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Abstract

The formulation of efficient supervised learning al-
gorithms for spiking neurons is complicated and re-
mains challenging. Most existing learning methods
with the precisely firing times of spikes often re-
sult in relatively low efficiency and poor robustness
to noise. To address these limitations, we propose
a simple and effective multi-spike learning rule to
train neurons to match their output spike number
with a desired one. The proposed method will
quickly find a local maximum value (directly relat-
ed to the embedded feature) as the relevant signal
for synaptic updates based on membrane potential
trace of a neuron, and constructs an error function
defined as the difference between the local maxi-
mum membrane potential and the firing threshold.
With the presented rule, a single neuron can be
trained to learn multi-category tasks, and can suc-
cessfully mitigate the impact of the input noise and
discover embedded features. Experimental results
show the proposed algorithm has higher precision,
lower computation cost, and better noise robustness
than current state-of-the-art learning methods under
a wide range of learning tasks.

1 Introduction

Spiking neural networks (SNNs) [Gerstner and Kistler, 2002]
simulate the fundamental mechanism of our brain and pro-
vide greater computational power and more biological realis-
m [VanRullen et al., 2005; Butts et al., 2007; Giitig, 2014].
The basic computation model of single neuron is the transfor-
mation of incoming spike trains into appropriate spike out-
put. How could spiking neurons learn to make decision-
s on spike patterns? Many different learning methods have
been proposed by adjusting the synaptic efficacy of neurons
to generate desired sequences of spikes [Song er al., 2000;
Florian, 2012; Qi et al., 2018; Xu et al., 2018].

Among the existing spike-based learning algorithms, tem-
potron [Giitig and Sompolinsky, 2006] has only two output
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states in response to input patterns: firing or not firing, and
thus it is efficient for binary classification tasks. However,
the behavior of neuron with tempotron constrains its abili-
ty on temporal output structure. To address the limitation-
s, researchers have proposed different learning algorithms to
train the spiking neurons to produce a precise-timing spike
train at the desired firing time, such as ReSuMe [Ponulak and
Kasinski, 2010] and PSD [Yu et al., 2013]. ReSuMe rule is
capable of performing spike-timing-based learning precisely
by exploiting STDP and anti- STDP processes based on the
Widrow-Hoff (WH) rule. PSD rule can emit multiple spikes
at the desired firing time, which is based on the WH rule and
the exponential kernel. Neurons with these rules are suitable
for processing different classes due to different output spike
timing could be associated with different classes. Howev-
er, the internal mechanisms about how to construct such a
precise spike sequence are still unclear in biological neuron-
s. And when faced real-world problems, they are relatively
limited mainly due to inherent computational complexity.

Recently, a new membrane potential-driven multi-spike
tempotron (MST) rule [Giitig, 2016] has been developed to
train neurons to fire desired number of spikes, which empow-
ers them to discover sensory features embedded in a com-
plex background activity. Inspired by this work, two differ-
ent multi-spike learning rules (TDP1 and TDP2) [Yu ef al.,
2018a] have been developed, in an attempt to improve the
learning efficiency in spiking neurons. [Yu er al., 2018al
introduces a simple alternative, the linear assumption for
threshold crossing [Bohte ef al., 2002] to complete the com-
putation, and provides analytical proofs on convergence and
stability on such multi-spike learning rules. In later work,
Miao et al. [Miao er al., 2018] propose another supervised
multi-spike learning algorithm. It modifies synaptic weights
and makes the neuron’s output reach the desired number by
using local maximum point. However, a common disadvan-
tage of the methods is computationally intensive, resulting in
relatively low learning efficiency, thus can’t meet the require-
ments of the real-time applications.

To address this issue, preliminary attempt has demonstrat-
ed great improvement on efficiency by combining both the
Tempotron and PSD rules [Yu ef al., 2018b]. In this paper, we
further propose a simple and novel multi-spike learning rule
for spiking neurons, which can quickly find a suitable local
maximum value as the relevant signal for synaptic updates,
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based on the membrane potential trace of a neuron rather than
the STS function. This value is closest to the threshold and
can make the neuron’s output reach the desired number as fast
as possible. We employ an error function defined as the dif-
ference between the local maximum membrane potential of
output neuron and its firing threshold, thus allows the appli-
cation of gradient descent to optimize the synaptic weights.
Besides, the learning efficiency of the method is significant-
ly improved through the introduction of event-driven manner.
Various properties of the proposed learning rule are investi-
gated through extensive experimental analysis. Experimental
results have shown the advantages of the proposed algorithm
under a wide range of learning tasks.

2 Event-Driven Learning Method

2.1 Neuron Model

The leaky integrate-and-fire (LIF) neuron model [Gerstner
and Kistler, 2002] is introduced due to its simplicity and com-
putational effectivity. The neuron’s membrane potential V' (¢)
is given by integrating its synaptic currents from N afferent

neurons:
(=) o

~Yw YR
th<t

where tZ is the arrival time of the j-th presynaptic spike of

the i-th afferent and #] denotes the time of the j-th output

spike elicited in the postsynaptic compartment. Each afferent

spike contributes a postsynaptic potential (PSP), whose peak

amplitude is determined by the afferent’s synaptic efficacy w;
and the kernel K, which is defined as:
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where 7,,, and 7, are the membrane time constants of the
membrane potential and synaptic currents respectively, and
Tm/Ts = 4. Vj is a normalization factor. When V' (¢) crosses
the firing threshold ¥, the neuron will emit an output spike,
and the membrane potential is reset to the potential V;.
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2.2 Event-Driven Computation

For the event-based manner, the spike is calculated one after
another in an ordered time sequence [Yu et al., 2018al. We
define the voltage of the k-th input spike:
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Figure 1: (a) and (b) are the membrane potential traces of the input
pattern (solid blue line). When the actual output spikes n, (1 or
3) is not equal to the target number (set as 2), the modification is
performed at time ¢* with the aim to generate one more spike (red
‘4) or reduce a spike (red ‘x’).

The states of FX Ek and E*
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are expressed recursively as:
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In [Giitig, 2016], STS function was defined to learn the rela-
tion between the number of output spikes %k and the threshold
;. Within each iteration, the §* was recalculated for updat-
ing weights. Gutig employed the numerical approximations
with a complex recursive computation to solve the derivative
of 8*. Although Yu et al. [Yu et al., 2018a] simplified compu-
tation by a linear approximation for threshold crossing to get
approximations for the derivative of 8*, the necessary compu-
tation of STS function for every synaptic update was still time
consuming. Miao et al. [Miao et al., 2018] further introduced
local maximum points under an infinite threshold to find 6*
for a given 6. The common disadvantage was that the method
still introduced additional membrane potential traces. Mean-
while, it brought a complex computation problem because of
time-based simulation mechanism thus resulting in relatively
low learning efficiency. We implement a novel learning rule
with the simplest form of membrane potential traces where
only the actual membrane potential (easily accessible) is con-
sidered as the relevant signal for synaptic updates. There
is no requirement to calculate additional membrane poten-
tial traces. Thus #* can be quickly obtained as the point of
modifiable weight (see Table 1).

Considering all event points [t1,to, ..., t,], we obtain the
membrane potential traces as shown in Figure 1. Firstly, we
define V' (t;—1) as the membrane voltage of ¢;_1. When the
k-th spike occurs, the membrane voltage of the neuron will
change denoted as V (t;) = V(tx—1) + AV. If V(t) in

k—
Em(s) FE m(s )eXp <

by — tk—1
Tm

EF = EFlexp (— 5)

2.3 Learning Rule
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Method fui;rtison Calculate a gradient of 8* Output spike Learning rule Driving mode
tempotron No No Binary output Gradient-based Time-based
PSD No No Precise-timing spike WH rule Time-based
ReSuMe No No Precise-timing spike WH rule + STDP Time-based
MST Yes Recursive approach Spike number Gradient-based Event-based
TDP1, TDP2 Yes Linear function Spike number Gradient-based Event-based
Miao’s method No Local maximum point Spike number Gradient-based Time-based
This work No Local maximum point Spike number Gradient-based Event-based

Table 1: SNN-based learning algorithms comparison

the ¢ is a local maximum, we define Dy, = (6 — V(t)) =
0 — V(tp—1) — AV to denote the difference between the de-
sired value to cross 6 and actual changed value for the k-th
input spike. A difference set D based on all the local maxi-
mum value of membrane potential is collected. With a given
threshold 99, we separate the ID into two subsets: D™ and D~

Dt = {Dk‘Dk € Dand Dy < 0} (6)

D™ = {Dk|Dk € D and Dy, > 0} 7
Based on the existence of D, we can get these event points
corresponding to the local maximum value. Our final goal is
to find a suitable event point ¢* which aims to modify synap-
tic weights and makes the neuron’s output reach the desired
number as fast as possible. Thus we change the neuron’s out-
put spike number by modifying weights with respect to the
local maximum V*(¢*) closest to the threshold. Comparing
n, and nq, there are two cases:

1)n, < ng : To make n, equal ng, we assume the t* is
the event point which corresponds to the minimum value of
the difference in D™, It is given as D* = min{D~ }(see
Figure 1°‘+’). For the event point at t*, the value of the neuron
membrane potential is expected to cross the firing threshold
to fire a spike. The cost function is constructed as follows:

c=19—=V*({t"), ifn, <ng 8)

2)n, > ng : We define the ¢t* is the event point which cor-
responds to the maximum value of the difference in D*. It is
given as D* = max{D™ }(see Figure 1‘x”). To avoid the oc-
currence of undesired output spikes, the membrane potential
is required to remain below the neuron firing threshold. The
cost function is defined as:

c=V*({t*) =19, ifng > ng )
This rule performs gradient-descent rule as:
d
Aw; = —n— (10)
dwi

n > 0 is the learning rate. The derivative of ¢ with respect to
weight w; is expressed as:

de OV (t*) <= OV*(t*) ot
w2 o ow,

oV*(t) ot

ot* 8101

an
j=1
where the previous output spike times tJ < t*, j €
{1,2,...,m}. The first term can be expressed as:
OV*(t*) ;
—t = K(t* -t 12
o = 2 KE 1) (12)

i
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Algorithm 1 The Algorithm of Multi-Spike Learning

Input: Weight vector W, input spikes P
Output: Output spike number 7,
1: procedure MULTI-SPIKE LEARNING
2 for each iteration do
3 for each input spike with time ¢, in P do
4: Compute Potential with Equation 4,5
5: if V(t) > O then
6: Generate an output spike, n, < n, + 1
7 DT <« Dy, by Equation 6
8

: EF « EF +9

9: else
10: if V(1) is local maximum value then
11: D~ < Dy by Equation 7
12: end if
13: end if
14: end for

15: if n, > n4 then

16: Find max D™ as D*

17: Compute Awy, by Equation 14
18: end if

19: if n, < ng then
20: Find min D~ as D*
21: Compute Awy, by Equation 14
22: end if
23: Update Weight W < W + Awy,

24: end for;
25: end procedure

According to the chain rule, the second term is defined as:
OV*(t*) ot oV*(t*) ot, IV (t)
ol Ow; ol V(i) Ow;

(13)

It can be computed by introducing the linear assumption [Yu
et al., 2018a]. The last term is a vanishing part since V*(t*)
is either a local maximum with OV*(¢*)/0t* = 0 or t* is
the time of an inhibitory input spike whose arrival time does
not depend on w;. For further simplifying the method, we
only take consideration of partial derivatives with respect to
w; (ignoring the second term, refer to TDP2) as:

AVE(*) .
—n——— ifn, >nyg
A’LUZ' = Qw’* 14)
{ BVTE” if ng < ng (
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3 Experimental Setup

There are N afferent neurons, and each afferent neuron emit-
s a spiking train with a Poisson rate of r, Hz over a time
interval T'. The default parameters used in the following ex-
periments are set as N = 500, T' = 0.5 s. The initial synaptic
weight is selected randomly from a Gaussian distribution with
a mean value of 0.01 and a standard deviation of 0.01. The
spike threshold ¥ = 1, and the reset potential V; = 0. We
set the parameters 7 = 0.0001, 7,,, = 20 ms, and 75 = 5 m-
s. Parameters different from the default setups will be stated
otherwise. All data are averaged over ten independent runs.

3.1 Effects of Initial Setups

We show the dependence of the neuron’s learning speed and
initial output spikes on the different firing rate rj,. The input
spike train of each input neuron is generated by a Poisson pro-
cess ranging from 1 Hz to 25 Hz. The learning rate is scaled
as n-rin /7Y with r2 = 4 Hz. The desired output spike number
is set as nd, = 20. During the training process, the closer the
distance between the actual and the desired output number,
the less the training epochs needed to complete convergence.
Besides, the training epoch increases exponentially with the
distance between the initial and the desired output number
increases. Figure 2 shows that our algorithm is superior to
MST and TDP2, and achieves an approximate performance
with the TDP1 in training epochs. To further explore the

Firingrate | This work MST TDP1 TDP2
5 0.013 0.037 0.020 0.018
10 0.015 0.068 0.052 0.039
15 0.014 0.119 0.098 0.070
20 0.016 0.200 0.165 0.123
25 0.017 0.270 0.240 0.180

Table 2: Training time of one epoch for various firing rates

learning efficiency, the training time of one epoch is tested at
various firing rates. Each spike train is generated by a Poisson
process with firing rate ranging from 5 Hz to 25 Hz. Table 2
indicates that the higher the firing rate, the more time required
for the other three algorithms to complete one training epoch.
That is because of more input spikes required to be trained.

|
10 5 10 15 20 25
Fin

Figure 2: The epochs of training are required to achieve convergence
versus 7. Vertical line denotes the minimum value of epochs.
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Figure 3: Learning epoch with various values of the parameter (a)
Tm, (b) 0, (¢) N and (d) Winit.

However, our algorithm consumes less time than tradition-
al ones and maintains a relatively consistent training time at
various firing rates.

3.2 Effects of Parameters

Here, we explore the influence of the parameter 7,,, the
threshold 6, the initial mean weight W;,,;;, and the number
of afferent neurons N on the learning epoch. The neuron is
trained with 7,,, = 20, N = 500, # = 1 and W;,,;; = 0.01.

Figure 3(a) shows the learning epoch for different 7,,,. D-
ifferent values of 7,, will have some different influence on
the convergent speed. A higher value leads to less learning
epochs, while when it above 20, this change is not obvious.
Fig. 3(b) shows the learning epoch for different 6. It suggests
that the threshold directly affects the speed of convergence.
In real-world applications, 6 can be set to different values
according to different requirements. Figure 3(c) depicts the
learning epoch for different N. In the beginning, more in-
put neurons lead to less learning epochs, while when it above
500, this change is not obvious. This is mainly because more
input neurons make more sparse representation of the input
patterns, which are easier to be trained because there is less
interference between different patterns. Figure 3(d) displays
the learning epoch for different W,,;;. It shows the fastest
learning speed appears at the point of the best matching ini-
tial output to the desired one (like W;,,;+ = 0.015).

3.3 Robustness to Noise

The reliability of the neuron’s response could be influenced
by different noise. Here, ten spike patterns without noise are
randomly generated by using precise timing encoding. We fix
these patterns as the training templates. The neuron is trained
for 200 epochs with 10 desired spike number. After train-
ing, a Gaussian jitter with a mean = 0 and standard deviation
Ornp € [0, 5] is used to generate the noise patterns. Each tem-
plate is used to construct 20 testing patterns. For each noise
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Figure 4: (a) The average error for the training phase. (b) The testing
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Figure 5: Learning predictive clues. The spike pattern stream where
3 types of features (purple, red, and green) and distractor (shaded
gray) patterns are embedded in the background activity (top). The
middle and bottom show the membrane potential traces after being
trained in response to the input spike streams.

level, there are a total number of 200 noise patterns for test-
ing. In Figure 4(a), the output stabilizes quickly and can ex-
actly converge to the desired spike number (about 80 training
epochs). In Figure 4(b), two testing scenarios are considered,
i.e., absolute and relative testing. With the absolute testing,
the input pattern will be regarded as being correctly classified,
only if the output spike number equals the desired spike. For
the relative testing, the incoming pattern will be deemed to
be successfully classified if the output spike number belongs
to the pre-defined range with » = 1. In the relative testing,
the classification accuracy is 100% and remains unchanged.
In the absolute testing, the accuracy will decrease with the
increasing noise intensity. But our method still can success-
fully reproduce the desired spike number with relatively high
accuracy (90%) even when the noise strength is 3.

3.4 Learning Predictive Clues

We demonstrate the ability of our algorithm for solving the
challenging task of the temporal credit-assignment problem
as mentioned in [Giitig, 2016; Yu et al., 2018a]. Similar to
the task in [Yu et al., 2018al, six activity patterns with the
background firing statistics are randomly generated, in which
a random half of the activity patterns are assigned as feature
patterns while another half as distractors. For each activity
pattern, there are 500 afferent neurons and one output neuron.
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Each afferent neuron emits a spiking train with a Poisson rate
of ri, = 4 Hz over a time interval 7' = 2 s. The output neu-
ron is trained to produce a specific number of spikes when a
feature pattern is presented, while keeping silence when a pat-
tern from the distractors or background activities is present-
ed. The total desired output spike number nd, in response
to feature patterns will be nd,, = >°7_, ¢;d; where ¢; is the
occurrence number of the ¢-th feature pattern and d; is the
desired output spike number in response to the i-th feature
pattern. p is the total number of feature patterns, which is set
to 3. The values of d; for the 3 feature patterns are set as {1,
1, 1} and {1, 2, 3}. Figure 5 show that the single neuron can
successfully perform two challenging credit-assignment task.

4 Experimental Results

We investigate the capability of our algorithm over real clas-
sification tasks. Each neuron is trained to produce nd, = 10
spikes when a pattern from the assigned class is presented
while keeping silence when patterns from other classes are
presented. For each trial, a momentum heuristic method is
introduced to accelerate learning [Giitig and Sompolinsky,
2006]. The updating of current synaptic weight Aw$"™ con-
sists of the precious synaptic change A} and the correction
given by the learning rule Aw;, which is constructed as fol-
lows: AwS™™ = Aw; + pAly;, = 0.9. For the testing result,
the responses of all neurons to each pattern are tested. The
incoming pattern will be regarded as belonging to the corre-
sponding class which the neuron represents when the output

spike number emitted by the neuron is the most.

4.1 Dataset Description

o Iris [Fisher, 1936]. It contains 3 classes with 4 at-
tributes. Each input feature is encoded by 6 neurons with
Gaussian receptive fields. The total time duration of the
input spatiotemporal pattern is set to 7' = 10 ms. We
choose 50% for training and the others for testing.

e OCR [Yu et al., 2013]. This includes images of digits 0-
9. We introduce noise as described in [Yu et al., 2013].
There are 100 samples for training. For each noise level
of 0-20%, 100 noise patterns are generated for testing.

o AER Poker Card [Pérez-Carrasco et al., 2013]. This
contains the event stream of 4 card symbols, each with
10 examples. We choose 50% data for training and the
others for testing. We execute feature extraction with
event-based gabor filter [Orchard erf al., 2015].

o RWCP [Nakamura et al., 2000]. We select 10 sound
classes with 16 kHz sampling rate. The LTF-SNN fea-
ture encoding method [Xiao et al., 2018] is used. For
each class, 20 clean classes are used for training. After
training, the babble noise is added to 20 testing data with
clean, 20, 10, and 0 signal-to-noise ratio (SNR).
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Dataset MST _ TDP1/ TDP2 ' Miao’s Work' This work '
Accuracy[Epoch|[Time(s)[  Accuracy Epoch | Time(s) [Accuracy|Epoch|Time(s)|Accuracy[Epoch[Time(s)
Iris 96.30 | 350 | 20.1 | 96.40 /96.50 [350 /350(17.3 /15.9] 60.00 | 300 7.5 96.30 | 350 4.5
OCR 88.00 | 500 | 791 | 91.00/90.00 |274 /500|260 /325 | 78.23 | 500 | 5671 | 93.00 | 247 29
Poker Card| 100.00 | 12 30 |100.00 /100.00| 13 /14 | 17 /14 | 100.00 | 14 10 100.00 | 10 2.1
Table 3: The performance comparison on different datasets
Noise This work MST TDPI TDP2 Miao’s work | Tempotron | ReSuMe | R-MemPo-Learn
Clean 100.00 100.00 | 1I00.00 | 1I00.00 99.99 100.00 94.80 97.80
20dB 100.00 100.00 | 100.00 | 100.00 99.98 100.00 92.50 97.10
10dB 100.00 100.00 | 100.00 99.00 99.26 98.00 90.60 96.40
0dB 92.50 91.00 90.50 88.60 88.41 90.50 84.40 91.10
Average 98.13 97.75 97.63 96.90 96.91 97.13 90.58 95.60
Total time (s) 16 193 138 129 482 / /

Table 4: The performance

4.2 Results

Table 3 and Table 4 show the classification accuracy and the
learning time of different methods. Compared with the tra-
ditional classifiers, our algorithm spends less time to com-
plete training and achieves better recognition performance e-
specially for the data with noise. We investigate the robust-
ness on OCR dataset as shown in Figure 6. For 5 different
classifiers, the classification accuracy remains high when the
noise level is low and will decrease gradually with the in-
creasing noise level. Our method obtains the highest average
accuracy of 93% even when the image is severely damaged
by 20% noise level (see Table 3). The performance com-
parison at each noise level for RWCP dataset is presented
in Table 4. The proposed method performs well for each
of the noise conditions, achieving a relatively high accura-
cy of 98.13%. The classification accuracy of TDP2 and Re-
SuMe is high under clean or low-noise environment, while
the performance decreases dramatically in 0dB SNR condi-
tion. It means the robustness of the proposed method is bet-
ter than the other investigated spike-based methods (Tem-
potron, ReSuMe, and R-MemPo-Learn [Xiao er al., 2018;
Zhang et al., 2018]). Besides, Table 4 shows that our method
is obviously superior in training time, which only needs 16s,
much less than other algorithms.
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Figure 6: The classification accuracy on OCR dataset.

comparison on RWCP dataset

4.3 Discussion

In time-based simulation, time steps are 7'. At each time step,
we recalculate the postsynaptic potential of input spikes be-
fore current time. The time complexity is O(T'). In event-
based simulation, we update the status only when there is
an incoming spike. The time complexity is O(NN) where N
is the number of input spikes and N < T'. In calculating
each incoming spike, it involves 8 multiplication and 7 addi-
tion/subtraction/comparison (refer to [Zhao er al., 2014]).

- Number of multiplication=8 x N

- Number of addition/subtraction/comparison=7 x N
For STS function, it learns the relation between the number of
output spikes k and the neuron’s threshold 6}, (k varies from
1 to M). For each k in M, the operations as mentioned above
are repeated again.

- Number of multiplication=8 x N x M

- Number of addition/subtraction/comparison=7 x N x M
We only execute N additional comparisons for all incoming
spike, thus simplify the membrane potential calculation.

- Number of multiplication=8 x N

- Number of addition/subtraction/comparison=8 x N.

5 Conclusion

We propose a simple and effective multi-spike learning rule
which is used to train neurons to fire the desired number of
output spikes. The output spike number is changed by modi-
fying the synaptic weights of the local maximum point based
on membrane potential trace of a neuron rather than the so-
phisticated STS method [Giitig, 2016]. This operation simpli-
fies the membrane potential calculation. Experimental results
show that our method is capable of recognizing objects cor-
rectly with performance comparable to that of current bench-
mark algorithms for a wide spectrum of datasets.
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