
Dynamic Item Block and Prediction Enhancing Block
for Sequential Recommendation

Guibing Guo1 , Shichang Ouyang1,∗ , Xiaodong He2 , Fajie Yuan3 and Xiaohua Liu2

1Northeastern University, China
2JD AI Research, Beijing, China

3Tencent, Shenzhen, China
guogb@swc.neu.edu.cn, 1701282@stu.neu.edu.cn, {xiaodong.he, roy.liu}@jd.com,

fajieyuan@tencent.com

Abstract
Sequential recommendation systems have become
a research hotpot recently to suggest users with the
next item of interest (to interact with). However,
existing approaches suffer from two limitations: (1)
The representation of an item is relatively static and
fixed for all users. We argue that even a same item
should be represented distinctively with respect to
different users and time steps. (2) The generation
of a prediction for a user over an item is computed
in a single scale (e.g., by their inner product), ig-
noring the nature of multi-scale user preferences.
To resolve these issues, in this paper we propose
two enhancing building blocks for sequential rec-
ommendation. Specifically, we devise a Dynamic
Item Block (DIB) to learn dynamic item represen-
tation by aggregating the embeddings of those who
rated the same item before that time step. Then,
we come up with a Prediction Enhancing Block
(PEB) to project user representation into multi-
ple scales, based on which many predictions can
be made and attentively aggregated for enhanced
learning. Each prediction is generated by a softmax
over a sampled itemset rather than the whole item
space for efficiency. We conduct a series of exper-
iments on four real datasets, and show that even a
basic model can be greatly enhanced with the in-
volvement of DIB and PEB in terms of ranking
accuracy. The code and datasets can be obtained
from https://github.com/ouououououou/DIB-PEB-
Sequential-RS

1 Introduction
Sequential systems have been a core technique in many real-
world applications. They are used to infer the next item or
action that the users may be interested in from their sequen-
tial behaviors. For example, one may purchase a GPU fan
after buying a GPU; and people may continue to buy books
by their favorite authors or purchase clothes from the online
store where they had a good experience. To make accurate
∗Corresponding author

next-item prediction, it is important to learn multi-scale user
preferences, such as long-term and short-term preferences.

Many approaches have been proposed to resolve the task
of next-item prediction, and they can be broadly classified
into three types. The first type aims to model user prefer-
ence drift by temporal matrix factorization based on heuris-
tic assumptions on user behavior patterns [Koren, 2009].
The second type focuses on the short-term dependency with
the previous items a user just interacted with, and typical
approaches are based on Markov chain [He and McAuley,
2016a; Rendle et al., 2010]. Recently, the models based
on neural networks quickly emerge as the third type to
model user preference. They can capture both short- and
long-term dependency with the interacted items through re-
current neural network (RNN) [Hidasi et al., 2015], con-
volutional neural network (CNN) [Tang and Wang, 2018;
Yuan et al., 2019] and their memory variants [Chen et al.,
2018]. Our work follows the third direction to design an end-
to-end neural model for sequential recommendation.

However, the existing neural sequential models suffer from
two limitations, which may severely degrade the performance
of sequential recommendation. Firstly, the representation of
an item is relatively static and fixed for all users. Researchers
tend to presume that an item will not change over time and
users. We argue that even the same item may be viewed dis-
tinctively for different users at specific time steps. Secondly,
the generation of a prediction for a user towards an item is
computed in a single scale, e.g., by an inner product of their
embedding. Existing works often take a uniform representa-
tion for a user, and thus limit the prediction in a single scale.
We contend that generation should be accomplished at multi-
ple scales to be consistent with the nature of user preference.

To resolve these issues, in this paper we propose two build-
ing blocks to enhance the performance of neural sequential
models. Firstly, we devise a Dynamic Item Block (DIB) to
learn dynamic item representation by aggregating the embed-
dings of those (similar users) who rated or interacted with the
same item before that time step. The importance of different
similar users is determined by an attention mechanism. Sec-
ondly, we come up with a Prediction Enhancing Block (PEB)
to project user representation into multiple scales, based on
which many predictions can be made accordingly and then
attentively aggregated together for enhanced learning. Each

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1373

Figure 1: Structure of Dynamic Item Block (DIB)

prediction is calculated by a softmax function over a sampled
itemset rather than the whole item space for efficiency’s pur-
pose. We construct two end-to-end neural sequential models
by involving both DIB and PEB blocks. To evaluate the effec-
tiveness of our approaches, we conduct extensive experiments
on four real-world datasets, and the results show that our ap-
proach beats other counterparts in terms of ranking accuracy
and even a baseline can be greatly improved with the help of
both DIB and PEB blocks.

2 Our Sequential Building Blocks
In this section, we will elaborate our proposed two build-
ing blocks for sequential recommendations, namely dynamic
item block and prediction enhancing block. To facilitate dis-
cussion, we introduce a number of notations. Suppose I is
the set of all items and let pu and qi be the embedding of user
u and item i. The items that user has rated before can be ar-
ranged into a list, defined as I+u . The target (positive) item
denoted as iup and the set of negative items iun sampled from
I−u = I/I+u for training the iup is denoted as Niup .

2.1 Dynamic Item Block (DIB)
The first sequential building block we propose is Dynamic
Item Block (DIB), which aims to learn dynamic item repre-
sentation associated with those users who also rated or inter-
acted with the item in question before a specific time step.
The general structure of DIB is illustrated in Figure 1. To
be specific, DIB can be viewed as a transformer that takes
the embeddings pu, qi of both user u and item i as input and
then transforms the item embedding qi to a new user-related
embedding dui. The whole process is finished in two steps.

Step 1 :
The first step is to search for users who rated the same item,
i.e., like-minded users sharing similar interest. This step is
specifically useful for the cold-start users who have only rated
few items, and thus depends more on similar users to learn ac-
curate user representation. The process to select similar users
is given in Figure 2. Suppose the current input of DIB is user
u3 and item i. We can search for a number of similar users
having interaction with item i and ordered by interaction time
steps. We find the exact position (i.e., time step) of user u3 in
the user list, and select the users interacting before this time
step, i.e., users u4, u5, u6, u7 in this case. To speed up pro-
cessing, we set a window size K = 3 to only preserve the

Figure 2: The process of selecting similar users within DIB structure

latest K users (relative to the u3’s position), that is, user u7
will be removed from the selection.

Step 2 :
The second step is to aggregate the embeddings of similar
users as the complementary feature embedding cui to item
embedding qi, as shown in Figure 1. Suppose we have cho-
sen K similar users for user u and the embedding of similar
user sui denoted as psui . We use an attention-like structure to
capture the dynamic association between users. Formally, the
attention weight is calculated as follows:

zsui =
exp(p>u psui)∑K
k=1 exp(p

>
u psuk)

(1)

Then, we merge these users’ feature embedding to get the
complementary feature embedding cui as follows:

cui =
K∑

k=1

zsuk · psuk (2)

Finally, the item embedding and complementary feature
embedding are merged together to get the final user-related
embedding for item i, defined by:

dui = merge(qi, cui) (3)
where merge(·) is a function that combines two vectors into
one. The particular choice of merge(·) in our model is a sim-
ple weighted vector addition, that is:

merge(x, y) = x+ αy (4)
where α is a weighting parameter to indicate the importance
of variable y, i.e., the complementary feature embedding cui
in our case.

2.2 Prediction Enhancing Block (PEB)
The second sequential building block we design is the Predic-
tion Enhancing Block (PEB), which aims to project user rep-
resentation into multiple scales such that a number of (item
score) predictions can be done in the meanwhile. The struc-
ture of PEB can be found in Figure 3 (right-side block). The
whole process of PEB can be also completed in two steps.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1374

Step 1 :
In the first step, a user representation pu will be projected into
K embeddings through a fully connected layer, where the k-
th projected embedding is denoted as p̂ku. For each projected
user embedding, we can make a prediction ŷkui over items to
determine the probability of each item i to be selected as the
next recommendation. The probability is often calculated by
a softmax function over all the item space. However, due to
the large volume of items, the calculation will be very expen-
sive and time-consuming.

To resolve this issue, we opt to adopt a negative sampling
strategy to randomly select a subset of items (yet not inter-
acted) for fast softmax computation. The idea here has similar
motivations with [Yuan et al., 2016] and [Guo et al., 2018].
We denote the interacted item as ipu and sampled (negative)
itemset asNiup , and thus the prediction is given by the follow-
ing softmax:

ŷkui =
exp(p̂k>u qi)∑

j∈{i}∪Niup
exp(p̂k>u qj)

(5)

Note that the item space we operate on is reduced from all the
items I to a much smaller space, i.e., the union combination
of current interacted item iup and negative itemset Niup .

Step 2 :
The second step is to attentively aggregate all the projected
predictions into a final value. Although K predictions can
be obtained in the last step, their importance (or reliability)
to final item prediction is not the same. Thus, we project pu
into K reliability coefficient through another layer, where the
k-th coefficient is denoted as βk (the importance of the k-th
prediction).

Specifically, the straightforward goal of a recommenda-
tion loss function is to maximize the predicted probability
of positive items ŷuiup , and minimize that of negative items
ŷuinn . That is, if ŷuiup is high and ŷuiun is low, the prediction
is reliable (i.e., greater importance β); otherwise the predic-
tion is unreliable. In other words, ŷuiup and β are positively
correlated, while ŷuiun and β are negatively associated. Let
aui = |ŷui−β| be the difference between the predicted prob-
ability and reliability coefficient. In this paper, we impose an-
other optimization goal for importance learning: to maximize
auiun and minimize auiup . We use a constant weight denoted
as η (usually set to 0.5) to balance these two goals. The final
loss function is defined as follows:

Lu =
1

K

K∑
k=1

− log
(
η · ykuiup + (1− η) · (1− akuiup)

)
+

∑
in∈Niup

− log
(
η · (1− ykuiun) + (1− η) · akuiun

)
(6)

After the training phase, when test the performance of our
proposed models (will be elaborated in next section), as
shown in Figure 3, we will fuse all the predictions ŷkui to ob-
tain the final predicted probability ŷ∗ui. The weight of each
ŷkui is calculated by normalizing their prediction reliability:

wk =
exp(βk)∑K
j=1 exp(βj)

(7)

Thus, the predicted probability ŷ∗ui that user u is likely to in-
teract with item i in the next time step is given by:

ŷ∗ui =
K∑

k=1

wk · ŷkui (8)

2.3 Models with Sequential Building Blocks
We proceed to present two sequential recommendations by
applying our proposed sequential building blocks, i.e., DIB
and PEB. Two sequence models (GRU) and memory network
(MN) are used as examples in this paper. For ease of dis-
cussion, we denote these two models as GRU-DIB-PEB and
MN-DIB-PEB respectively.

GRU-DIB-PEB
As shown in Figure 3, the GRU-DIB-PEB model will first
transform the embedding of items in the training sequence
through DIB structure. After that, GRU will compress all
the dui into a fixed vector, denoted as hu. Lastly, we get the
final user embedding by concatenating the hu and user feature
embedding pu:

p̂u = concat(hu, pu) (9)
Previous models then will directly use p̂u to compute ŷui

(represent the probability of item i to be the next item that
user u will interact with) by:

ŷui = predict(p̂u, qi) (10)
where predict(·) could be an arbitrary function. The sigmoid
inner product ŷui = σ(p̂>u qi) is a popular implementation.
However, in GRU-DIB-PEB model, we will input p̂u to the
two fully connected layers in PEB and obtain K new user
feature embedding p̂ku and K reliability parameter βk. After
that, during the training phase, Eq. 6 will be adopted as the
loss function. When making prediction, we will use Eq. 8 as
the implementation of predict(·).
MN-DIB-PEB
In the case of memory network, each item will be embedded
to vector qci for memory output other than the feature embed-
ding qi. Suppose we are given an item set {i1, i2 · · · ik} to
be stored in the memory of user u. Each item in the set is
converted into a memory vector, denoted as mi (correspond-
ing to dui in GRU-DIB-PEB). Besides, each item also has a
corresponding output vector mc

i = DIB(qci , pu). Then, we
compute the matching score between pu and each memory
mi by taking the inner product, followed by a softmax func-
tion:

zui = softmax(p>umi) (11)
where zui is a weight vector over the memory. The user
memory vector pmu is then a summation over the memorymc

i ,
weighted by the weight vector zui, defined by:

pmu =
K∑

k=1

zuk ·mc
i (12)

After that, we get the final user embedding by concatenating
the pmu and user feature embedding pu:

p̂u = concat(pmu , pu) (13)
Note that the final prediction part is the same with the

GRU-DIB-PEB model, and thus we omit it for space saving.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1375

Figure 3: Our proposed GRU-DIB-PEB and MN-DIB-PEB models

3 Experiments
3.1 Experiment Setup
Data sets
We conduct our experiments on four real-word datasets, in-
cluding three Amazon datasets1 [He and McAuley, 2016b;
McAuley et al., 2015] and MovieLens-100K2. The Ama-
zon datasets contains user-product purchasing behaviors from
Amazon spanning from May 1996 to July 2014. We evaluate
our models on three product categories, including Movies and
TV, CDs and Vinyl and Kindle Store. To provide sequential
recommendations, we select those users with at least 20 pur-
chasing records for experiments.

Evaluation metrics
To evaluate the performance of recommendation, each of our
data sets is split into training/validation/testing sets. For each
user, we preserve the last two interactions to validation and
testing sets, while the rest interactions are used for training.
To reduce the expensive cost of ranking all items for each
user during evaluation, we use a strategy similar to [He et al.,
2017; Zhang et al., 2018], that is, we randomly sample 999
items that have not been interacted by the user, and then to
rank the target item among the 1000 items. We adopt Re-
call@N and NDCG@N [Yining Wang, 2013] to evaluate the
models. Generally, higher metric values indicate better rank-
ing accuracy.

1http://jmcauley.ucsd.edu/data/amazon/
2https://grouplens.org/datasets/movielens/100k/

Baselines
We compare with the following sequential recommendation
models to justify the value of our approaches.
• FPMC [Rendle et al., 2010]: Factorized personalized

Markov chains, a model combined matrix factorization
and Markov chain.
• GRU4rec [Hidasi et al., 2015]: a session-based recom-

mendation model uses GRU to capture sequential depen-
dencies and make predictions.
• RUMI [Chen et al., 2018]: Item-level RUM adopts the

memory mechanism to manipulate the users’ historical
records in a more explicit and effective manner.
• Caser [Tang and Wang, 2018]: Caser utilizes CNN to

model the union-level sequential patterns by capturing
local sequential patterns of adjacent items.

Note that all the baselines use BPR as the loss function,
which provides the optimal performance. Besides, in order
to analyze the effect of PEB, we applied four other loss func-
tions (below listed) to both MN-DIB and GRU-DIB models.
They are also used as the complementary baselines.
• NCE: Noise-Contrastive Estimation (NCE) is a point-

wise loss which was first introduced by Gutmann and
Hyvarinen [Gutmann and Hyvärinen, 2012].
• BPR: Bayesian Personalized Ranking [Rendle et al.,

2009] is a pairwise ranking loss, which compares the
score of a positive and a negative items.
• TOP1: A ranking loss first devised by [Hidasi et al.,

2015]. It will approximately estimate the relative rank
of the relevant item in a list.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1376

Dataset Metrics FPMC RUMI GRU4Rec Caser GRU-DIB-PEB MN-DIB-PEB Improve

Movielens-100K Recall@10 0.2045 0.3397 0.3546 0.3504 0.4388 0.3887 +23.75%
NDCG@10 0.1007 0.1723 0.1868 0.1833 0.2476 0.2054 +32.55%

CDs and Viny1 Recall@10 0.4244 0.3968 0.3853 0.3389 0.5040 0.5098 +20.12%
NDCG@10 0.2553 0.2571 0.2535 0.2253 0.3501 0.3463 +36.17%

Kindle Store Recall@10 0.4238 0.4556 0.4656 0.4136 0.6066 0.6064 +30.28%
NDCG@10 0.2306 0.2901 0.3046 0.2896 0.4285 0.4184 +40.48%

Movies and TV Recall@10 0.3236 0.3635 0.3869 0.3623 0.4895 0.4631 +26.52%
NDCG@10 0.1686 0.2167 0.2448 0.2297 0.3244 0.2962 +32.52%

Table 1: The performance comparison of baselines and our models, where the best results of baselines and our models are in bold-faced.

Dataset Metrics MN-DIB-
NCE

MN-DIB-
BPR

MN-DIB-
TOP1

MN-DIB-
CE

MN-DIB-
PEB

Improve 1 Improve 2

Movielens-100K Recall@10 0.3738 0.3834 0.2609 0.3908 0.3887 +1.38% -0.54%%
NDCG@10 0.1954 0.2010 0.1326 0.2121 0.2054 +2.19% -3.16%

CDs and Viny1 Recall@10 0.4490 0.4881 0.4204 0.4856 0.5098 +4.45% +4.98%
NDCG@10 0.2807 0.3187 0.2688 0.3341 0.3463 +8.66% +3.65%

Kindle Store Recall@10 0.5357 0.5760 0.3931 0.5849 0.6064 +5.28% +3.68%
NDCG@10 0.3396 0.3763 0.2296 0.4147 0.4184 +11.19% +0.89%

Movies and TV Recall@10 0.4257 0.4429 0.3962 0.4400 0.4631 +4.56% +5.25%
NDCG@10 0.2612 0.2765 0.2385 0.2874 0.2962 +7.12% +3.06%

Table 2: The performance comparison of MN-DIB model with different loss functions. Improve 1: compare PEB with the best sample-based
loss. Improve 2: compare PEB with the cross entropy

• CE: Cross entropy represents the difference between
two probability distribution and it often used as the loss
function in machine learning and optimization.

Parameter settings
We implement our proposed methods and all baselines us-
ing TensorFlow and Adam optimizer [Kingma and Ba, 2014].
For each method, the grid search is applied to find the optimal
settings of hyperparameters using the validation set. These
include embedding dimensions d from {16, 32, 50, 100, 150}
and the learning rate from {0.001, 0.002, 0.005, 0.1, 0.2, 1}.
For RUMI, Caser, MN-DIB, GRU-DIB and GRU4Rec, the
sequence length L is from {3, 5, 10, 15, 20}. For MN-DIB
and GRU-DIB, the window size of latest similar users is cho-
sen from {3, 5, 10, 15}. To compare each loss function fairly,
the sampling number of BPR, TOP1, NCE and PEB is set to
25. We report the results of each method under its optimal
hyperparameter settings.

3.2 Results and Analysis
Overall comparison
Table 1 presents the performance comparison among a num-
ber of baselines and our models, where the percentage of im-
provements our models achieve relative to the best of others
is also given. The experimental results show that significant
improvements (performance improved in 20% to 40%) can
be reached by our models in comparison with others, by inte-
grating the two building blocks in sequential models. Specif-
ically, DIB helps construct better item representation with
similar users as contextual information, while PEB enhances
the prediction in a multi-scale manner for higher recommen-
dation reliability.

Impact of PEB
Table 2 and Figure 4 show the performance comparison when
replacing PEB with traditional predictions. It can be observed
that taking more items into account rather than calculating
the probability independently can help the model obtain bet-
ter performance. The pair-wise loss BPR consistently outper-
forms the point-wise loss NCE. The performance of cross en-
tropy is always better than the sample-based loss, especially
in the ranking accuracy metrics such as NDCG, because it
takes the whole items set into account when making probabil-
ity estimation. Although TOP1 is also a pair-wise function,
but it improperly uses sigmoid(·) to calculate the final loss
instead of log(sigmoid(·)), which limits the updating range
and validity of the parameters in the model and dramatically
degrades the model performance. PEB enables the model to
judge the reliability of its own prediction. Then, by effec-
tively fusing multiple predictions as the final result, the per-
formance of PEB is significantly better than the sample-based
loss functions even the cross entropy. More importantly, com-
pared with cross entropy, the computational cost of PEB de-
creases a lot(from O(N)(N=290,298) to O(K ∗ n)(n=25) in
CDs and Viny1 dataset).

Impact of DIB
We can compare the performance of RUMI with MN-DIB-
BPR and GRU4Rec with GRU-DIB-BPR(in Figure 4) to an-
alyze the impact of DIB, because the network structure used
in each pair are similar and we also use BPR to train the
GRU4Rec and RUMI model. The experimental results show
that huge performance improvements can be obtained by us-
ing DIB and the gap will increase as the sparsity of datasets.
The reason is that DIB could convert the item embedding qi to

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1377

Movies and TV
0.44

0.46

0.48

0.5

R
ec

al
l@

10

G-NCE
G-BPR
G-CE
G-PEB

CDs and Viny1

0.46

0.48

0.5

R
ec

al
l@

10

G-NCE
G-BPR
G-CE
G-PEB

Kindle Store
0.54

0.56

0.58

0.6

0.62

R
ec

al
l@

10

G-NCE
G-BPR
G-CE
G-PEB

Movies and TV

0.28

0.3

0.32

N
D
C
G
@
10

G-NCE
G-BPR
G-CE
G-PEB

CDs and Viny1
0.28

0.3

0.32

0.34

0.36

N
D
C
G
@
10

G-NCE
G-BPR
G-CE
G-PEB

Kindle Store
0.34

0.36

0.38

0.4

0.42

0.44

N
D
C
G
@
10

G-NCE
G-BPR
G-CE
G-PEB

Figure 4: The best performance of GRU-DIB model with different loss functions in three real-world data sets. G-NCE represents the GRU-
DIB model with NCE loss function and other abbreviations follow the same rules

user-related item embedding dui which is well-suited to the
personalized recommendation. Otherwise, the features ex-
tracted from the dynamic similar users help complement the
user profiles for the “cold-start” users.

Optimal value of K used in PEB
Choosing an appropriate value of K in PEB is important.
Through experiments, we found that the optimal value of K
increases as the items in the data set. The reason is that the
loss functions based on sampling only consider a small subset
rather than the whole items when calculate the probability of
each item. Therefore, the more items in the data set, the prob-
ability estimated by them is more inaccurate. To solve this,
PEB teaches the model how to judge the reliability of its pre-
dictions. A larger K means the model can make predictions
more times, which improves the opportunity of obtaining a
more reliable probability estimation. For the small data sets,
such as ml-100k, the K is generally set to 3∼5 to get the best
performance. When the number of items increases to nearly
100,000 (Movies and TV), setting K to 8∼10 is much better.
If the items further increase, K can be set to 15 or higher.

4 Related Work
Nowadays, many approaches have been proposed to model
the sequential patterns of users. [Zimdars et al., 2001] first
described a model based on Markov chain to model the se-
quential patterns of users. The main idea of Markov chain
models is to predict the user’s next action by estimating the
probability of a item-to-item transition matrix. However,
these models often suffered from the data sparsity problem.
In order to solve this, Factorized personalized Markov chains
(FPMC) [Rendle et al., 2010] subsumed the matrix factoriza-
tion(MC) with Markov chains to generate more training data
for each user. Different from the FPMC, [Koren, 2009] only
used the MC to make sequential recommendation. The tran-
sition matrix generated by it will change over time to suit the
drifting users preference. After that, lots of neural network
models were proposed, such as [Hidasi et al., 2015] using re-
current neural network (RNN) to compress the user history

records into a fixed vector and then use it to make predic-
tion. [Chen et al., 2018] adopted memory network to store
and manipulate the users’ previous behaviors in a more ex-
plicit and effective way. By using the external user memory
matrix instead of RNN, the performance got consistently im-
provements. In addition, to model not only the point-level
but also the union-level sequential patterns, [Tang and Wang,
2018] used the convolutional neural network(CNN) to embed
the items rated by a user into a “image” and learn the se-
quential patterns from the local features of the image. More
recently, [Yuan et al., 2019] proposed NextItNet that applied
1D dilated CNN and residual blocks to model both short- and
long- sessions. However, all these models use a static embed-
ding to represent each item, but they ignore a fact that differ-
ent users may be interested in different aspects of a item.

5 Conclusion
In this paper, we proposed two generic building blocks to con-
struct end-to-end neural models for sequential recommenda-
tions. Specifically, Dynamic Item Block (DIB) was proposed
to resolve the issue that traditional approaches treated item
representation as relatively static and fixed, taking no consid-
eration of similar users. Besides, Prediction Enhancing Block
(PEB) was devised to enhance the model prediction by pro-
jecting user representation into a multi-scale space, whereby
many predictions can be made and then aggregated to im-
prove the reliability of predictions. We applies these two
building blocks into GRU and memory network, respectively.
The experimental results on four real-world datasets demon-
strated that our approaches gained significant improvements
relative to other state-of-the-art methods.

Acknowledgments
This work is supported by the JD Grapevine Plan and Fun-
damental Research Funds for the Central Universities un-
der Grant No. N181705007, by the National Natural Sci-
ence Foundation of China under Grants No. 61772125, No.
61702084 and No. 61702090.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1378

References
[Chen et al., 2018] Xu Chen, Hongteng Xu, Yongfeng

Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and Hongyuan
Zha. Sequential recommendation with user memory net-
works. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, pages 108–
116, 2018.

[Guo et al., 2018] Guibing Guo, Shichang Ouyang, Fajie
Yuan, and Xingwei Wang. Approximating word ranking
and negative sampling for word embedding. In Proceed-
ings of the 28th International Joint Conference on Artifi-
cial Intelligence, 2018.

[Gutmann and Hyvärinen, 2012] Michael U Gutmann and
Aapo Hyvärinen. Noise-contrastive estimation of unnor-
malized statistical models, with applications to natural im-
age statistics. Journal of Machine Learning Research,
13(Feb):307–361, 2012.

[He and McAuley, 2016a] Ruining He and Julian McAuley.
Fusing similarity models with markov chains for sparse
sequential recommendation. In 2016 IEEE 16th Interna-
tional Conference on Data Mining (ICDM), pages 191–
200, 2016.

[He and McAuley, 2016b] Ruining He and Julian McAuley.
Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In proceed-
ings of the 25th international conference on world wide
web, pages 507–517, 2016.

[He et al., 2017] Xiangnan He, Lizi Liao, Hanwang Zhang,
Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collab-
orative filtering. In Proceedings of the 26th International
Conference on World Wide Web, pages 173–182, 2017.

[Hidasi et al., 2015] Balázs Hidasi, Alexandros Karat-
zoglou, Linas Baltrunas, and Domonkos Tikk. Session-
based recommendations with recurrent neural networks.
arXiv preprint arXiv:1511.06939, 2015.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Koren, 2009] Yehuda Koren. Collaborative filtering with
temporal dynamics. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pages 447–456, 2009.

[McAuley et al., 2015] Julian McAuley, Christopher Targett,
Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceed-
ings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 43–52, 2015.

[Rendle et al., 2009] Steffen Rendle, Christoph Freuden-
thaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In
Proceedings of the twenty-fifth conference on uncertainty
in artificial intelligence, pages 452–461, 2009.

[Rendle et al., 2010] Steffen Rendle, Christoph Freuden-
thaler, and Lars Schmidt-Thieme. Factorizing personal-
ized markov chains for next-basket recommendation. In
Proceedings of the 19th international conference on World
wide web, pages 811–820, 2010.

[Tang and Wang, 2018] Jiaxi Tang and Ke Wang. Person-
alized top-n sequential recommendation via convolutional
sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Min-
ing, pages 565–573, 2018.

[Yining Wang, 2013] Yuanzhi Li Di He Wei Chen Tie-
Yan Liu Yining Wang, Liwei Wang. A theoretical analysis
of normalized discounted cumulative gain (ndcg) ranking
measures. In Proceedings of the 26th Annual Conference
on Learning Theory, 2013.

[Yuan et al., 2016] Fajie Yuan, Guibing Guo, Joemon M
Jose, Long Chen, Haitao Yu, and Weinan Zhang.
Lambdafm: learning optimal ranking with factorization
machines using lambda surrogates. In Proceedings of
the 25th ACM International on Conference on Informa-
tion and Knowledge Management, pages 227–236. ACM,
2016.

[Yuan et al., 2019] Fajie Yuan, Alexandros Karatzoglou,
Ioannis Arapakis, Joemon M Jose, and Xiangnan He. A
simple convolutional generative network for next item rec-
ommendation. In Proceedings of the Twelfth ACM Interna-
tional Conference on Web Search and Data Mining, pages
582–590. ACM, 2019.

[Zhang et al., 2018] Quangui Zhang, Longbing Cao,
Chengzhang Zhu, Zhiqiang Li, and Jinguang Sun. Cou-
pledcf: Learning explicit and implicit user-item couplings
in recommendation for deep collaborative filtering. In
IJCAI, pages 3662–3668, 2018.

[Zimdars et al., 2001] Andrew Zimdars, David Maxwell
Chickering, and Christopher Meek. Using temporal data
for making recommendations. In Proceedings of the Sev-
enteenth conference on Uncertainty in artificial intelli-
gence, pages 580–588, 2001.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1379

