
STCA: Spatio-Temporal Credit Assignment with Delayed Feedback in Deep
Spiking Neural Networks

Pengjie Gu1 , Rong Xiao1 , Gang Pan2 and Huajin Tang1,2,∗

1 College of Computer Science, Sichuan University
2College of Computer Science and Technology, Zhejiang University

{gupj1202, xiaorong.scu}@gmail.com, gpan@zju.edu.cn

Abstract
The temporal credit assignment problem, which
aims to discover the predictive features hidden in
distracting background streams with delayed feed-
back, remains a core challenge in biological and
machine learning. To address this issue, we pro-
pose a novel spatio-temporal credit assignment al-
gorithm called STCA for training deep spiking neu-
ral networks (DSNNs). We present a new spatio-
temporal error backpropagation policy by defining
a temporal based loss function, which is able to
credit the network losses to spatial and temporal
domains simultaneously. Experimental results on
MNIST dataset and a music dataset (MedleyDB)
demonstrate that STCA can achieve comparable
performance with other state-of-the-art algorithms
with simpler architectures. Furthermore, STCA
successfully discovers predictive sensory features
and shows the highest performance in the unseg-
mented sensory event detection tasks.

1 Introduction
In dynamic environments, the useful sensory features are al-
ways embedded in distracting streams of unrelated sensory
activity. Even worse, the feedback events that the features
predict may happen after long and variable delays. To dis-
cover these features, a learning model needs to amplify the
correlations between features and the delayed feedback. This
temporal credit assignment (TCA) problem is challenging in
both biological and machine learning.

One potential solution for this problem is utilizing SNNs
to learn the temporal information of sensory streams. SNNs
are proposed to capture the temporal dynamics of neural be-
haviors. They use discrete and binary spike trains in which
the precise spike times are significantly informative [Gerstner
et al., 2014] to convey information, so they are more biologi-
cally realistic than artificial neural networks (ANNs) and thus
gain increasing interest in recent years.

Recently, several spiking models [Gütig, 2016; Yu et al.,
2018] are proposed to solve this problem based on the intu-
ition: a spiking neuron which is a neural detector of a sensory

∗Corresponding author: huajin.tang@gmail.com

clue should fire spikes whenever the predictive features occur
but remain silent otherwise [Gütig, 2016]. A spiking neu-
ron was trained to match their spike activities with the clue’s
number of occurrences. As a result, the neuron can iden-
tify an unknown feature without knowing the specific tim-
ing when the desired feature occurs. These approaches use a
threshold-driven learning strategy to reduce the discrepancy
between the output neuron’s actual threshold and the closest
hypothetical threshold at which the neuron would fire a de-
sired number of spikes. However, finding the hypothetical
threshold is computationally complex and time-consuming.
Furthermore, they are limited to train single-layer SNNs and
thus cannot be applied to complex tasks.

While there exist many models of single-layer SNNs [Xu
et al., 2018; Qi et al., 2018], the complex temporal depen-
dencies of spiking neurons and non-differentiable property
of binary spike function [Wu et al., 2018] both make train-
ing DSNNs difficult. For instance, the ANN-to-SNN ap-
proaches [Neil et al., 2016; Diehl et al., 2015] usually lever-
age conventional learning methods to train an ANN and con-
vert it into an SNN. They rely on carefully designed tech-
niques to techniques to overcome the loss of accuracy caused
by conversion, such as using probabilistic weights [Esser et
al., 2015], adding constraints on neuron firing rate [Diehl
et al., 2015] and so on. Some works [Lee et al., 2016;
Samadi et al., 2017] only propagate the error back to pre-
ceding layers without considering the temporal dependencies
of spiking neurons. They require other mechanisms to keep
the performances stable, such as lateral inhibition, error nor-
malization, parameter regularization, etc. [Wu et al., 2018]
propose a method to directly derive the spatio-temporal gra-
dients for DSNNs. It captures the temporal effects of spikes
by performing BPTT [Werbos, 1990] and utilizes surrogate
derivatives to handle spiking discontinuities. [Jin et al., 2018]
computes the gradients across both rate and temporal level by
establishing the relationship between firing rate and synaptic
potential. The loss functions of the above algorithms are all
rate-based. While they can offer good performance, they lose
the temporal information embedded in output spike trains,
which is crucial for the TCA problem.

In this paper, we firstly propose a novel loss function based
on the definition of “spike cluster” to assign the network loss
to the voltage at a specific time point and then introduce an
iterative policy to backpropagate the error signal to spatial

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1366

and time domains simultaneously. This algorithm shows ex-
cellent generalization performance on both classification and
TCA problems. As demonstrated in experimental results, its
performance on MNIST dataset outperforms most of the ex-
isting DSNNs. It also gets a comparable result with a special-
ized convolutional neural network (CNN) on a music dataset
(MedleyDB) by using a much simpler architecture. In the un-
segmented sensory event detection tasks, it successfully dis-
covers the embedded events and outperforms the state-of-the-
art method.

2 Neuron Model and Learning Algorithm
In this section, we first present a spiking neuron model and
its iterative computation mechanism used in this work. Then,
we propose a novel loss function which yields a more flexi-
ble temporal credit assignment. Finally, we present an itera-
tive procedure to backpropagate the error signal to spatial and
temporal domains simultaneously.

2.1 Spiking Neuron Model
Here, we adopt the current-based leaky integrate-and-fire (C-
LIF) neuron model [Gütig, 2016] as the basic computational
units in DSNNs. The C-LIF model is biologically realistic
and mathematically tractable. Its voltage trace V (t) can be
expressed as:

V (t) =M(t)− S(t)− E(t)

M(t) =V0

N∑
j=1

wij
∑
tkj<t

exp
(
−(t− tkj)/τm

)

S(t) =V0

N∑
j=1

wij
∑
tkj<t

exp
(
−(t− tkj)/τs

)
E(t) =ϑ

∑
ti<t

exp (−(t− ti)/τm)

(1)

where (M(t) − S(t)) describes that the neuron integrates
its synaptic current by receiving input spikes from N pre-
synaptic neurons, and E(t) indicates that each output spike
will refrain the voltage for a while. Here, tkj is the time of
the k-th input spike from the j-th afferent neurons; ti denotes
the time of the i-th output spike; wij is the synaptic weight;
τm, τs are the time constants; V0 is a normalization factor; ϑ
denotes the threshold of the neuron.

Most works [Gütig, 2016; Yu et al., 2018] based on C-LIF
model merely use Eq. (1) to derive their training algorithms.
This makes them difficult to develope error backpropagation
in DSNNs. Because Eq. (1) neither completely captures the
temporal dependency in the spiking neuron nor reveals the
explicit relationship between the input spike signals ejected
from the preceding layer and the output spike train of the cur-
rent neuron. To solve this problem and ensure computational
tractability, we discretize the temporal system with a sam-
pling time dt and thus replace t and V (t) with k · dt and
V [k] = V (k · dt), where k ∈ Z. Then, an iterative mecha-
nism is presented to capture the spatio-temporal dynamics of

C-LIF neuron (Figure 1) according to its event-driven prop-
erty [Yu et al., 2018; Wu et al., 2018]:

Oni [k] = g(V ni [k]) (2)

Ini [k] = V0

L(n−1)∑
j=1

wnijO
n−1
j [k] (3)

V ni [k] =Mn
i [k]− Sni [k]− Eni [k] (4)

Mn
i [k] = βmM

n
i [k − 1] + Ini [k] (5)

Sni [k] = βsS
n
i [k − 1] + Ini [k] (6)

Eni [k] = βmE
n
i [k − 1] + ϑOni [k − 1] (7)

g(x) =

{
1, x ≥ ϑ
0, x < ϑ

(8)

These fomulas are explanied as follow:
• The upper index n, subscript i, and k indicate that the

variable is a state of the i-th neuron at the n-th layer
and the k-th time point. L(n) indicates the number of
neurons in the n-th layer.
• Oni [k] ∈ {0, 1} is the output signal of the neuron. It is

governed by the spike function g(.) (Eq. (8)). Oni [k] = 1
indicates a spike activity, Oni [k] = 0 denotes nothing
occurs.
• Ini [k] is the input weighted summation of the spike sig-

nals On−1
j [k] which are generated from the previous

layer.
• V ni [k] is the superposition of the input response
(Mn

i [k] − Sni [k]) and the output response −Eni [k]. It
represents the voltage of neuron.
• Mn

i [k], S
n
i [k], E

n
i [k] are all expressed by their states at

the (k − 1)-th time step. Further, Mn
i [k], S

n
i [k] are also

governed by the input signal at the k-th time step, while
Eni [k] is governed by the output signal at the (k − 1)-th
time step.
• βm(s) = exp(− dt

τm(s)
) < 1 are the decay factors. If no

spike occurs, the input response and output response will
decay to 0 by multiplying decay factors recursively.

2.2 Temporal-based Loss Function
To solve the TCA problem, we draw inspirations from the re-
cent work [Gütig, 2016] and its intuition: when a neuron is
trained to match its number of output spikes to the magni-
tude of the occurrence number of sensory events, it will iden-
tify the sensory clues whose occurrences predict the delayed
feedback.

The original loss function in [Gütig, 2016] will train the
neuron to fire a fixed number of spikes after detecting a de-
sired event. Indeed, this objective seems inflexible and unrea-
sonable. Because spiking neurons tend to fire a different num-
ber of spikes if they receive distinct input activities. However,
there might exist distinct features among the activities from
the same class. Under this case, forcing the neurons to issue
a fixed number of spikes will lead to an unstable performance
of the network. To address this problem, we introduce a novel
definition as follow:

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1367



Update by Eq. 5 and 6

Update by Eq. 7

Update by Eq. 4

Spike time

Input

Output

Voltage

Input
response

Output
response

Update by Eq. 2 and 8

Update by Eq. 3

V n

On

M n-S n

-E n

On-1wn
I n

Figure 1: The temporal dynamics of the C-LIF neuron. (right) The
relationships among the variables of the neuron. (left) The traces
of these variables and their corresponding equations. The voltage
V n is the superposition of the input response (Mn − Sn) and the
output response −En. With the voltage exceeding the threshold ϑ,
the neuron will fire an output spike and refrain its voltage by the
output response. In is the weighted summation of On−1 and will
induce the input response.

• Spike cluster: If the intervals between any adjacent
spikes in a spike train C are less than a predefined con-
stant Tin, and the intervals between spikes in C and
other outside spikes are greater than Tin, we define C
as a spike cluster.

Utilizing this definition, we can set a more flexible objec-
tive for the output spiking neuron: when the predictive fea-
tures are recognized, the neuron should issue one spike clus-
ter instead of a fixed number of spikes. Hence, the goal of our
loss function is to make the actual number of spike clusters
No equals to the number of desired features Nd.

However, directly defining |Nd −No| as our loss function
will evenly assign error to all states of the neuron over the
entire time window. This is not conducive and convenient to
find the predictive features which usually occur within short
epochs. Therefore, we introduce a temporal based loss func-
tion to assign the error to the voltage of a specific time point
which may well be related to the desired features. The spe-
cific time point can be found by two strategies as follow:

• When No < Nd, the neuron does not identify all de-
sired features. In this case, the time point k+ is most
likely associated with the desired features which is not
identified, as V N [k+] is the highest maximum of sub-
threshold voltage and outside the occurrence epoch of
any spike cluster (Figure 2). Hence, the objective is to
potentiate V N [k+] towards the threshold ϑ with the aim
of firing more spike clusters.

• When No > Nd, it indicates that the neuron has iden-
tified the undesired features. In this case, the undesired
features may well be associated with the spike cluster
which has the fewest number of spikes. Thus, we credit
the loss to V N [k−] in order to depress V N [k−] falling
below ϑ with the purpose of removing the wrong spike
cluster, as k− is the last spike time of the spike cluster
whose spike number is the fewest (Figure 2).

0 300 600 900 1200 1500 1800 2100

-0.5

0

0.5

k-
k+

1

V
ol
ta
ge

Time

Figure 2: Two strategies for assigning temporal credit. When No <
Nd, V

N [k+] should be potentiated with the aim to fire one more
spike cluster, as V N [k+] is the highest maximum of subthreshold
voltage and requires to be outside the previous spike clusters (shown
by blue shadows). When No > Nd, V

N [k−] should be depressed
to eliminate the undesired spike cluster, as k− is the last spike time
of the spike cluster which contains the fewest spikes.

Both of the strategies are effective because they can find
the time point k∗ quickly by traversing the voltage trace once
(k∗ is the gerneral term for the k+ and k−). The temporal
based loss function can be written as follow:

L =

 ϑ− V N [k+], No < Nd
V N [k−]− ϑ, No > Nd
0, otherwise

(9)

where N is the index of the output layer. It is also easy to
generalize this function into classification tasks. Expecting
that neuron will fire one or more spike cluster when the sam-
ple label ys = 1 but keep silent otherwise, we can define L as
follow:

L =

 ϑ− V N [k+], No = 0 and ys = 1
V N [k−]− ϑ, No > 0 and ys = 0
0, otherwise

(10)

2.3 Spatio-Temporal Credit Assignment Policy
To backpropagte the error signal at V N [k∗] to preceding lay-
ers (<= N) and previous time points (<= k∗) accurately,
we unfold the states of C-LIF neurons on both spatial and
temporal domains as illustrated in Figure 3. By this way, we
can explicitly observe how each variable contributes to other
variables (indicated by arrows) along the spatial direction and
temporal direction and can compute gradients iteratively by
performing BPTT [Werbos, 1990].

We first denote ∂L
∂In[k] and ∂L

∂V n[k] as δn[k] and εn[k] re-
spectively. δn[k] can be computed as follow:

δn[k] =
∂L

∂Mn[k]

∂Mn[k]

∂In[k]
+

∂L

∂Sn[k]

∂Sn[k]

∂In[k]

=
∂L

∂Mn[k]
+

∂L

∂Sn[k]

(11)

When k < k∗, Mn[k] contributes to Mn[k + 1] and V n[k]
directly, so we can get its derivative by:

∂L

∂Mn[k]
=

∂L

∂Mn[k + 1]

∂Mn[k + 1]

∂Mn[k]
+

∂L

∂V n[k]

∂V n[k]

∂Mn[k]

=
∂L

∂Mn[k + 1]
βm + εn[k]

(12)

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1368

T
im

e
 k

+
1

Layer n Layer n+1

T
im

e
 k

...
...

Temporal feedforward

Spatial feedforward

gg

g
I n+1[k]

V n+1[k+1]

L

g

M n+1[k+1]

S n+1[k+1]

E n+1[k+1]

V N[k*]

V n+1[k]
M n+1[k]

S n+1[k]
E n+1[k]

O n[k]
V n[k]

M n[k]

S n[k]
E n[k]

V n[k+1]

E n[k+1]
S n[k+1]

M n[k+1]

I n+1[k]

V n+1[k+1]

L

g

M n+1[k+1]

S n+1[k+1]

E n+1[k+1]

V N[k*]

V n+1[k]
M n+1[k]

S n+1[k]
E n+1[k]

O n[k]
V n[k]

M n[k]

S n[k]
E n[k]

V n[k+1]

E n[k+1]
S n[k+1]

M n[k+1]

Figure 3: The spatio-temporal feedforward of C-LIF neurons. Each green box indicates a C-LIF neuron at a certain spatio-temporal state.
The solid arrows and the dotted arrows indicate the directions of spatial feedforward and temporal feedforward, respectively. The error can
be backpropagated to preceding layers and time points along the reverse directions of arrows.

In the same way, we can get:
∂L

∂Sn[k]
=

∂L

∂Sn[k + 1]
βs − εn[k] (13)

∂L

∂En[k]
=

∂L

∂En[k + 1]
βm − εn[k] (14)

To handle the non-differentiable property of g(.) which
causes the gradient vanishing or exploding problem, we adopt
the rectangular function h(.) mentioned in [Wu et al., 2018]
to be surrogate of the derivative of g(.):

∂g

∂V
≈ h(V) =

1

α
sign(|V − ϑ| < α

2
) (15)

where α is a constant to determine the width of h(.). The
approximation of εn[k] will be different in two cases:
• When n = N , V N [k] governs the output response
EN [k + 1] by affecting the output activity ON [k], so
εN [k] can be given by:

εN [k] =
∂L

∂EN [k + 1]

∂EN [k + 1]

∂ON [k]

∂ON [k]

∂V N [k]

=
∂L

∂EN [k + 1]
ϑh(V N [k])

(16)

• When n < N , the output signal On[k] governed by
V n[k] not only contributes to En[k + 1] but also influ-
ences the input signal In+1[k] at the next layer, it yeilds:

εn[k] =
∂L

∂En[k + 1]

∂En[k + 1]

∂On[k]

∂On[k]

∂V N [k]

+ δn+1[k]
∂In+1[k]

∂On[k]

∂On[k]

∂V n[k]

= (
∂L

∂EN [k + 1]
ϑ+ δn+1[k]wn+1V0)h(V

N [k])

(17)

According to Eq. (11-17), the network loss L can be back-
propagated from V N [k∗] to δn[k] recursively. Note that δn[k]
are the gradients of the input signals across all preceding lay-
ers (n ∈ [2, N]) and previous time points (k ∈ [1, k∗]). Fur-
ther, the gradients of synaptic weights can be computed as:

∇wn =
k∗∑
k=1

δn[k]
∂In[k]

∂wn
= V0

k∗∑
k=1

δn[k]On−1[k] (18)

The pseudo code is given in Algorithm 1 and our GPU ac-
celerated software implementation is available online1.

3 Experimental Results
We demonstrate the advantages of our algorithm by three ex-
periments. Detailed experimental settings (e.g. hyperparam-
eters, error bars, and the convergence curve) are reported in
the released online materials1.

3.1 MNIST Image Classification
To encode images in MNIST dataset [LeCun et al., 1998], we
utilize the rate coding method [Grüning and Bohte, 2014] to
convert each image into 784 spike trains whose spiking firing
rates equal their corresponding pixel values.

Table 1 lists the state-of-the-art results of the fully-
connected DSNNs with accuracy shown in a descending or-
der. While MNIST is a toy benchmark dataset, and there is
no TCA problem in it. Our model still goes beyond the per-
formance of most models by a simpler structure and achieves
a comparable result with the optimal model. Furthermore,
there are several advantages of STCA over other methods.
Firstly, STCA is capable of training DSNNs directly, while
the ANN-to-SNN approaches require many converting tech-
niques. Secondly, STCA considers the spatio-temporal ef-
fects of spikes during training, while the spiking-BP only

1https://github.com/Squirtle-gpj/STCA-DSNN

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1369

Algorithm 1 The training procedure of STCA in one iteration
Input: The input spike signals O1; the desired number of
spike clusters Nd.
Parameter: The number of all layers N ; The number of all
time points K.
Output: Update the weights w

1: //Feedforward:
2: for n = 2 to N do
3: Mn[0], Sn[0], En[0], On[0] = 0 // Initialization
4: for k = 1 to K do
5: Compute V n[k], On[k] // Eq. (2 - 8)
6: end for
7: end for
8: //Loss:
9: Get the actual number of spike clusters No.

10: Find the time point k∗ and compute L. // Eq. (9)
11: //Backpropagation:
12: for n = N to 2 do
13: for k = k∗ to 1 do
14: F Compute εn[k] //Eq. (16) or Eq. (17)
15: F Compute ∂L

∂Mn[k] ,
∂L

∂Sn[k] ,
∂L

∂En[k] //Eq. (12-14)
16: Compute δn[k] //Eq. (11)
17: end for
18: Compute∇wn //Eq. (18)
19: end for
20: Update all weights based on their gradients.
F: The equations to derive εn[k∗], ∂L

∂Mn[k∗] ,
∂L

∂Sn[k∗] ,
∂L

∂En[k∗] are
slightly different from Eq. (16-17) and Eq. (12-14). They can be
derived easily by removing the first terms of the original equations,
since the variables at k∗ are not required to receive the error signal
from the next time.

considers the spatial effects and thus requires many other op-
timization techniques. Finally, we utilize the output response
−E to simulate the refractory period of biological neurons.
This mechanism can be regarded as a normalization mech-
anism, since it can prevent spiking neurons from firing too
many spikes, and thus the spike representations in the hidden
layers are more sparse and effective. In contrast, STBP and
HM2-BP do not involve this mechanism.

Method # units Accuracy
STBP [Wu et al., 2018] 800 98.89

HM2-BP [Jin et al., 2018] 800 98.88
Spiking-BP [Lee et al., 2016] 800 98.71

STCA [Our model] 800 98.60
ANN-to-SNN [Diehl et al., 2015] 500-300 98.60

VPSNN [Zhang et al., 2018] 4500 98.52
ANN-to-SNN [Neil et al., 2016] 1200-1200 98.00

eRBP [Neftci et al., 2017] 200-200 97.98
BP-STDP [Tavanaei and Maida, 2019] 500-150 97.20

LIF-BA [Samadi et al., 2017] 630-370 97.05
STDP [Diehl and Cook, 2015] 5000 95.00

Table 1: Results of different DSNNs on MNIST dataset.

3.2 Musical Instrument Recognition
In this experiment, we train a DSNN to identify different
instruments in various music pieces which are diverse in
melodies and styles. We use the MedleyDB dataset [Bittner
et al., 2014] which contains 122 multi-tracks annotated with
instrument activations. We extract the monophonic stems cor-
responding to 10 instruments (‘violin’, ‘guitar’, ‘flute’, ‘fe-
male’, ‘drum’, ‘cymbal’, ‘cello’, ‘double bass’, ‘erhu’) and
slice them into 1.5s long pieces. For each instrument, we ran-
domly collect 160 pieces as training samples and 80 pieces as
test samples.

In Table 2, we use recall, precision, and F1 score to eval-
uate our model and other three models. Our model gets a
comparable result with the specialized CNN whose convolu-
tional kernels’ structures are carefully designed for learning
timbre representations [Pons et al., 2017]. Additionally, the
number of trainable parameters in our model is almost one
third of the CNN parameters. Furthermore, our model also
outperforms a 3-layer recurrent network. In this network, the
first layer receives the spectrogram sequences, and the next
two layers are an LSTM layer and a dense layer with softmax
activation, respectively. For comparison, we construct this
architecture (96-218-10) for this network to make its num-
ber of trainable parameters equal to ours. We also consider
a DSNN model [Samadi et al., 2017] which doesn’t consider
the temporal dependencies of spiking neurons during train-
ing to verify whether the ability of DSNN to learn temporal
features can be improved by assigning network error along
the temporal direction. Additionally, our model shares the
same network structure (384-700-10) and encoding method
with this model, and the encoding method called spikegram
[Smith and Lewicki, 2005] which converts the input sound
signal into a spike pattern capturing the time-frequency infor-
mation of sound by the spatio-temporal distribution of spikes.
As illustrated, the disappointing performance of this model
reveals that error backpropagation on time domain notably
promotes SNNs to learn dynamic features.

3.3 Unsegmented Sensory Event Detection
In dynamic environments, it’s easy to get a lot of unseg-
mented sensory streams containing various sensory events.
However, the precise occurrence time of individual event
is usually unavailable. The temporal alignment with these
events requires heavy labor or complex algorithms. To
demonstrate that our model can successfully detect the de-
sired events from unsegmented streams, we construct sev-
eral unsegmented sound event streams by splicing individual
sound events extracted from the RWCP dataset [Nakamura
et al., 2000]. The RWCP dataset gives a selection of iso-
lated sound event samples in duration around 0.5-3s. Here, 10
classes of sound events are extracted (‘bank’, ‘bells5’, ‘bowl’,
‘cherry1’, ‘coin3’, ‘cup1’, ‘horn’, ‘phone4’, ‘ring’, ‘whis-
tle1’, each class has 80 samples) and encoded into spikegrams
[Smith and Lewicki, 2005]. To construct an unsegmented
stream, we will radomly select 5 individual events and spliced
together. We extract half of event samples to construct 3000
individual streams as the training set while the rest samples
are assigned as the testing set. The occurrence number of the
target event in this stream will be used as the desired number

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1370

Model Encoding method #params Recall (%) Precision (%) F1 score (%)
Specialized CNN [Pons et al., 2017]

Spectrogram 76.9k 99.21 95.94 97.51
LSTM 27.6k 93.31 96.08 94.62

DSNN [Samadi et al., 2017]
Spikegram 27.6k 86.56 75.62 80.73

Our model 27.6k 97.29 97.23 97.25

Table 2: The musical instrument recognition performance of different models on MedleyDB.

x 2
x 2 x 1

Time

V
ol
ta
ge

V
ol
ta
ge

(a)

(c)

(d)

(b)

(e)

Epoch

20 40 100

75%

85%

95%

A
cc
ur
ac
y

STCA
TDP1, n =7
TDP1, n =5
TDP1, n =3

x 2

Figure 4: Unsegmented sensory event detection. (a) The spike pattern of an unsegmented sensory stream which contains 7 individual events.
Colored rectangles depict occurrences of 4 classes of events. (b) The delayed and aggregate-label feedback of this stream. During training, an
output neuron only knows the occurrence number of its target class of event, and will be trained to fire this number of spike clusters. (c-d) The
output neurons’ voltage traces with colors indicating their target classes. (c) Before training, neurons cannot respond to their desired events.
(d) After training, neurons will fire a spike cluster when a corresponding event occurs but remain silent otherwise. (e) The convergence curves
of STCA and TDP1. As the learning evolves, the accuracy of STCA increases until convergence, while the accuracies of TDP1 decreases
gradually. This indicates that training spiking neurons to match the desired spike number n is not suitable, and also the spike number is
sensitive to the performance. The results verify the advantages of STCA training on spike clusters rather than on individual spikes. These
curves are averaged over four independent runs.

of spike clusters. The architecture of our model is 128-300-
10.

Figure 4 demonstrates the learning effect of STCA. We
also compare STCA with TDP1 [Yu et al., 2018] which is
the state-of-the art model for solving the TCA problem by
plotting their learning curves on the testing set (Figure 4(e)).
Our model shows a higher performance than TDP1. The rea-
son is that the objective of TDP1 is to fire a desired number
of spikes, which is unreasonable to TCA problem by ignor-
ing the differences between intra-class features and makes the
model unstable and even induces a reduction on recognition
accuracy. In contrast, the objective of STCA is to fire a de-
sired number of “spike clusters”, which is a significant advan-
tage as training on spike cluster is more flexible and less sen-
sitive to input data than training on indivuidual spikes. Thus,
spike clusters in STCA improve the learning effects and net-
works stability of SNNs.

4 Conclusion
We present a new spatio-temporal gradient-based algorithm
called STCA for training DSNNs. Compared with existing
DSNNs, STCA possesses several advantages: 1) The pre-
sented temporal based loss function enables DSNNs to solve
challeging TCA problems. 2) We construct a discrete tem-
poral system to describe the dynamics of the DSNNs with
C-LIF neurons, so the spatio-temporal gradients of DSNNs
can be directly computed by performing BPTT. Besides, we
utilize the mechanism of refractory period of C-LIF neuron to
retain sparse spike representation by preventing neurons from
firing too much spikes. 3) By defining “spike cluster”, STCA
shows greater stability, higher accuracy and lower parameter
sensitivity on the challenging TCA problem.

Acknowledgments
This work was supported by the National Natural Science
Foundation of China under grant 61673283, and the National
Key R&D Program of China under Grant 2017YFB1300201.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1371

References
[Bittner et al., 2014] Rachel Bittner, Justin Salamon, Mike

Tierney, Matthias Mauch, Chris Cannam, and Juan Bello.
Medleydb: A multitrack dataset for annotation-intensive
mir research. In ISMIR, 2014.

[Diehl and Cook, 2015] Peter U Diehl and Matthew Cook.
Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Frontiers in computational
neuroscience, 9:99, 2015.

[Diehl et al., 2015] Peter U Diehl, Daniel Neil, Jonathan Bi-
nas, Matthew Cook, Shih-Chii Liu, and Michael Pfeif-
fer. Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing. In IJCNN, pages
1–8. IEEE, 2015.

[Esser et al., 2015] Steve K Esser, Rathinakumar Ap-
puswamy, Paul Merolla, John V Arthur, and Dharmen-
dra S Modha. Backpropagation for energy-efficient
neuromorphic computing. In NIPS, pages 1117–1125,
2015.

[Gerstner et al., 2014] Wulfram Gerstner, Werner M Kistler,
Richard Naud, and Liam Paninski. Neuronal dynamics:
From single neurons to networks and models of cognition.
Cambridge University Press, 2014.

[Grüning and Bohte, 2014] André Grüning and Sander M
Bohte. Spiking neural networks: Principles and chal-
lenges. In ESANN, 2014.

[Gütig, 2016] Robert Gütig. Spiking neurons can discover
predictive features by aggregate-label learning. Science,
351(6277):aab4113, 2016.

[Jin et al., 2018] Yingyezhe Jin, Wenrui Zhang, and Peng
Li. Hybrid macro/micro level backpropagation for training
deep spiking neural networks. In NIPS, pages 7005–7015,
2018.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua
Bengio, Patrick Haffner, et al. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[Lee et al., 2016] Jun H Lee, Tobi Delbruck, and Michael
Pfeiffer. Training deep spiking neural networks using
backpropagation. Frontiers in neuroscience, 10:508, 2016.

[Nakamura et al., 2000] Satoshi Nakamura, Kazuo Hiyane,
Futoshi Asano, Takanobu Nishiura, and Takeshi Yamada.
Acoustical sound database in real environments for sound
scene understanding and hands-free speech recognition. In
LREC, 2000.

[Neftci et al., 2017] Emre O Neftci, Charles Augustine,
Somnath Paul, and Georgios Detorakis. Event-driven
random back-propagation: Enabling neuromorphic deep
learning machines. Frontiers in neuroscience, 11:324,
2017.

[Neil et al., 2016] Daniel Neil, Michael Pfeiffer, and Shih-
Chii Liu. Learning to be efficient:algorithms for training
low-latency, low-compute deep spiking neural networks.
2016.

[Pons et al., 2017] Jordi Pons, Olga Slizovskaia, Rong
Gong, Emilia Gómez, and Xavier Serra. Timbre analysis
of music audio signals with convolutional neural networks.
In EUSIPCO, pages 2744–2748. IEEE, 2017.

[Qi et al., 2018] Yu Qi, Jiangrong Shen, Yueming Wang,
Huajin Tang, Hang Yu, Zhaohui Wu, and Gang Pan.
Jointly learning network connections and link weights in
spiking neural networks. In IJCAI, pages 1597–1603,
2018.

[Samadi et al., 2017] Arash Samadi, Timothy P. Lillicrap,
and Douglas B. Tweed. Deep learning with dynamic spik-
ing neurons and fixed feedback weights. Neural Compu-
tation, 29(3):578–602, 2017.

[Smith and Lewicki, 2005] Evan Smith and Michael S
Lewicki. Efficient coding of time-relative structure using
spikes. Neural Computation, 17(1):19–45, 2005.

[Tavanaei and Maida, 2019] Amirhossein Tavanaei and An-
thony Maida. Bp-stdp: Approximating backpropagation
using spike timing dependent plasticity. Neurocomputing,
330:39–47, 2019.

[Werbos, 1990] Paul J Werbos. Backpropagation through
time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

[Wu et al., 2018] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu,
and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Fron-
tiers in neuroscience, 12, 2018.

[Xu et al., 2018] Qi Xu, Yu Qi, Hang Yu, Jiangrong Shen,
Huajin Tang, and Gang Pan. Csnn: An augmented spik-
ing based framework with perceptron-inception. In IJCAI,
pages 1646–1652, 2018.

[Yu et al., 2018] Qiang Yu, Haizhou Li, and Kay C Tan.
Spike timing or rate? neurons learn to make decisions for
both through threshold-driven plasticity. IEEE Transac-
tions on Cybernetics, 2018.

[Zhang et al., 2018] Tielin Zhang, Yi Zeng, Dongcheng
Zhao, and Mengting Shi. A plasticity-centric approach
to train the non-differential spiking neural networks. In
AAAI, 2018.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1372

