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Abstract
Flow is an affective state of optimal experience,
total immersion and high productivity. While of-
ten associated with (professional) sports, it is a
valuable information in several scenarios ranging
from work environments to user experience eval-
uations, and we expect it to be a potential reward
signal for human-in-the-loop reinforcement learn-
ing systems. Traditionally, flow has been assessed
through questionnaires which prevents its use in
online, real-time environments. In this work, we
present our findings towards estimating a user’s
flow state based on physiological signals measured
using wearable devices. We conducted a study with
participants playing the game Tetris in varying dif-
ficulty levels, leading to boredom, stress, and flow.
Using an end-to-end deep learning architecture, we
achieve an accuracy of 67.50% in recognizing high
flow vs. low flow states and 49.23% in distinguish-
ing all three affective states boredom, flow, and
stress.

1 Introduction
The research field Affective Computing is dealing with rec-
ognizing, processing, interpreting, and simulating human
affects and emotions [Picard, 2003; Lisetti, 1998; Picard,
1999]. With regard to the goal of recognizing emotions, typ-
ical approaches rely on various types of sensor data which
can be analyzed to infer information about the subject’s af-
fective state. Typical inputs for such analyses are images
[Mollahosseini et al., 2016; Mollahosseini et al., 2017],
videos [Baveye et al., 2015; Wang and Ji, 2015], audio
data [Xu et al., 2005], text [Cambria, 2016] and physiolog-
ical signals such as heart rate (HR) or electrodermal activ-
ity (EDA) [Zhai and Barreto, 2006; Kurniawan et al., 2013;
Nacke and Lindley, 2008a].

Apart from basic emotions such as being happy or sad,
other psychological models such as the flow theory [Csik-
szentmihalyi, 1990] can be a valuable construct to assess a
user’s affective state and often tend to be more directly ac-
tionable compared to generic emotional states. The state of
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flow is characterized by optimal experience, total immersion
and high productivity, making it a valuable piece of informa-
tion when assessing user experiences, from user interfaces to
games to whole environments. Flow is usually formed when
the challenge an individual is facing matches his or her skill
level [Csikszentmihalyi and Csikszentmihalyi, 1975]. If the
challenge is too easy compared to the individual’s capabil-
ities, the individual can get bored (and consequently unfo-
cused). If the challenge is too difficult, however, the individ-
ual is overwhelmed and can get stressed. This is potentially
leading to a burn-out of the individual if the situation per-
sists over a longer time span. The sweet spot lies in between,
when the subject feels being in control of the situation, can
totally immerse in the task, and challenge and skill level are
balanced.

Traditionally, whether a subject experiences flow or not is
assessed through questionnaires [Jackson and Marsh, 1996;
IJsselsteijn et al., 2013]. Although extensive research has
been conducted on how to assess flow using scales, it has
the disadvantage of being only applicable after the actual oc-
currence of flow and requires manual effort from the subject.
In contrast, automatic flow recognition based on sensor data
would overcome this limitation and would be applicable un-
obtrusively and in real-time.

Extant research in psychology has examined physiological
aspects of flow experiences [Keller et al., 2011; Harmat et
al., 2015]. One set of suitable data inputs is comprised of
various kinds of physiological data, e.g., HR or EDA. How-
ever, the approaches and methods in these cases are based
on manual examination of the physiological measurements
by experts and typically use expensive, stationary equipment
for sensing. The question arises whether the interpretation of
physiological signals with regard to the flow theory can be au-
tomatized, especially when using more real-life-suitable de-
vices such as wrist-worn devices. Real-time, automatic flow
measurement could then – among other fields of application –
be applied in human-in-the-loop reinforcement learning (RL)
systems, by enabling socially interactive agents to incorpo-
rate affective states as reward signals. Preliminary results of
our suggested approach have been published in an extended
abstract [Maier et al., 2019]. This work contains major im-
provements with regard to the study setup, the dataset size,
pre-processing, and contains a significantly more rigorous
evaluation and comparison to related methods.
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Contributions We propose a method to automatically mea-
sure flow using physiological signals from wrist-worn de-
vices. The method is based on a convolutional neural network
(CNN) architecture. To the best of our knowledge, this is the
first attempt to apply end-to-end deep learning for flow clas-
sification. The performance of the developed model is cross-
evaluated and compared to existing methods for flow classifi-
cation. Our DeepFlow model does not only allow for recog-
nizing high vs. low flow, but also allows to estimate whether
the user is under- or overchallenged (i.e., bored or stressed)
when not experiencing flow. Furthermore, DeepFlow is able
to learn both tasks and we find that the importance of BVP-
and EDA-based information is different for each of the two
tasks.

2 Physiological Signals and Related Work
Physiological signals are widely used to recognize medical
conditions, but also to infer psychological states, human af-
fective states in particular. Previous work, both from the
field of psychology as well as from computer science, has
used physiological signals to make inferences regarding hu-
man emotions [Anders et al., 2004; Appelhans and Luecken,
2006; Lane et al., 2009; Valenza et al., 2014a] and especially
to determine people’s stress levels [Zhai and Barreto, 2006;
Kurniawan et al., 2013; Paletta et al., 2015].

Machine learning has also been applied on Electrocardio-
graphy (ECG) data to classify high and low flow [Rissler et
al., 2018]. Handcrafted features from brain waves measured
by Electroencephalography (EEG) fused with signals from
the peripheral nervous system (e.g., heart rate (HR), Gal-
vanic Skin Response (GSR), and ElectroMyogram (EMG))
have further been used to classify affective states in gam-
ing [Chanel et al., 2008; Chanel et al., 2011].

These approaches are still limited to laboratory settings
or at least require rather obtrusive measuring devices with
high sampling rates. However, several physiological signals
can now also be measured with (consumer) wearable devices.
Since such wearable devices are central to our approach, the
most relevant physiological signals are HR, i.e., the number
of heartbeats per minute, heart rate variability (HRV), i.e.,
the variations of inter-beat intervals, and electrodermal activ-
ity (EDA), i.e., the skin conductance influenced by produc-
ing sweat. Wearable devices measuring the aforementioned
signals have been successfully used to assess various med-
ical conditions such as depressive states of bipolar patients
[Valenza et al., 2014b; Valenza et al., 2015] or cardiovascular
risks [Ballinger et al., 2018]. Consequently, it is promising to
use them also for real-time flow detection.

3 Study Setup
To collect data, we created a custom version of the game
Tetris [Wikipedia, 2018] as a mobile application. Tetris
has already been used in similar studies and it has been
found that depending on the difficulty of the game, users
experience flow [Keller et al., 2011; Harmat et al., 2015;
Chanel et al., 2008; Chanel et al., 2011]. Similar find-
ings have been obtained using other games, e.g., first-person
shooters [Nacke and Lindley, 2008b].

Time [s] Easy Level Medium Level Hard Level
Group A 0.53 0.20 0.10
Group B 0.46 0.14 0.03

Table 1: Time in seconds for falling down one height unit in levels
per skill group (i.e., tetromino fall-down speed). Each level had 23
units height.

The original game logic and setup were modified in the
following ways:
• At the beginning of a session, there is a countdown for
120 seconds, allowing the participants to calm down and
focus on the game. This time period allows to establish
a baseline for the physiological signals.
• There are only three levels of game difficulty: easy, nor-

mal, and hard, which differ by the speed of the tetrimi-
nos (i.e., the game pieces) falling down. To better match
game difficulty with the participants’ skill levels, partic-
ipants were assigned to one of two groups: one for more
experienced, one for less experienced players. The exact
speed of the tetriminos is depicted in table 1.
• Each level occurs exactly once, i.e., one session contains

all three levels.
• Each level lasts exactly 10 minutes, regardless of the per-

formance of the player.
• The order of the three levels is randomized at the begin-

ning of a session.
• When the level changes, all rows are deleted, i.e., the

player starts with a cleared Tetris environment.
• In case the stack reaches the top (which would end the

game in the original version), the 6 bottom-most rows
are deleted and the game continues.
• Letting the current tetromino fall down quickly (e.g., by

swiping downwards) is not available, i.e., players have to
wait for each tetromino to reach the bottom at its current
speed.

The speed of the easy level was set to be very low. In com-
bination with the missing feature to quickly let a tetromino
fall down at will, this was intended to lead to boredom for the
players. The normal level was chosen to allow for smooth
playing, i.e., paced quickly enough to not lead to boredom,
but still manageable so that the player is in control of the
game, which was intended to induce flow. The speed of the
hard level was set to be very high. In this level, typical play-
ers are only able to somehow put the tetriminos in a suitable
horizontal position, but they are not able anymore to rotate
the tetriminos and put them in place efficiently (i.e., space-
saving). This level was intended to induce stress.

Participants were equipped with an Empatica E4 wrist-
worn device [Inc., 2018] which can accurately capture physi-
ological signals such as HR, HRV (based on blood volume
pulse (BVP)) as well as EDA and skin temperature [Ol-
lander et al., 2016; McCarthy et al., 2016]. The E4 has
been widely used in comparable studies [Yates et al., 2017;
Koskimäki et al., 2017; Ragot et al., 2017]. The participants
were asked to wear the E4 on their non-dominant hand, the
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smartphone (iPhone 5s) with the Tetris application was held
in the other (dominant) hand.

The data for training and evaluating the models was col-
lected as follows. The experiment was conducted at exper-
imenTUM, a research laboratory for experimental economic
research at the Technical University of Munich, with 72 par-
ticipants (27 female, 45 male) aged between 18 and 32 (M=23
years). In total, we gathered 72 sessions, summing up to 36
hours of gameplay data. Two sessions had to be discarded
because of missing data. First, participants were asked to
play a warm-up round. Based on the results of this round,
they were either assigned to the group of more experienced
players (Group B, 37 participants) or to the one of less expe-
rienced players (Group A, 33 participants). After each level,
participants’ subjective flow experience was assessed through
the Game Experience Questionnaire (GEQ), which had been
developed to measure flow in gaming contexts [IJsselsteijn
et al., 2013]. The average duration of the sessions was 45.3
minutes, which included baseline measurement, playing all
three game levels, and filling out the questionnaire.

4 Data and Preprocessing
Since the works of Rissler et al. and Chanel et al. [Rissler
et al., 2018; Chanel et al., 2011] are the most recent and sim-
ilar approaches compared to our method, we regard them as
the most suitable benchmarks for our work. Consequently,
we implemented their methods as accurately as possible (per-
forming grid search for hyperparameters not described in
their work) and applied it in our setting.

The collected data streams from the E4 comprise BVP,
EDA, skin temperature, and the so-called RR intervals, i.e.,
the time difference between consecutive heartbeats, from
which various HRV measures are derived. EDA and skin
temperature are sampled at 4 Hz while the BVP values are
sampled at 64 Hz. RR intervals are not provided at regular
intervals but when they occur. To calculate frequency-based
HRV features from the RR intervals, we used the open-source
Python library NeuroKit [Makowski, 2016], similar to Rissler
et al..

For our approach, in each session the EDA and BVP
streams of physiological data were resampled to an equidis-
tant time series at 4Hz and standardized with regard to the
whole session (i.e., centered on the mean with unit variance).

4.1 Dataset creation
In order to create the actual training and validation sets,
the sessions were further pre-processed for Chanel et al.’s,
Rissler et al.’s, and our approach respectively in the follow-
ing manner:

Chanel et al.
Chanel et al. classify the three affective states boredom
(negative-calm), engagement (positive-excited) and anxiety
(negative-excited) from physiological data sampled at 256Hz.
Accordingly, these three states correspond to their three Tetris
difficulty levels, which Chanel et al. capture by administer-
ing a (non-standardized) questionnaire of 30 questions related
to emotions and level of involvement in the game [Chanel et
al., 2011]. They achieve an accuracy of 59% (excluding EEG

1 2 3 4 5 6 7 8 9 10

LF HF LF/HF LF HF LF/HF

1 2 3 4 5 6 7 8 9 10

…

Figure 1: Dataset creation for Rissler et al. approach.

data) on selected features from the peripheral signals GSR,
BVP, respiration rate, and skin temperature. As the E4 lacks a
sensor for measuring the respiration rate, we omit the respec-
tive features in our analyses. By testing multiple feature com-
binations of the proposed features, we find that three of the
most relevant identified features by Chanel et al., fDecTime

GSR
(proportion of negative samples in the derivative vs. all sam-
ples), fNbPeaks

GSR (number of resistance falls in the signal), and
µHR (mean of the heart rate) are also the most relevant fea-
tures for our data. As the game level duration is 5 minutes
in their experiment, we tried both, computing the features on
5 and 10 minute time periods (i.e., our level duration) and
achieved better results by using only the first 5 minutes for
feature engineering. While their best classifier is a Quadratic
Discriminant Analysis (QDA) with 59% accuracy, we obtain
the best results by using a Random Forest classifier (see ta-
ble 2).

Rissler et al.
Rissler et al. asked participants to perform a sorting task for
five minutes at a time while being connected to an ECG de-
vice. After each round, the participants self-reported their
flow experience through an established 36-item flow ques-
tionnaire [Jackson and Marsh, 1996]. For each of these five-
minute-rounds, Rissler et al. extracted the first and the fifth
minute of ECG data and computed the HRV features LF, HF
and the ratio LF/HF. This resulted in one sample in the dataset
being comprised of 6 features and being mapped to the re-
sulting flow value from the questionnaire. The dataset being
feature-engineered in this manner then was fed into a Ran-
dom Forest model. They achieved an accuracy of 72.30% on
their data without cross validation. We adapt this approach
to our scenario with one modification: We extract windows
of 2 minutes length, since literature on HRV suggests to use
at least this size for computing frequency-based HRV fea-
tures [Shaffer and Ginsberg, 2017]. Consequently, we ex-
tract an interval comprising the first two minutes and – since
the levels in our setting have a duration of 10 minutes – the
interval comprising minutes 9 and 10 of each level, and com-
pute the HRV features as above, again resulting in data points
comprised of 6 features each. Whereas in the original work
of Rissler et al., each participant completed several basically
identical rounds of doing the task, in our case, each partic-
ipant produced exactly three datapoints, one for each game
level of her session. Figure 1 depicts the dataset creation pro-
cess for this approach.

DeepFlow
In contrast to the existing approaches, our approach uses an
end-to-end deep learning architecture. There are two main
differences in how we created the dataset: First, we extract
2-minutes-windows, but do so in a sliding window manner
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Figure 2: Dataset creation for our approach.

with step size 1 sample (see figure 2). Consequently, we do
not obtain one data point per session per game level but (10−
2) ·60 ·4 = 1920 extracted, overlapping windows per session
per game level. Second, we use the raw BVP and/or EDA
data and do not pre-compute any features. This is left for the
network to learn on its own. Hence, models are trained for
the three signal combinations, (a) only BVP, (b) only EDA
and (c) BVP and EDA.

4.2 Classification tasks
We aim for and evaluated two different classification tasks.

2-class
The classic task of flow classification tries to discriminate be-
tween low flow and high flow states. We again follow the
method of Rissler et al., which selects the 20% highest-flow
data points for the high flow state and the 20% lowest-flow
data points for the low flow state. Data points that fall in be-
tween are discarded in this case.

3-class
Going one step further, we aim to discriminate between three
different affective states: Boredom, Flow and Stress. This
distinction enables the model to explain why a participant is
not in flow: Because she is underchallenged or because she
is overchallenged. This information is important when the
flow detection should be used to adapt a system in realtime,
because it allows to infer the direction in which an adjust-
ment has to be made. To create the dataset for this task, the
three different levels of each session were mapped to the three
aforementioned states. Since not every participant had ex-
perienced flow in exactly the way we tried to induce it by
manipulating the game levels, we reduced the dataset to ex-
actly those sessions in which the intended mapping between
game level and flow level actually worked (based on the re-
sults of the questionnaires that participants completed after
each level). The resulting dataset still contained 45 sessions
which were now accurately labeled to learn the 3-class task.

5 Model Architecture
Figure 3 shows the CNN architecture we used for our ex-
periments. The network consists of four convolutional lay-
ers (32 filters, kernel size 3), connected through max pool-
ing layers. After the convolutions, one fully connected layer
(32 neurons) leads to a final dense layer with the number of
neurons in accordance with the number of classes of the task
and a softmax activation. Except for the last layer, we used
ReLU activations for the layers. During training, dropout is
applied after the convolutional (0.1) and dense (0.5) layers to
prevent overfitting. We used the popular Adam optimization
algorithm with a learning rate of 0.001 without learning rate
decay to train the neural network.

Input (480x1 / 480x2)

BatchNorm

Conv1D (32, 3)

MaxPool

Dropout

Convolution Block

Convolution Block

Convolution Block

Convolution Block

Flatten (96)

Dense (32)

Dropout

Dense (2 / 3)

Figure 3: Architecture of the used CNN. Each convolution block is
comprised of the same components as the first one depicted.

Since to the best of our knowledge, this new approach is the
first to create a flow detection model using end-to-end deep
learning, extensive hyper-parameter tuning and model archi-
tecture search were omitted. In preliminary experiments, the
chosen model was found to be a good fit for the problem at
hand. Although the time-series nature of the data might sug-
gest a recurrent architecture, we often find that convolutional
architectures are effective in dealing with time-series data as
well. These findings are in line with other recent work com-
paring recurrent and convolutional architectures for sequence
modelling [Bai et al., 2018]. Nonetheless, exploring recur-
rent and different, more sophisticated architectures can be a
reasonable endeavor for future work.

6 Evaluation
We conducted 5-fold cross validations to evaluate the perfor-
mance of the various approaches in terms of the 2-class and
the 3-class task. It is important to note that the 20% test data
only contain unseen levels, to ascertain that the model is able
to generalize well on unseen data. Because the dataset was
created as described above, the training and test sets were
balanced (i.e. stratified). Training of the neural network in
general was limited to 8 epochs in each fold. Usually, the
highest test accuracies were reached after just a few epochs
and the model tends to overfit later on.

Table 2 shows the results for the approaches of Rissler et
al. and Chanel et al. compared to the results of our DeepFlow
approach. Although the related methods were each only de-
signed for one of the classification tasks, we tested their ap-
plicability for both tasks. The mean test accuracies of the 5-
fold cross validation of the DeepFlow models are at compara-
ble levels to the related approaches (2-class: 67.50%, 3-class:
49.23%). Note that for the 2-class and 3-class tasks, an ac-
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Accuracy [%] Rissler et al. Chanel et al. DeepFlow (BVP) DeepFlow (EDA) DeepFlow (BVP & EDA)
2-class 66.07 *63.63 67.50 58.54 63.03
3-class *42.86 48.89 41.40 45.35 49.23

Table 2: Best mean test accuracies achieved in 5-fold cross validations for both classification tasks. The scores marked with * denote that this
approach was not originally designed to perform this classification task.

curacy of 50% and 33%, respectively, can serve as a baseline
because the test sets were balanced between the classes.

7 Discussion
Several interesting observations can be made from the eval-
uation results. In general, one can see that our proposed
methodology of applying deep learning to sensor data from
wrist-worn devices does a good job at solving both the 2-class
and the 3-class tasks. In the 2-class task, our DeepFlow model
using BVP data is approximately on-par with the previous re-
sults from Rissler et al.. This is an interesting finding because
of two reasons. First, it confirms previous results of Rissler
et al. and indicates that their approach can be used in differ-
ent settings with approximately the same levels of accuracy.
Second, it shows that our end-to-end deep learning approach
seems to be able to learn relevant features from the BVP data
alone, maybe even similar ones as the manually engineered
HRV features LF or HF. Despite the similar accuracy levels,
it is noteworthy that our model works on single 2-minutes-
windows from anywhere within a session whereas Rissler et
al.’s approach requires data from (exactly) a whole level, i.e.,
the first two and the last two minutes. Consequently, the
DeepFlow model might be more suitable for settings in which
there is no clear beginning and end of a task.

Surprisingly at first, the addition of the EDA data leads to
worse results of the DeepFlow approach in the 2-class task.
We observe the exact opposite in the 3-class task, in which
the DeepFlow model using both BVP and EDA performs sig-
nificantly better than when using BVP alone. The importance
of the EDA signal for the 3-class task is also corroborated by
the results we obtain for the method of Chanel et al.. Here,
EDA features are the most relevant features and the accuracy
is comparable to our DeepFlow models. Previous work on
EDA suggests that while emotionally activating events might
lead to so-called peaks in the Skin Conductance Response
(SCR), longer term phases of stress in general increase the
slowly changing Skin Conductance Level (SCL) [Lang et al.,
1993]. We speculate that exactly the possible effects of the
three different affective states (especially the stress state) on
the SCL can be learned by the DeepFlow model in the 3-class
task. In the 2-class task, in contrast, the model is presented
with low-flow examples that either are caused by boredom
(typically lower SCL) or stress (typically higher SCL). In this
case, the model has a harder time to make sense of the EDA
data and probably overfits on the training examples.

With regard to our data pre-processing, it needs to be noted
that standardization within single sessions already removes
baseline differences between and even within participants.
For example, if a participant experiences an elevated heart
rate due to external influences (e.g., because of drinking cof-
fee), the effect will probably be constant throughout the ses-

sion, thus being filtered out through standardization. As a re-
sult, our model is not directly applicable in lesser-controlled
settings, especially when we cannot standardize across a ses-
sion that exhibits all three affective states (i.e., Boredom,
Flow, and Stress). Nevertheless, we expect the variations
of physiological baselines in many relevant domains such as
gaming or work environments to be rather small, thus, allow-
ing for an approximate standardization of the signals based
on a (short) calibration phase for each participant.

8 Applications
We expect that our model can also be applied in other, sim-
ilar domains. Yet, a detailed analysis regarding the model’s
transferability is left for future work. If the premise holds, ap-
plying automatic flow detection in user interface or user expe-
rience tests could provide very valuable and objective pieces
of information about how smooth the interaction with a soft-
ware or device really is, and especially, at which points of the
interaction the user is thrown out of the flow state.

Taking this one step further, one could not only analyze a
certain user experience after it happened, but could also adapt
the user interface (or content or work task, etc.) in real-time in
order to keep the user in the state of flow. A primary domain
in this regard is gaming (e.g., adapting the difficulty accord-
ing to the user’s state), but there are many other promising use
cases, e.g., for new work environments, online educational
courses, or smart physical devices.

We also envision our approach to be used as a feedback
mechanism for human-in-the-loop RL systems. It has been
shown that RL agents can learn faster when provided with
feedback from humans as a reward signal [Christiano et al.,
2017]. Furthermore, facial emotion recognition has already
been used as a feedback mechanism to improve a sketch-
drawing Artificial Intelligence (AI) [Jaques et al., 2018].
While feedback based on facial emotion recognition is a
lower latency mechanism compared to using physiology-
based flow detection, we expect the flow construct to be a
more relevant assessment in cases in which a human already
interacts or works together with an intelligent agent. That
means that using flow detection might not be the best ap-
proach for initial training, but it probably is a valuable signal
for refinement of an agents behavior.

9 Conclusion and Future Work
In this work, we introduced a new approach for automatically
detecting the affective state of flow based on physiological
signals collected with sensors from wrist-worn devices. With
data collected using a modified version of the game Tetris,
we trained a CNN to classify this state and obtained an accu-
racy of 67.50% in a 2-class classification task, i.e., low flow

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1419



vs. high flow. In a 3-class task, i.e., distinguishing between
the states of boredom, flow, and stress (induced by our level
design), our DeepFlow approach reaches 49.23% accuracy.

These positive initial results open up several possibilities
for future work. In addition to improving the data set and tun-
ing the model, we see a lot of potential in transferring the gen-
eral approach to other, similar tasks, especially typical tasks
of an office activity. This could be the basis for an intelligent,
automatic controlling of office tasks and workloads (keeping
employees in flow).

More clearly scoped to the field of AI research, we are
especially interested in using automatic flow detection as a
feedback mechanism in human-in-the-loop RL. Socially in-
telligent agents could benefit from the information about this
affective state by using it as a reward signal for their behavior.
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Lanatá, Enzo Pasquale Scilingo, and Riccardo Barbieri.
Revealing real-time emotional responses: a personalized
assessment based on heartbeat dynamics. Scientific re-
ports, 4:4998, 2014.

[Valenza et al., 2014b] Gaetano Valenza, Mimma Nardelli,
Antonio Lanata, Claudio Gentili, Gilles Bertschy, Rita
Paradiso, and Enzo Pasquale Scilingo. Wearable moni-
toring for mood recognition in bipolar disorder based on
history-dependent long-term heart rate variability analy-
sis. IEEE Journal of Biomedical and Health Informatics,
18(5):1625–1635, 2014.

[Valenza et al., 2015] Gaetano Valenza, Luca Citi, Claudio
Gentili, Antonio Lanata, Enzo Scilingo, and Riccardo Bar-
bieri. Characterization of depressive states in bipolar pa-
tients using wearable textile technology and instantaneous
heart rate variability assessment. IEEE journal of biomed-
ical and health informatics, 19(1):263–274, 2015.

[Wang and Ji, 2015] Shangfei Wang and Qiang Ji. Video
affective content analysis: a survey of state of the art
methods. IEEE Transactions on Affective Computing,
6(4):410–430, May 2015.

[Wikipedia, 2018] Wikipedia. Tetris. https://en.wikipedia.
org/wiki/Tetris, 2018. Accessed: 2018-09-03.

[Xu et al., 2005] Min Xu, L-T Chia, and Jesse Jin. Affec-
tive content analysis in comedy and horror videos by au-
dio emotional event detection. In 2005 IEEE International
Conference on Multimedia and Expo (ICME), pages 4–pp.
IEEE, 2005.

[Yates et al., 2017] Heath Yates, Brent Chamberlain, Greg
Norman, and William H Hsu. Arousal detection for bio-
metric data in built environments using machine learning.
In IJCAI 2017 Workshop on Artificial Intelligence in Af-
fective Computing, pages 58–72, 2017.

[Zhai and Barreto, 2006] Jing Zhai and Armando Barreto.
Stress detection in computer users based on digital sig-
nal processing of noninvasive physiological variables. In
Proceedings of the 2006 IEEE 28th Annual International
Conference on Engineering in Medicine and Biology Soci-
ety (EMBS), pages 1355–1358. IEEE, 2006.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1421


