
βµ−1 < 13−1s(P̌ ), (22b)√
βµ−1 < 12−1. (22c)

Consider an arbitrary optimal solution (
∗
P ,
∗
t) of (14a) – (14e).

The point
∗
P is consequently feasible for (1a) – (1c). There-

fore dF (P̌ ) = 0 and the inequalities (15) and (16) are satis-
fied. According to Lemma 2, there exist Lagrange multipliers
(
∗
γ̄,
∗

¯
γ,
∗
λ,
∗
Ω) ∈ Rw×Rw×Rp×Sm corresponding to (

∗
P ,
∗
t)

that satisfy the KKT conditions (17a) – (17f) as well as the
inequalities (18a) and (18b). Based on Lemma 3 and since
dF (P̌ ) = 0, in order to prove the theorem, it suffices to show
that:

2µ−1‖M0‖ ≤ 4−1 (23a)

−1>
∗
λ

µ
≤ 4−1

2κ2
(23b)

∥∥ 2

µ

∗
Ω + Im

∥∥
F
≤ κ2

(
− 1>

∗
λ

µ

)
+ 4−1. (23c)

• (23a) is the direct consequence of (22a):

2µ−1‖M0‖ ≤ µ−1ψ ≤
√
βµ−1 ≤ 12−1<4−1. (24)

• (23b) is the direct consequence of (18a), (22b), and
(22c):

−1>
∗
λ

µ
≤ µ−1ψ+2

√
βµ−1

s(P̌ )−2κ
√
βµ−1

≤
√
βµ−1+2

√
βµ−1

s(P̌ )−2κ
√
βµ−1

(25a)

≤
√
βµ−1 + 2

√
βµ−1

s(P̌ )− 13−1s(P̌ )
=

3
√
βµ−1

(1− 13−1)s(P̌ )
(25b)

≤ 3× 13−1(2κ)−1s(P̌ )

(1− 13−1)s(P̌ )
=

4−1

2κ
<

4−1

2κ2
. (25c)

• (23c) can be concluded from (18b), (22a), and (22c):∥∥ 2

µ

∗
Ω+Im

∥∥
F
≤κ2

(
− 1>

∗
λ

µ

)
+µ−1ψ+2

√
βµ−1 (26a)

≤κ2
(
− 1>

∗
λ

µ

)
+3
√
βµ−1 (26b)

≤κ2
(
− 1>

∗
λ

µ

)
+4−1. (26c)

Hence, according to Lemma 3, the point (
∗
P ,

∗
P
∗
P>) is the

unique optimal solution for the penalized relaxation (5a) –
(5e), for which the relaxed constraints (3c) and (3d) are sat-
isfied. Finally, due to the feasibility of pair (P̌ , P̌ P̌>), we
have:

f̄0(P̌)+g0(P̌)−µm=f0(P̌,P̌ P̌>)+g0(P̌)−µ〈P̌,P̌ 〉 (27a)

≥f0(
∗
P,

∗
P
∗
P>)+g0(

∗
P)−µ〈

∗
P,P̌ 〉 (27b)

≥ f̄0(P̌ )+g0(P̌ )−µm (27c)

and the proof is completed.

Proof of Theorem 2. Consider an arbitrary optimal solution
(
∗
P ,
∗
t) of (14a) – (14e). Due to the main assumption, (15) is

satisfied and if µ is large, then (16) is satisfied as well. More-
over, according to Lemma 2, there exist Lagrange multipliers
(
∗
γ̄,
∗

¯
γ,
∗
λ,
∗
Ω) ∈ Rw×Rw×Rp×Sm corresponding to (

∗
P ,
∗
t)

that satisfy the KKT conditions (17a) – (17f) as well as the in-
equalities (18a) and (18b). According to Lemma 3, the proof
follows directly from the fact that

ε =
1

4

(
1− dF (P̌ )− κ dF(P̌ )

s(P̌ )− κ dF (P̌ )

)
> 0, (28)

and therefore, if µ is sufficiently large, the inequalities (18a)
and (18b) conclude (21a) – (21c). As a result, if µ is large,
(
∗
P ,

∗
P
∗
P>) is the unique primal solution of the penalized con-

vex relaxation (5a) – (5d).

6 Conclusions
This work introduces convex relaxations for solving a broad
class of non-convex and non-smooth optimization problems
involving orthogonality constraints. The proposed approach
relies on solving a sequence of penalized convex relaxations
to find feasible and near-globally optimal points for a given
non-convex orthogonality-constrained problem. Experimen-
tal results on two fundamental problems in machine learning
demonstrate the potential and effectiveness of the proposed
approach in solving practical problems.
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