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Abstract
Trust-aware recommender systems have received
much attention recently for their abilities to capture
the influence among connected users. However,
they suffer from the efficiency issue due to large
amount of data and time-consuming real-valued op-
erations. Although existing discrete collaborative
filtering may alleviate this issue to some extent,
it is unable to accommodate social influence. In
this paper we propose a discrete trust-aware ma-
trix factorization (DTMF) model to take dual ad-
vantages of both social relations and discrete tech-
nique for fast recommendation. Specifically, we
map the latent representation of users and items
into a joint hamming space by recovering the rating
and trust interactions between users and items. We
adopt a sophisticated discrete coordinate descent
(DCD) approach to optimize our proposed model.
In addition, experiments on two real-world datasets
demonstrate the superiority of our approach against
other state-of-the-art approaches in terms of rank-
ing accuracy and efficiency.

1 Introduction
Trust-aware recommender systems have received much atten-
tion recently due to their abilities of capturing the influence
among connected users. Trust data is a good supplement to
the sparse rating data and furthermore provides more accurate
prediction rating [Ma et al., 2008; Mohsen and Martin, 2010;
Yang et al., 2013; Guo et al., 2015]. In addition, collabora-
tive filtering (CF) have been widely used in trust-aware rec-
ommender systems due to their simplicity. However, such
an approach often suffers from serious efficiency dilemma on
large data sets. Specifically, the main task in a recommen-
dation system is to recommend top-k items to meet users’
favorite interests, in which it requires a huge amount of com-
putations to calculate the user’s rating of each item and then
rank it according to the rating.

Recently, the discrete matrix factorization technique cap-
tures attention due to its recommendation efficiency. It adopts
hash technology [Zhang et al., 2016; Zhang et al., 2017;
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Lian et al., 2017; Liu et al., 2018] to map latent features
of users and items to a joint hamming space and transforms
the items recommendation task into a similarity search prob-
lem, which greatly improves the recommendation efficiency.
Specifically, binary code can be executed with bit operation.
At the same time, binary code can be searched quickly: Since
the users and the items are in the joint hamming space, when
recommending items for a user, it is only necessary to find
the items with a small hamming distance around the user, this
makes our recommendation time independent of the number
of items. In addition, thanks to the binary code, we need less
memory to store trained latent feature of users and items.

By incorporating trust-aware and hash technology, we pro-
pose two new models, called DTMF model and DTMF-D
model, to inherit the dual advantages of CF-based trust-aware
recommendation and discrete matrix factorization, i.e., high
accuracy and fast efficiency. To the best of our knowledge,
this is the first work to perform hash technique on matrix fac-
torization for trust-aware recommendation 1. Specifically, the
challenges and our contributions are briefly summarized as:
• The first challenge is how to effectively learn binary

code from real-values based trust-aware matrix without
sacrificing too much information. We direct learning the
latent feature of truster and trustees, and items as binary
codes via discrete optimization. By adding balanced and
decorrelated constraints for each bits, we are able to rep-
resent richer information in more compact code.
• The second challenge is how to efficiently optimize

the proposed new discrete matrix factorization mod-
els which consider extra trust relationships among each
user. We adopt an efficient discrete optimization algo-
rithm to solve each subproblems alternately. This alter-
nating optimization technique could constantly reduce
the quantization loss from real value to discrete value.
• We demonstrate the superiority of proposed models

and discrete optimization methods on two real-world
datasets against other state-of-art models and solvers.
Preliminary experiments indicate that the jointly pro-
posed models and discrete optimization methods can
simultaneously improve the recommendation efficiency
and ensure the predicted accuracy.

1We acknowledge a concurrent work [Liu et al., 2019], which
has not appeared online when we submitted our work.
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2 Related Work
The performance and efficiency of recommendation system
are two important indexes in practical application, there’s
been a lot of research on this, can be summarized as the fol-
lowing trust-based Recommendation and discrete hash:

2.1 Trust-based Recommendation
Social information based recommendation system has been
widely studied, the basic idea of the model is to promote the
user to employ sharing rating data and trust data simultane-
ously. [Ma et al., 2008] firstly proposed probability matrix
factorization to solve the data sparsity and poor prediction
accuracy problem by adopting rating data and user’s social
network data. [Mohsen and Martin, 2010] believed that the
rating of a trusted user should directly affect the latent fea-
ture of the user, rather than the final rating of user. Therefore,
they proposed that the latent feature of users should be close
to the average of all the latent feature of users he trusts. [Ma
et al., 2011] systematically illustrated how to design the ob-
jective function of a social regularization. [Yang et al., 2013]
proposed a hybrid model that combines both a truster model
and a trustee model, in which a user should consider both the
influence of his truster users and the influence of his trustee
users. [Guo et al., 2015] taken into account both the explicit
and implicit influences of rating and trust information in pre-
dicting ratings. As mentioned above, this type of recommen-
dation suffered from the efficiency issue on large datasets.

2.2 Discrete Hashing
Hashing technique is an efficient approach for fast similarity
search and its detailed description can be founded in [Wang et
al., 2016]. The pioneer work [Abhinandan et al., 2007] gen-
erated hash code based on the user’s history behavior by using
Locality-Sensitive Hashing algorithm. [Zhou and Zha, 2012]
proposed to learn binary code to tackle the efficiency problem
of making recommendations in the case of large users and
items. [Zhang et al., 2014] adopted hashing technique and
considered that recommendation should be focused on users’
preference over items rather than their similarities, so they
propose a novel model to solve the challenge. To summa-
rize these before work, learning hash code can be regarded as
two independent stages: relaxed learning and binary quanti-
zation. Due to the large quantization accuracy loss in the two
stages discrete optimization algorithm, [Zhang et al., 2016]
first transformed the two-stage discrete optimization into a
joint optimization and by introducing the balanced and decor-
related constraints, more abundant information can be learned
with less bit. In addition, some work has added some auxil-
iary information to the discrete collaborative filtering. [Zhang
et al., 2017] used hashing technique to personalized recom-
mendations from implicit feedback, [Lian et al., 2017] used
textual content information to discrete matrix factorization
whose model extended the recommendation task from regres-
sion to classification.

To the best of our knowledge, all these discrete collabo-
rative filtering algorithms ignored the important social rela-
tionships. However, trust information could contain a strong
correlation with taste, it has been independently exploited to

improve the predictive performance. Our model fills in the
gap of the discrete model and trust-aware model by simulta-
neously learning binary code of truster and trustee.

3 Our Model
For better readability, we first denote some necessary nota-
tions. Generally, we use bold uppercase and lowercase let-
ters to represent matrices and vectors, respectively; and adopt
non-bold letters for scalars. In particular, A represents a ma-
trix with a suitable dimension, where ai is the i-th column
vector and Aij is the (i, j)-th component of matrix A. Be-
sides, we use ||A||F and tr(A) to denote the Frobenius norm
and trace of matrix A, respectively.

3.1 DTMF Model
In our DTMF model, we denote B = [b1,b2, . . . ,bm] ∈
{±1}r×m and D = [d1,d2, . . . ,dn] ∈ {±1}r×n as r-length
(r � m,n) binary representation of users and items respec-
tively, where m,n is the number of users and items. Thus
a user’s preference for an item can be measured by the com-
mon bits [Zhou and Zha, 2012] of their latent feature vector in
Hamming space. We define the Hamming similarity between
user i and item j as follows:

simH(bi,dj) = 1− 1

r
distH(bi,dj) =

1

r

r∑
k=1

I(bik = djk)

=
1

2r
(

r∑
k=1

I(bik =djk)+r−
r∑

k=1

I(bik 6=djk))

=
1

2r
(r +

r∑
k=1

bikdjk) =
1

2
+

1

2r
b>i dj , (1)

where I(bik, djk) is 1 when bik = djk is true, otherwise is 0.
distH(bi,dj) is the hamming distance between bi and dj .
In other words, for an observed rating Sij ∈ [0, 1], we can
transform it to Sij ← 2rSij − r such that the inner product
b>i dj can be used to approximate such a value by Eq. (1).

For trust information, let W = [w1,w2, . . . ,wm] ∈
{±1}r×m be the binary vectors of trustees, i.e., those trusted
by some other users. Likewise, the inner product b>i wt

of user i and trustee t can be used to approximate an ob-
served trust value Tit ∈ [0, 1] after being transformed by
Tit ← 2rTit − r according to Eq.(1).

Finally, the main goal of our work is to reconstruct the in-
teractions of both user-item ratings and user-user trust as ac-
curately as possible, whereby the binary (and compact) rep-
resentation of users and items can be learned for an efficient
recommendation.

In addition, we follow the suggestions of [Zhou and Zha,
2012] to further consider the balanced and de-correlated con-
straints, in order to maximize the information binary codes
can represent. Specifically, the balanced constraint applies
the principle of maximum entropy of uniformly distributed
information in information theory, while the de-correlated
constraint contends that each bit should be as independent
as possible. To sum up, we define our objective function as
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shown in Eq.(2), given by:

argmin
B,D

=
∑
i,j∈Ω

(Sij − b>i dj)
2 + λ

∑
i,k∈Γ

(Tit − b>i wt)
2

s.t. B ∈ {±1}r×m; D ∈ {±1}r×n; W ∈ {±1}r×m;

B1m = 0; D1n = 0; W1m = 0;︸ ︷︷ ︸
Balanced

BB> = mIr; DD> = nIr; WW> = mIr,︸ ︷︷ ︸
Decorrelated

(2)
where λ is a trade-off parameter to indicate the importance of
trust reconstruction for overall rating prediction.

Note that it is NP-hard to directly solving problem (2).
For the ease of problem solving, we soften the balanced
and de-correlated constraints by defining three sets B,D,W
so as to minimize their distances to B, D, W. Take B as
an example since other variables basically follow the same
definitions. Specifically, it is defined as B = {X ∈
Rr×m|X1m = 0; XX> = mIr}, and the distance as
dist(B,B) = minX∈B ||B−X||F . Therefore, the objective
function Eq.(2) can be rewritten as follows:

argmin
B,D,W

∑
i,j∈Ω

(Sij − b>i dj)
2 + λ

∑
i,t∈Γ

(Tit − b>i wt)
2

+ αdist2(B,B) + βdist2(D,D) + γdist2(W,W)

s.t. B ∈ {±1}r×m; D ∈ {±1}r×n; W ∈ {±1}r×m;

X1m = 0; Y1n = 0; Z1m = 0;

XX> = mIr; YY> = nIr; ZZ> = mIr,

where α, β, γ > 0 are used to indicate the degree of proxim-
ity between the two matrices. As B>B and X>X are con-
stant, we can use 2αtr(B>X) to substitute ||B−X||F for
optimization, which also holds for D and W. We derive the
following optimization function:

argmin
B,D,W,X,Y,Z

∑
i,j∈Ω

(Sij − b>i dj)
2 + λ

∑
i,t∈Γ

(Tit − b>i wt)
2

− 2αtr(B>X)− 2βtr(D>Y)− 2γtr(W>Z)

s.t. B∈{±1}r×m; D∈{±1}r×n; W∈{±1}r×m;

X1m = 0; Y1n = 0; Z1m = 0;

XX> = mIr; YY> = nIr; ZZ> = mIr.

3.2 DTMF-D Model
At the same time, we also propose an alternative way to use
trust data termed as the DTMF-D model. Its basic idea is to
impose that two users with trust relationship should be in a
closed position in hamming space, that is, to minimize the
hamming distance between two trust users distH(bi, bt).
argmin

B,D

∑
i,j∈Ω

(Sij − b>i dj)
2 + λ

∑
i,t∈Γ

distH(bi,bt)

s.t. B ∈ {±1}r×m; D ∈ {±1}r×n;

B1m = 0; D1n = 0; BB> = mIr; DD> = nIr.

We soften the balanced and de-correlated constraints and
adopt Eq. (1) to compute the hamming distance. In this way,

we can formulate the following objective function:

argmin
B,D,X,Y

∑
i,j∈Ω

(Sij − b>i dj)
2 + λ

∑
i,t∈Γ

(
r

2
− 1

2
b>i bt)

− 2αtr(B>X)− 2βtr(D>Y)

s.t. B ∈ {±1}r×m; D ∈ {±1}r×n;

X1m = 0; Y1n = 0; XX> = mIr; YY>= nIr.

We present DTMF-D to show how trust can be utilized in
other manners for discrete collaborative filtering, but till far
we have found that DTMF generally gets better performance
than the others through extensive experimental study. We do
not show the detailed results in Section 4, but instead focus
more on the evaluation of our main approach DTMF.

3.3 Optimization
We use an alternative optimization technique to solve the
DTMF models, which alternately update the variables B, D,
W, X, Y and Z. The detailed algorithm description is pre-
sented in Algorithm 1. Below, we show that each subproblem
has a closed-form solution.

B-subproblem
In this subproblem, we aim to optimize B with fixed D, W, X,
Y, Z. We can parallelly update each column bi of B accord-
ing to the following binary optimization:

argmin
bi∈{±1}r

b>i (
∑
j∈Ωi

djd
>
j )bi − 2(

∑
j∈Ωi

Sijd
>
j )bi − 2αx>i bi

+ λb>i (
∑
t∈Γi

wtw
>
t )bi − 2λ(

∑
t∈Γi

Tijw
>
t )bi,

where Ωi,Γi are the set of rated items and trusted users of
user i, respectively.

Due to the existence of discrete constraints, such a problem
becomes NP-hard to solve. Instead, we use Discrete Coordi-
nate Descent (DCD) to update bi bit to bit. Let bik be the
k-th coordinate in bi and bik̄ be the rest of bi excluding bik.
We then update bi bit by bit using the following formula:

bik ← sgn(K(b̌ik, bik))

ˇbik =
∑
j∈Ωi

(Sij − d>jk̄b>i k̄)djk + αxik

+ λ
∑
t∈Γi

(Tit −w>t k̄b>i k̄)wtk,

(3)

where sgn(·) is a sign function, K( ˇbik, bik) is a function such
that K( ˇbik, bik) = ˇbik if ˇbik 6= 0, and K( ˇbik, bik) = bik
otherwise. It does not update bik when ˇbik is equal to 0.

D-subproblem
In this subproblem, we optimize D with fixed B, W, X, Y, Z.
Similar to the B-subproblem, we parallelly update D accord-
ing to

argmin
dj∈{±1}r

d>j (
∑
i∈Ωj

bib
>
i )dj − 2(

∑
i∈Ωj

Sijb
>
i )dj − 2βy>j dj .

We also use Discrete Coordinate Descent (DCD) to update
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dj bit to bit, and each bit djk based on the following rule:

djk ← sgn(K( ˇdjk, djk))

ˇdjk =
∑
i∈Ωj

(Sij − b>i k̄d>j k̄
)bik + βyjk.

(4)

W-subproblem
Similar to the D-subproblem, we parallelly update W accord-
ing to

argmin
wt∈{±1}r

w>t (
∑
i∈Γt

bib
>
i )wt − 2(

∑
i∈Γt

Titb
>
i )wt − 2γz>t wt.

We use DCD to update wt based on the following rule:

wtk ← sgn(K(w̌tk, wtk))

w̌tk =
∑
i∈Γt

(Tit − b>i k̄w>t k̄)bik + γztk.
(5)

X-subproblem
In this subproblem, we aim to optimize X with fixed B, D, W,
Y, Z. The optimization for X is:

argmax
X

tr(B>X), s.t. X1m = 0; XX> = mIr.

Inspired by [Liu et al., 2014], we denote a matrix J =
I − 1

n11>, by Singular Value Decomposition (SVD), we

have B̄ = BJ = PBΣBQ>B, where PB ∈ Rh×h
′

and

QB ∈ Rm×h
′

are the matrix of the left- and right- singu-
lar vectors corresponding to the first h

′
(≤ h) singular values

of matrix Σ, respectively. In fact, we perform SVD for the
small h× h matrix B̄B̄> = [PB P̂B]Diag[Σ2

B 0][P P̂B]>,
where P̂B are the eigenvectors of the zero eigenvalues. By
the definition of SVD, we have QB = B̄>PBΣB

−1. In

addition, we obtain additional Q̂B ∈ R
m×(h−h

′
)

by Gram-
Schmidt orthogonalization based on [QB 1] in which B sat-

isfies B1 = 0. Thus, we have Q̂B
>

1 = 0. Meanwhile,
since QB and B̄ have the same row space, and B̄1 = 0, so
we have Q>B1 = 0. We can get [QB Q̂B ]>1 = 0, which
implies X1 = 0. At the same time, we can get XX> =

m[PB P̂B][QB Q̂B]>[QB Q̂B][PB P̂B]> = mI. We can
prove that such X is the optimal solution, which can be re-
ferred to [Zhang et al., 2016]. So we can get the closed-form
solution of X-subproblem is

X←
√
m[PB P̂B][QB Q̂B]>. (6)

Y-subproblem
In this subproblem, we aim to optimize Y with fixed B, D, W,
X, Z. The objective of Y-subproblem is:

argmax
Y

tr(D>Y), s.t. Y1n = 0; YY> = nIr.

Similar with X-subproblem, we can derive a closed-form so-
lution as follows:

Y ←
√
n[PD P̂D][QD Q̂D]>. (7)

Algorithm 1 Discrete Trust-aware Matrix Factorization
Input: S: ratings matrix; Γ: trusts matrix; r: code length
Output: user,item binary code:B, D

1: Initialization: B, W, X, Z ∈ Rr×m and D, Y ∈ Rr×n

2: while not converge do
3: for i ∈ {1, . . . ,m} do
4: repeat
5: use Eq.(3) to update Bi bit by bit (r bits in total)
6: until bit converge
7: end for
8: for j ∈ {1, . . . , n} do
9: repeat

10: use Eq.(4) to update Dj bit by bit (r bits in total)
11: until bit converge
12: end for
13: for k ∈ {1, . . . ,m} do
14: repeat
15: use Eq.(5) to update Wk bit by bit (r bits in total)
16: until bit converge
17: end for
18: update X by Eq.(6)
19: update Y by Eq.(7)
20: update Z by Eq.(8)
21: end while
22: return B, D to evaluate

Z-subproblem
In this subproblem, we aim to optimize Z with fixed B, D, W,
X, Y. The goal of Z-subproblem is:

argmax
Z

tr(W>Z), s.t. Z1m = 0; ZZ> = mIr.

Similar with X-subproblem, we can get the closed-form solu-
tion of Z-subproblem as follows:

Z←
√
m[PW P̂W][QW Q̂W]>. (8)

3.4 Better Initialization of Discrete Problems
Since our DTMF model deals with a mixed-integer non-
convex optimization problem, better initialization usually
contributes to achieving faster convergence and better local
optimal solutions, as pointed out by [Zhang et al., 2016;
Lian et al., 2017]). This is done by solving the following re-
laxation optimization problem, i.e., by replacing real-valued
variables U, V, F with binary ones B, D, W, respectively.

argmin
U,V,F,X,Y,Z

∑
i,j∈Ω

(Sij − u>i vj)
2 + λ

∑
i,t∈Γ

(Tit − u>i ft)
2

− 2αtr(U>X)− 2βtr(V>Y)− 2γtr(F>Z)

+ α||U||2F + β||V||2F + γ||F||2F
s.t. X1m = 0; Y1n = 0; Z1m = 0;

XX> = mIr; YY> = nIr; ZZ> = mIr.

We can use gradient descent algorithm to solve U-, V-, and
W-subproblem, and take the SVD method to solve X-, Y-,
and Z-subproblem. Assuming the solutions are denoted by
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Figure 1: Performance (vs. Discrete) of NDCG@K on Epinions and Douban Datasets, respectively

U∗, V∗, F∗, X∗, Y∗, Z∗, we can then initialize the discrete
objective function as follows:

B← sgn(U∗),D← sgn(V∗),W← sgn(F∗),

X← X∗,Y ← Y∗,Z← Z∗.

4 Experiments
4.1 Experimental Settings
Datasets and Baselines
Two real-world datasets are used in our experiments, namely
Epinions2 and Douban3. Both datasets consist of social
networks and rating data. Note that Epinions supports the
concept of directed trust, while Douban takes bi-directional
friendship as social connections. The statistics of the two
datasets are presented in Table 1.
We compare with the following approaches:

• BCCF [Zhou and Zha, 2012]: It is a two-stage binarized
collaborative filtering method with a relaxation stage
and a quantization stage.

• DCF [Zhang et al., 2016]: It is the first binarized CF
method that can jointly optimize the binary codes.

• TrustMF [Yang et al., 2013]: It is a real-valued matrix
factorization method based upon both user-item ratings
and trust information.

Evaluation method
In our experiments, for each user, we randomly selected 50%
as training data and the rest as test data. We perform each ex-
periment five times and report the average results as the final
performance. The Normalized Discounted Cumulative Gain

2http://www.trustlet.org/wiki/Epinions dataset
3https://www.cse.cuhk.edu.hk/irwin.king.new/pub/data/douban

Dataset User Item Rating Trust
Epinions 49,290 139,738 664,824 487,183
Douban 129,490 58,541 16,830,839 1,692,952

Table 1: Statistics of the Datasets

(NDCG) is used as our evaluation metric to estimate the qual-
ity of recommendation accuracy [Valizadegan et al., 2009].
Generally, higher NDCG values indicate better ranking accu-
racy.

Parameter settings
The parameters of all the methods are either determined
by empirical study or suggested by the original paper.
Specifically, for BCCF, we tune hyper-parameters λ within
[10−4, . . . , 10−2]. The hyper-parameters α and β of DCF are
tuned with [10−4, . . . , 102]. For TrustMF, we adopt the pa-
rameter settings recommended by the authors: λ = 0.001
and λT = 1. For DTMF proposed in this paper, we search
α, β, γ, and λ from [10−4, . . . , 103].

4.2 Results and Analysis
Compared to discrete models
In Figure 1, we give the NDCG@1 to NDCG@10 values for
all the compare methods on two datasets, and observe that:
• Compare of BCCF: The performance of BCCF is much

lower than that of both DCF and DTMF, which are dis-
crete methods. This is because BCCF is a two-stage
discretization method, which brings a large quantization
loss. Both DCF and DTMF are joint optimization dis-
crete methods, and thus the characteristics of real-valued
and discrete-valued transformation are well preserved.
• Compare of DCF: The results show that our approach

DTMF is consistently better than DCF. We attribute it
to the underlying assumption that users are socially con-
nected and mutually influenced with each other. Social
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ties have a positive impact on recommendation perfor-
mance. In contrast, DCF assumes that all users are in-
dependent identically distributed, which thus ignores the
relationships among users.
• Compare of datasets: By comparing the Douban with

Epinions dataset, we find that our model DTMF is more
improved than DCF and BCCF in the Douban dataset. It
may be explained by the fact that Douban provides more
social information than Epinions (see Table 1).

Compared to real-valued model
The purpose of this part is to investigate if our discrete DTMF
performs closely to the real-valued model, i.e., TrustMF. The
results are shown in Figure 2. It can be seen that DTMF
reaches very close NDCG values to TrustMF on Epinions,
whereas it beats TrustMF on Douban in the case of 32 bits.
Note that other results with diffrent bits basically follow the
similar trend, and thus we omit them for space saving. The re-
sults may be explained in two aspects. First, Douban provides
more social information than Epinions (see Table 1), lead-
ing to more exposure of user influence on each other. Sec-
ond, Douban adopts the concept of friendship (bi-directional)
while Epinions support the connections of trust (directed). By
definition, trust is generally believed a stronger social tie than
friendship. Thus, trust-aware real-valued model TrustMF
performs worse in Douban, while discrete DTMF may be
more applicable in different social datasets because of discre-
tion operations. As a conclusion, discrete trust-aware model
achieves comparable or even better performance than the real-
valued one, and demonstrates better application to different
social ties.

Efficiency study
Recommendation efficiency is an important aspect to study,
and the results regrading to data size and code length are de-
picted in Figure 3. The experiments are executed on Douban
due to its greater size. Firstly, we fix the code length as 8 bits,
and gradually increase the size of training data. Secondly,
we fix the training ratio (50% for training), and then tune the
value of code length. Consistently, in both cases, the time re-
quired per iteration will be linearly increased, indicating the
potential to be applied in large-scale datasets. Besides, we
can save the learned model in smaller memory after model
training. Note that our results are consistent with the conclu-
sion of existing discrete collaborative filtering models [Zhang
et al., 2016; Liu et al., 2018], that is, the recommendation ef-
ficiency is much better than that of real-valued counterparts.
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Figure 2: Performance comparison with TrustMF in NDCG@K
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Figure 3: Efficiency w.r.t. data size and code length on Douban

10−2 100 102
0.8

0.81

0.82

0.83

lambda λ

N
D

C
G

@
10

Code Length: 8 bit

100 101 102 103
0.83

0.84

0.85

lambda λ

N
D

C
G

@
10

Code Length: 64 bit

Figure 4: Impact of Hyper-parameter λ on Douban
As a result, discrete models can reach comparable perfor-
mance and better efficiency, and thus even suitable for search
problems.

Impact of hyper-parameter
Parameter λ controls the importance of trust modeling for the
overall performance, and the results are illustrated in Fig-
ure 4. It can be observed that in general tuning values of
parameter λ will not greatly change the overall performance.
The NDCG values vary in a relatively small range. Neverthe-
less, a proper setting of parameter λ can help reach the best
performance. The optimal setting is also a dataset specific.

5 Conclusions
In this paper, we proposed a novel discrete trust-aware matrix
factorization model called DTMF. It took advantages of both
hash technique (for better efficiency) and social influence
(for better accuracy) to decompose user-item ratings, which
mapped both users and items into a joint hamming space. We
applied an efficient discrete optimization algorithm to resolve
each subproblem of our model alternatively. The results on
two real datasets demonstrated that our approach can obtain
better efficiency yet preserve comparable (or even better) ac-
curacy in comparison with a number of counterparts.
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