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Abstract
Intelligent tutoring systems (ITS) provide educa-
tional benefits through one-on-one tutoring by as-
sessing children’s existing knowledge and provid-
ing tailored educational content. In the domain of
language acquisition, several studies have shown
that children often learn new words by forming se-
mantic relationships with words they already know.
In this paper, we present a model that uses word
semantics (semantics-based model) to make infer-
ences about a child’s vocabulary from partial in-
formation about their existing vocabulary knowl-
edge. We show that the proposed semantics-based
model outperforms models that do not use word
semantics (semantics-free models) on average. A
subject-level analysis of results reveals that dif-
ferent models perform well for different children,
thus motivating the need to combine predictions.
To this end, we use two methods to combine pre-
dictions from semantics-based and semantics-free
models and show that these methods yield better
predictions of a child’s vocabulary knowledge. Our
results motivate the use of semantics-based mod-
els to assess children’s vocabulary knowledge and
build ITS that maximizes children’s semantic un-
derstanding of words.

1 Introduction
Intelligent tutoring systems (ITS) provide educational bene-
fits through one-on-one tutoring by assessing children’s ex-
isting knowledge and providing tailored educational con-
tent [VanLehn, 2011]. In vocabulary learning tasks, most ITS
come with a fixed curriculum (or a set of words) that the sys-
tem attempts to teach without considering prior knowledge of
the tutee. However, when human tutors interact one-to-one
with a tutee, they first attempt to understand existing knowl-
edge of the tutee (often from partial and noisy data).

Recent work in ITS for language learning has focused on
modeling children’s word-reading skills, pronunciation skills
and affective states to provide personalized curricula [Park
et al., 2019; Spaulding et al., 2018; Gordon et al., 2016;
Gordon and Breazeal, 2015]. However, much of language
acquisition deals with understanding words in the context

of other semantically related words. Studies have shown
that children, as young as 3 years of age, often form cate-
gories among new objects using their shared semantic prop-
erties [Jones et al., 1991]. During comprehension process,
children retrieve previously learned vocabulary words in or-
der to make new conceptual associations [Johnson et al.,
1982]. Furthermore, when children learn vocabulary along
with semantics, they learn more words and their learning pace
is faster [Wolf et al., 2009; Dilek and Yürük, 2013]. It can
be concluded from these studies that (i) children form a cog-
nitive semantic representation for storage and retrieval from
memory, and (ii) children learn better when taught words that
are semantically related.

Even though learning through semantic associations forms
the basis of many psycholinguistic theories of language ac-
quisition, to the best of our knowledge, there hasn’t been an
attempt to create and experimentally validate a computational
model that makes predictions about children’s vocabulary us-
ing semantic associations between words. Since every child
has a different vocabulary that can only be partially observed,
one of the main challenges in building such a model is making
inferences based on partial information while representing the
assumptions of learning through semantics. To this end, we
use Markov Random Field (MRF) models to probabilistically
represent children’s semantic knowledge and make inferences
by capturing the assumptions of semantic learning. In the rest
of this paper, we refer to this model as semantics-based model
and models that don’t take into account semantic relations
between words as semantics-free models, such as frequency-
and phonetics-based models.

The following example provides an intuition for the model
presented in this paper. Consider a hypothetical case where
an adult tutor tries to predict whether a child knows the tar-
get word “Jupiter”. If it is identified that the child knows the
words “Earth” and “Venus”, the tutor’s belief about knowl-
edge of the target word becomes stronger. Now, if it is iden-
tified that the child does not know the word “Planet”, this
belief becomes weaker. Thus, when making inferences about
a child’s knowledge, the tutor first assumes that the words
presented are semantically related to one another. This forms
the tutor’s prior knowledge. Further, the tutor assumes that
the child stores words in memory using similar semantic re-
lations. When the tutor obtains new information, s/he uses
this information as evidence to update their belief about the
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child’s knowledge of the target word.
An ITS may use a similar reasoning to first observe the ex-

isting vocabulary of a child (partially) and then predict the
probability of knowing other words that the child may or may
not know. For example, a robotic educational companion par-
ticipating in a story-telling task with children could observe
their current vocabulary from the words they use in their sto-
ries [Park et al., 2019]. Using models presented in this paper,
the robot could then identify other words they may or may
not know. Finally, using this knowledge, the robot could then
formulate a strategy to enhance children’s vocabulary. This
task is further detailed in Future Work in section 9.

The main research questions addressed in this paper are
presented as follows.

1.1 Research Questions
• R1: Given a partial observation of existing vocab-

ulary of a child, can we build a model to predict
whether s/he would know other semantically related
words (semantics-based model)?

• R2: Can we use semantics-free models in conjunction
with the semantics-based model to make better predic-
tions about a child’s existing vocabulary?

2 Related Work
In this work, we draw from and build upon two main research
areas:

2.1 Cognitive Models for Vocabulary Acquisition
Most research in building cognitive models focuses on build-
ing models that learn word-to-concept mappings from data
akin to how a child learns. For instance, Siskind proposed
a model that used the principles of cross-situational learning
to learn word-to-concept mappings [Siskind, 1996]. Yu et
al. incorporated social cues like joint attention into a unified
statistical learning framework for cross-situational observa-
tions [Yu and Ballard, 2007]. More recently, a model to build
and incrementally grow a semantic network from utterance
data was proposed to capture semantic relationships between
words [Nematzadeh et al., 2014].

However, when making predictions about a child’s exist-
ing knowledge, often we do not have access to the data stream
that the child was exposed to when they learned the words that
exist in their current vocabulary. This motivates the develop-
ment of models that make assumptions about children’s ex-
isting vocabulary to make inferences about other words they
might know.

2.2 Knowledge Prediction
Within ITS literature, researchers have proposed models for
assessing children’s reading skills and pronunciation. For in-
stance, Gordon et al. [Gordon and Breazeal, 2015] presented
a Bayesian active learning model to predict the probability
of a child’s ability to read a word. Spaulding et al. [Spauld-
ing et al., 2016] showed that incorporating affect information
(smile and engagement) into a Bayesian knowledge tracing
model outperforms traditional models for predicting a child’s

reading skill level. Researchers have also used Gaussian pro-
cess regression to model children’s pronunciation skills using
a covariance function that is a weighted sum of semantic and
phonemic similarity [Spaulding et al., 2018].

However, there has been little work in predicting word un-
derstanding through semantics. Recently, researchers repre-
sented words using the Osgood semantic scale and word2vec
embeddings and used mixed effect logistic regression to pre-
dict short- and long-term word acquisition in children [Nam
et al., 2017]. However, this model did not consider how
semantic knowledge is represented and stored in children’s
memory.

3 Dataset and Terminology

We used the dataset from our work in [Park et al., 2019].
We used data collected from the control (baseline) group,
i.e., children who completed the (i) Pre-test and (ii) Post-
test (3 months apart) without any technology intervention
in between (such as in the experimental groups). The base-
line group dataset included test results from 23 children be-
tween the ages of 5–6 from 12 kindergarten classrooms. Data
from six children who completed the pre-test but not the post-
test was excluded from our experiment, resulting a pair-wise
dataset from 17 children (age µ = 5.39, σ = 0.48; fe-
male 55.5%). The goal of the pre- and post-test was to sam-
ple words from a child’s vocabulary. It is hard to measure
a child’s current vocabulary level since the set of words a
child could know is very large. Thus, each child’s linguistic
level was assessed using a clinically evaluated vocabulary test
called the Peabody Picture Vocabulary Test (PPVT) [Dunn
and Dunn, 2007] which is one of the most widely used tests
to measure a child’s vocabulary level. The format of the test
involves asking a child to select one of four possible pictures
that are related to the target word being assessed. The words
presented in the test are such that they align with the vocab-
ulary level of the child. The test ends when the words pre-
sented are above the vocabulary level of the child, and the
child is consistently unable to answer the questions. After re-
peating this process for multiple words in the test, we are able
to obtain a dataset containing a sample of words that a child
knows and doesn’t know within the child’s linguistic abili-
ties. After three months, a post-test PPVT was performed to
again sample words. A period of three months minimized
the effect of any short-term storage of word associations en-
countered during pre-test. The set of target words assessed
during the post-test (PPVT-4, Form B) were completely dif-
ferent from those used in the pre-test (PPVT-4, Form A). One
common word was excluded from the post-test and included
in the pre-test only.

The data collected from the experiment is summarized as
follows:

• Pre-test: Set of words Wpre and information about
whether or not they know those words.

• Post-test: Set of words Wpost and information about
whether or not they know those words. Moreover,
Wpost ∩Wpre = ∅.
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4 Preliminaries
A Markov Random Field (MRF) is an undirected graphical
model defined by graph Gmrf = (Vmrf , Emrf ) and a set of
random variables X where vertices Vmrf = {v1, v2, v3...vn}
correspond to random variables X = {X1, X2, X3...Xn}.
An edge eij between nodes Xi and Xj captures the notion of
dependence or interactions between nodes. This dependence
is numerically represented by a potential function φ(x) which
may be defined for a pair of nodes or a clique (c) in the graph.
When it is defined for pairs of nodes, the MRF is called a
pairwise MRF. The potential functions are often represented
as energy functions and then transformed into probabilities
by adopting Gibbs distribution. The lower the energy of a
clique, the higher is its potential and thus higher the probabil-
ity. Thus, we have:

P (X1, X2...Xn) =
1

Z

∏
C

φc(xc) (1)

Z =
∑

x

∏
C

φc(xc) (2)

φc(xc) = e−E(xc) (3)

where,
• C is the set of all maximal cliques in the graph.
• φc(xc) is the potential function associated with clique c.
• φc(xc) ≥ 0.
• E(xc) is the energy function associated with the clique
c.
• Z is the normalizing constant or the partition function.
A common algorithm to perform inference on MRF models

is Belief Propagation (BP). In this paper, we use the sum-
product variant of BP to compute the marginal probability
distribution of nodes.

5 Models for Knowledge Prediction
The main contribution of this paper is a model that makes in-
ferences assuming the semantic model of vocabulary acqui-
sition for the learner. The fundamental assumption made by
this model in order to make inferences is the following:
A1. Children learn words by forming semantic relations
with existing words that they know. Thus, if it is observed
that a child knows a word, it is likely that the child knows
words that are semantically related to the given word. On
the other hand, if it is observed that the child does not know
a given word, it is likely that the child does not know words
that are semantically related to the given word.

Given the experimental design, we now restate the first re-
search question more specifically in terms of the data col-
lected from the experiment:
R1. Given a child’s knowledge about words assessed in
the pre-test, can we build a model to predict whether s/he
would know other semantically related words as assessed in
the post-test (semantics-based model)?

5.1 Semantics-based Model - MRF
R1 as an Inference Problem
In order to answer R1, we formulate it as an inference prob-
lem on undirected graphical models (UGMs). Broadly, we
first build a semantic network where the nodes represent
words and edges represent semantic relationship between the
words. Then, every node in the semantic network is mapped
to a random variable of an MRF representing the probability
of knowing or not knowing the word. Finally, we perform in-
ference to find the marginal probabilities of nodes (or word)
after using words in Wpre as evidence.

Measure of Semantic Similarity
A common measure of semantic distance between words is
to take the cosine distance between the word embeddings of
two words. Here, we define semantic distance between two
words as the cosine distance between their pre-trained com-
mon crawl GloVe word vectors (300 dimensional) [Penning-
ton et al., 2014]. Two words with vector representations v1
and v2 are said to be semantically similar if cos(v1, v2) ≥ ε
(after manually testing different values of semantic similarity
on different words, we set ε = 0.6 for this study).

Building Semantic Network
When estimating a child’s vocabulary from partial data, a hu-
man tutor often has some prior knowledge about a rough es-
timate of the kinds of words a child might know and how
they are semantically related to each other. Hence, to rep-
resent this belief about a child’s knowledge computationally,
we build a semantic network using the first thousand words
Wlist [Fry, 1980] that should be taught to children and are
now increasingly adopted by many schools along with words
in Wpre and Wpost. Let this graph be called Gsemantics =
(V,E) such that V = Wpre ∪ Wpost ∪ Wlist. Set of edges
E of the graph are computed using pairwise comparisons be-
tween nodes to check for semantic similarity of words, i.e.,
nodes v1 and v2 are connected by edge e12 if and only if
v1 and v2 are semantically similar. Building this graph runs
in O(|V |2) which is computationally acceptable in our case
(|V | ≈ 1, 400). We further define two words w1 and w2 to
be semantically related if there exists a path between them
in Gsemantics. Thus, a node is semantically related to an-
other node through a path of semantically similar nodes. We
use GloVe word vectors [Pennington et al., 2014] to build the
graph instead of other publicly available semantic graphs due
to the flexibility of computing semantic similarity between
any given pair of words and the ability to use specific words
in the semantic graph that are expected to be within the lin-
guistic abilities of children.

Semantic Network to MRF
The graph structure of a semantic network is similar to that of
an MRF. We create a graph Gmrf = (Vmrf , Emrf ) from se-
mantic networkGsemantics = (V,E) such that |Vmrf | = |V |
and |Emrf | = |E|. Every node Vi in Gsemantics is mapped
to a Bernoulli random variable Xi,mrf in Gmrf which rep-
resents the distribution of whether or not a child knows the
corresponding word in Gsemantics. Two nodes Vi,mrf and
Vj,mrf are connected inGmrf if and only if their correspond-
ing nodes are connected in Gsemantics.
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Potential Functions
Since we only have a measure of semantic similarity between
pairs of words, we use pairwise potential functions to capture
the notion of how two words are semantically similar to each
other. In order to represent the previously stated assumption
A1, potential functions must further be associative in nature.
That is, they should favor neighboring nodes to have the same
label (knowing the word or not knowing the word) giving rise
to a model that is both pairwise and associative in nature. We
define the energy function as follows: if Xi corresponds to
the word wi and Xj corresponds to the word wj in graph
Gsemantics, and s(wi, wj) gives the semantic similarity1 be-
tween words wi and wj , we define the energy of neighboring
nodes having the same label as:

E(Xi, Xj) = 1− s(wj , wj) (4)
and energy of neighboring nodes having a different label

as:
E(Xi, Xj) = s(wj , wj) (5)

Thus, the higher the semantic similarity between two
nodes, the lower will be the energy associated with the pair
of words. This results in the final pairwise potential function:

φ(Xi, Xj) =

[
e−(1−s(wi,wj)) e−s(wi,wj)

e−s(wi,wj) e−(1−s(wi,wj))

]
(6)

Inference
Given the structure and potential functions of the MRF, we
now perform BP using words in Wpre as evidence to find the
marginal probabilities of words in Wpost.

5.2 Semantics-based Baseline Models
The proposed graphical model (MRF) has two key compo-
nents: (i) A graph representing semantic relationships and
(ii) the ability to perform inference. We now discuss models
that use semantics but lack some of the features of the model
presented. We use these models or algorithms as baselines to
later compare the performance of the graphical model.

GloVe Nearest Neighbor
To predict whether a child knows a given word or not, we
find the word in Wpre that has the highest measure of se-
mantic similarity with the given word and assign the label
corresponding to the word. Hence, this model neither has a
semantic graph representation nor does it have the ability to
perform inference.

Semantic Network Nearest Neighbor
Another strategy to make predictions is to use the graph struc-
ture of the semantic network, but not cast it as an MRF or
perform inference. Instead, for a given target word for which
a prediction is to be made, we perform Breadth First Search
(BFS) using the word as the source, and find the label associ-
ated with the word in Wpre that has the shortest path distance
from the target word.

1When computing semantic similarity, we use the lemmatized
form of words. This is done so that different forms of words don’t
affect their semantic similarity. For example, semantic distance be-
tween “cats” and “dogs” should be the same as that between “cat”
and “dog”. We use the lemmatized representation for all models
presented in the paper except when specified.

5.3 Semantics-free Models
In this section, we describe models that do not consider word
semantics but may be used to make predictions about a child’s
vocabulary knowledge using some prior ground truth about
what the child knows and doesn’t know. Namely, we discuss
frequency-based and phonetics-based models.

Frequency-based Model
The theory of incidental learning posits that language learn-
ers often “pick up” new words through reading, listening and
conversational activities [Hulstijn and others, 2003]. Inciden-
tal vocabulary acquisition has a direct link with frequency of
exposure - the higher the frequency of exposure to a word,
the higher will be the probability of a child committing it to
memory [Teng, 2016].

We use the SUBTLEXus database (74,286 word forms) as
a source of word frequency counts of different words used
in spoken English language [Brysbaert and New, 2009]. We
use the zipf scale measure of word frequency counts instead
of raw frequency counts. The zipf scale converts word fre-
quencies (per billion words) into a log-based scale with val-
ues between 1-7 and is independent of the size of the cor-
pus used [Van Heuven et al., 2014]. Then for each child,
we train a personalized logistic regression model using zipf
score of words in Wpre as training data and whether or not a
child got the words correct as training labels (binary classifi-
cation). Since the dataset used to train the model had a class
imbalance (i.e, there were more instances of words known
than words unknown), we weighted the classes inversely pro-
portional to their frequency in the training set.

The weight wi for class i is given by:

wi =
n

kni
(7)

where n is the total number of data points, k is the number
of classes (here, k = 2) and ni is the number of instances
that have label i. In this way, the model is able to learn the
kinds of words that a child knows based on frequency of word
occurrence in everyday language use.

Phonetics-based Model
Apart from the frequency of word exposure, it is also studied
that children use phonological information of words they al-
ready know to learn new words [Edwards et al., 2004]. Thus,
for a given target word, the nearest phonologically similar
word in the child’s vocabulary would give information about
whether the child had the phonological knowledge to have
learned the given target word. A common measure of phono-
logical distance between words is Levenshtein distance which
measures the edit-distance of insertion, deletion and replace-
ment of characters between two words [Sanders and Chin,
2009].

Since we can only observe a child’s vocabulary partially,
we use words in Wpre as a measure of the child’s phonologi-
cal knowledge. Thus, to make a prediction for a given word,
we find the nearest word in Wpre (using the Levenshtein dis-
tance metric) and assign the label of the nearest word (we use
a fixed cost of 1 for each operation). For example, if a child
knows the words “cat” and “rat”, it would mean that the child
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Figure 1: Predictions made by MRF for different subjects. The three graphs in (a), (b) and (c) are subgraphs of graph Gmrf . The positive
and negative evidence are labels corresponding to words in Wpre. Predictions and true labels for target nodes are shown as (prediction, true
label). (a) shows the influence of negative evidence to make predictions. (b) shows the influence of positive evidence to make predictions (c)
shows how different observations (negative and positive) impact the final predictions for target nodes.

has the phonological knowledge to also have learned the word
“bat”. This strategy allows the algorithm to capture the notion
of retention of words based on their phonological knowledge
using the Levenshtein distance as a proxy measure of phono-
logical word similarity 2.

6 Ensemble Methods
Different cognitive theories posit different ways of how chil-
dren acquire new words and no one theory alone explains how
children learn words. Each model discussed in the previous
section is based on a different cognitive theory of learning. In
this section, we propose two strategies of combining predic-
tions from different models to evaluate if we can make better
predictions by combining the predictive capabilities of each
model (R2).

6.1 Conditional Independence
We wish to estimate the probability of a child knowing a
given word w, and have two separate models m1 and m2

that estimate the probability of the child knowing the word.
Thus, we are given p(w|m1) and p(w|m2) and want to find
p(w|m1,m2). If we assume the two models to be condition-
ally independent sources, then the probability p(w|m1,m2)
using the Bayes optimal method to combine distributions is
given by [Bailer-Jones and Smith, 2011]:

p(w|m1,m2) ∝ p(w|m1)p(w|m2) (8)

6.2 Mixture of Distributions
Another common method of combining probabilities is to
create a new distribution that is a mixture of two distributions

2When computing levenshtein distance, we use the given word
forms instead of their lemmatized forms because lemmatization can
sometimes change the phonological structure of a word.

(weighted sum). Since there is no prior informing which of
the two distributions should be given a higher weight, we as-
sume an equal weight (0.5) for each of the distributions and
compute the posterior by taking the weighted sum of distri-
butions from the two models.

7 Evaluation
To answer R1 and R2, we report (i) area under the precision-
recall curve for (ii) words in Wpost that are semantically re-
lated to words in Wpre. The two decisions are justified as
follows:

Selection of words. For any given child, not all words in
Wpost are semantically related to words inWpre. This occurs
in the case where Gsemantics is a disjoint graph and there ex-
ists a word wi,post in an independent subgraph in which there
exist no words fromWpre. For example, if a human tutor only
knows about a child’s knowledge of words related to the solar
system (earth, mars, moon, etc), they cannot make predictions
about words that are related to computers (laptop, keyboard,
screen, etc) using only word semantics. Semantics-free mod-
els however have the ability to make predictions about any
given word irrespective of their semantic relations. Thus, we
compare the models only on words Wpost,selected in Wpost

that have some path to words in Wpre.

Area under the precision-recall curve. A common
method of evaluating probabilistic binary classifiers is area
under the curve (AUC) of the receiver operating curve (ROC)
as it tries to balance true positive and false positive rates
by considering a number of different thresholds. The given
dataset had a class imbalance (72%). In such cases, area un-
der ROC can provide a skewed picture of the model’s perfor-
mance. Hence, we compute area under the precision-recall
curve which is a more informative metric for datasets with
class imbalances [Davis and Goadrich, 2006].

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1362



8 Results and Analysis

Figure 2: Mean area under precision-recall curve for all subjects.

Figure 1 shows subgraphs of Gmrf and predictions made
by the MRF model. Figure 2 shows the mean area under the
precision-recall curve for each of the models. We find that
among semantics-based models, MRF (AUC ≈ 0.80) has
the highest mean AUC. Further, we find that the semantic
network representation (AUC ≈ 0.73) has a higher predic-
tive power when compared to a model that finds the nearest
semantically similar neighbor (AUC ≈ 0.72). More inter-
estingly, the results show that the real advantage of an MRF
comes from observing nodes and performing inference. The
significant increase in AUC from≈ 0.73 (nearest neighbor in
semantic network) to ≈ 0.80 (MRF) shows that the posterior
probability of knowing a word is determined by observations
of all nodes in Wpre in the graph and not just the nearest
neighbor. Between the semantics-free models, the frequency-
based model performed significantly better (AUC ≈ .77)
than the phonetics-based model (AUC ≈ 0.73). When
comparing the frequency-based model with MRF, we find
that MRF has a better performance in predicting words in
Wpost,selected. It is interesting to note that MRF is able to per-
form well using inferences based on word similarities alone
without any information about how often a child might have
been exposed to a given target word.

8.1 Subject-level Analysis
Between MRF and the frequency-based model, a subject-
level analysis allows us to find subjects for which either
of the models is better in predicting knowledge of words

Condition # subjects AUCmrf AUCfreq

MRF > Freq 10 .82 ± .096 .736± .108
MRF < Freq 7 .765± .053 .814 ± .055

Table 1: Subject-level analysis of mean area under precision-recall
curve.

Figure 3: Subject-level differences between AUCmrf and
AUCfreq .

Model Mean AUC Std

MRF 0.798 0.086
frequency-based 0.768 0.098
Combined (conditional independence) 0.802 0.088
Combined (mixture of distributions) 0.803 0.088
Best model (per child) 0.818 0.082

Table 2: Area under precision-recall curve after combining predic-
tions.

in Wpost,selected. Table 1 shows that out of 17 subjects,
MRF performed better than the frequency-based model on
10 subjects. Moreover, we observe that the mean AUC
scores on subjects where MRF performs better is higher than
the frequency-based model. More concretely, on the set
of subjects where MRF dominates, AUCmrf ≈ 0.82 and
AUCfreq ≈ 0.736, while on the set of subjects where the
frequency-based model performs better, AUCfreq ≈ 0.81
and AUCmrf ≈ 0.77. Figure 3 shows the difference
AUCmrf − AUCfreq per subject. Here, we further see that
there is a distinct set of subjects where each of the models
performs significantly better than the other.

Thus, in reference to the first research question R1, the
aforementioned results show that MRF is effective in mak-
ing predictions about semantically related words in post-test
using words in the pre-test as observations.
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8.2 Combining Predictions
Since each model makes assumptions according to different
psycholinguistic theories of learning and the fact that both
MRF and the frequency-based model perform well of dif-
ferent sets of subjects, we evaluate if combining predictions
increases the performance of either of the models. Table 2
shows that there is a slight improvement in prediction per-
formance for MRF (≈ 0.5%) and a greater improvement in
performance for the frequency-based model (≈ 3.5%). Both
strategies of combining predictions give similar gains in im-
provement. This improvement is seen even though the set
of children where the two models perform well are mutually
exclusive and the difference in performance is significant, as
seen in Figure 3. These results show that combining two mod-
els that are based on different theories of learning can help
improve prediction performance.

Limitations
It is important to note that the predictions were combined us-
ing uniform priors for both methods. While the strategies to
combine predictions work, the improvement in not significant
(in the case of MRF) because of the absence of informative
priors. Table 2 shows the results when the best model (MRF
or frequency-based) is used for making predictions for each
child – i.e, for each child, we assign a weight of 1.0 to the
model that performs better and a weight of 0.0 to the other.
This method shows that if we could accurately pre-determine
which model would perform best for each child, the best
achievable AUC ≈ 0.82. Therefore, given that each model
performs well on different subjects and the fact that predic-
tions can be combined using the aforementioned strategies,
methods (or heuristics) to pre-determine the weights (priors)
for each model per subject would further help make better
predictions about a child’s knowledge.

Thus, in reference to the research question R2, results show
that it is possible to make better predictions by combining the
predictions of individual models (MRF and frequency-based)
with a caveat that more informative priors would significantly
help in combining predictions to achieve better performance.

9 Future Work
The models presented in this paper allow us to make predic-
tions about a child’s vocabulary. Future work will investi-
gate how these models can be implemented on an educational
robot companion to enhance children’s vocabulary to extend
our previous work [Park et al., 2019]. For example, in a set-
ting where a child and a robot take turns telling each other
stories, the robot’s goal would be to enhance a child’s vo-
cabulary by asking questions about specific semantically re-
lated words as the child narrates their story. Using MRF, the
robot would first determine the probability of knowing dif-
ferent words (from knowledge about words they use in their
stories). The robot would then choose to ask questions about
words it is certain that the child knows. Our hypothesis is
that this strategy would provide encouragement and positive
engagement to the child. On the other hand, the robot could
also ask questions that it is certain the child doesn’t know and
then attempt to teach the meaning of those words. This strat-
egy would directly enhance children’s knowledge. For either

strategies, the models presented in this paper are a prerequi-
site. Thus, in future work, the robot would learn to adapt it’s
strategy based on children’s engagement and existing knowl-
edge to maximize their learning.

10 Conclusion
Different psycholinguistic theories posit different ways
in which children learn new words. In this paper, we
present models for predicting children’s vocabulary from
partial knowledge of their existing vocabularies and ground
assumptions made by each model in different theories. More
concretely, we present MRF (based on semantic association
between words), a frequency-based model (based on theory
of incidental learning) and a phonetics-based model. We
further show how predictions from different models such as
frequency-based model and MRF can be combined. Using
data from 17 subjects, we experimentally show that MRF
can effectively predict children’s vocabulary. We further
show that the ensemble of MRF and frequency-based model
can further improve prediction performance of individual
models. These results motivate the use of semantics-based
models in ITS to assess children’s knowledge.
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