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Abstract
Crowdsourcing services provide a fast, efficient,
and cost-effective means of obtaining large labeled
data for supervised learning. Ground truth infer-
ence, also called label integration, designs proper
aggregation strategies to infer the unknown true la-
bel of each instance from the multiple noisy label
set provided by ordinary crowd workers. Howev-
er, to the best of our knowledge, nearly all existing
label integration methods focus solely on the mul-
tiple noisy label set itself of the individual instance
while totally ignoring the intercorrelation among
multiple noisy label sets of different instances. To
solve this problem, a multiple noisy label distribu-
tion propagation (MNLDP) method is proposed in
this study. MNLDP first transforms the multiple
noisy label set of each instance into its multiple
noisy label distribution and then propagates its mul-
tiple noisy label distribution to its nearest neigh-
bors. Consequently, each instance absorbs a frac-
tion of the multiple noisy label distributions from
its nearest neighbors and yet simultaneously main-
tains a fraction of its own original multiple noisy
label distribution. Promising experimental result-
s on simulated and real-world datasets validate the
effectiveness of our proposed method.

1 Introduction
In many pervasive applications of supervised learning, partic-
ularly with the rapid growth of deep learning, one frequently
encounters the situation in which extensive data remain unla-
beled. Traditionally, labeling tasks have been typically pro-
cessed by domain experts. This provides accurate labels but
is inefficient and involves a high cost [Tian and Zhu, 2015;
Zhang et al., 2016b]. Thus, crowdsourcing has emerged as
an effective paradigm for annotating large datasets in domains
such as computer vision and natural language processing [Liu
et al., 2012; Karger et al., 2014]. Crowdsourcing platforms
such as Amazon Mechanical Turk1 and Crowdflower2 pro-
vide participative online markets where the requesters publish
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2http://crowdflower.com

specific types of human intelligence tasks (HITs) and collect
numerous labels from ordinary labelers (or annotators) in a
short time and at a relatively low cost. However, the qual-
ities of collected labels provided by a single crowd labeler
are often poor and the noise associated with the labels can
compromise practical applications. To our knowledge, these
unreliable labels may be caused by personal preference, low
payment for each task, and varying cognitive abilities [Sheng
et al., 2008; Rodrigues and Pereira, 2017; Qiu et al., 2018].
To solve this problem, multiple labels are frequently request-
ed from different crowd labelers for a single instance. In
other words, repeated labeling is performed [Li et al., 2016;
Zhang and Wu, 2018; Li et al., 2019]. After acquiring mul-
tiple noisy label sets of each instance by repeated labeling,
label integration methods can be used to infer (estimate) the
unknown true label of each instance.

Consequently, integrating labels from multiple noisy la-
bels has recently attracted considerable research attention
[Sheshadri and Lease, 2013; Zhang et al., 2016a]. The
most straightforward label integration (consensus) method
is majority voting (MV), which naively assumes that all la-
belers have the same reliability. In addition to MV, more
sophisticated methods have been proposed to improve the
performance of label integration [Dawid and Skene, 1979;
Whitehill et al., 2009; Raykar et al., 2010; Demartini et al.,
2012; Karger et al., 2014; Zhang et al., 2016a; Rodrigues
and Pereira, 2017]. These improved methods have clearly
achieved remarkable progress to model crowdsourcing based
on different parameters such as the reliabilities of labelers,
the difficulties of instances, and labeling biases. However, to
the best of our knowledge, nearly all existing label integration
methods focus solely on the multiple noisy label set itself of
the individual instance while totally ignoring the intercorre-
lation among multiple noisy label sets of different instances.

To solve this problem, in this study we propose a multi-
ple noisy label distribution propagation (MNLDP) method.
MNLDP focuses on the intercorrelation among multiple
noisy label sets of different instances instead of directly es-
timating the aforementioned parameters. In MNLDP, the tra-
ditional multiple noisy labels are first transformed into multi-
ple noisy label distributions, and a feature space based on the
overlapped local linear neighborhood patches is constructed,
where the edge weights of each patch can be calculated by a
standard quadratic programming procedure. Then, the topo-
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logical structure of the feature space is globally shared with
the multiple noisy label space for simplicity. With the multi-
ple noisy label space available, MNLDP then propagates the
multiple noisy label distribution of each instance to its nearest
neighbors. Consequently, each instance absorbs a fraction of
the multiple noisy label distributions from its nearest neigh-
bors and yet simultaneously maintains a fraction of its own
multiple noisy label distribution.

The main contributions of this work are briefly summarized
as follows: 1) The multiple noisy label integration problem is
transformed into an MNLDP problem, which provides a new
perspective from which to solve the multiple noisy label inte-
gration problem. 2) A novel MNLDP algorithm is designed
to exploit the intercorrelation among multiple noisy label sets
of different instances, and thus the effect of the multiple noisy
label set itself of the individual instance is weakened.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces related work. Section 3 describes the pro-
posed MNLDP method in detail. Section 4 presents a con-
vergence analysis of MNLDP. Section 5 describes the exper-
imental setup and results. Section 6 concludes the study and
outlines the main directions for future work.

2 Related Work
Because of the openness of crowdsourcing, inferring the un-
known true labels of instances from multiple noisy labels
is a challenge. Many label integration (consensus) method-
s have been proposed for crowdsourcing. Majority voting
(MV) [Sheng et al., 2008] is the simplest and most effective
method. However, it naively assumes that all labelers have
the same reliability, which weakens its performance in many
real-world crowdsourcing scenarios.

To improve the quality of integration labels, researchers
have proposed numerous label integration (consensus) meth-
ods. [Dawid and Skene, 1979] proposed a method (DS) based
on the expectation maximization algorithm, which uses the
maximum likelihood estimation to estimate a confusion ma-
trix for each labeler and a class prior. [Demartini et al.,
2012] proposed the ZenCrowd method (ZC), which uses only
a two-element parameter to weight the reliability of a labeler.
[Karger et al., 2014] proposed a belief propagation-like la-
bel integration method (KOS) based on the reliabilities of la-
belers. [Zhang et al., 2016a] proposed another novel method
called the ground truth inference using clustering (GTIC) that
is based on Bayesian statistics for multi-class labeling. Fo-
cusing on binary labeling, [Raykar et al., 2010] proposed a
Bayesian estimation-based method to model the two param-
eters of sensitivity and specificity to denote labelers’ biases
toward positive and negative instances, respectively. [White-
hill et al., 2009] proposed a method to infer the true labels,
the expertise of workers, and the difficulty of items simultane-
ously. [Rodrigues and Pereira, 2017] proposed a deep neural
network layer known as a crowd layer. [Guan et al., 2017]
proposed an approach for training deep neural networks that
exploits information about the annotators.

All of these improved methods have clearly achieved re-
markable progress to model crowdsourcing based on differ-
ent aspects such as the reliabilities of labelers, the difficulties

of instances, and labeling biases. However, to the best of our
knowledge, nearly all existing label integration methods fo-
cus solely on the multiple noisy label set itself of the individ-
ual instance while totally ignoring the intercorrelation among
multiple noisy label sets of different instances. To solve this
problem, we propose an MNLDP method. In MNLDP, each
instance absorbs a fraction of the multiple noisy label dis-
tributions from its nearest neighbors and yet simultaneously
maintains a fraction of its own multiple noisy label distribu-
tion.

Please note that our proposed MNLDP is entirely differ-
ent from the well-known label distribution learning (LDL)
[Geng, 2016], which is a new machine learning paradigm in
which each instance is annotated by a label distribution. The
label distribution in LDL covers a certain number of labels,
representing the description degree of each label to the da-
ta point. One label may only partially describe the instance,
but that the label describes the instance is completely true.
However, in a multiple noisy label distribution, only one la-
bel is regarded as completely true, and the other labels are
all wrong. Please also note that our proposed MNLDP is en-
tirely different from the linear neighborhood propagation (L-
NP) [Wang and Zhang, 2008] for semi-supervised learning.
LNP propagates the labels from the labeled points to the w-
hole dataset using these linear neighborhoods with sufficient
smoothness. By contrast, MNLDP propagates the multiple
noisy label distributions rather than the multiple noisy labels
themselves.

3 MNLDP Method

In crowdsourcing scenarios, a dataset can be expressed as
S = {(xi,Li)|1 ≤ i ≤ n}, where xi denotes the i-th
(i = 1, 2, · · · , n) instance, and Li = {lir}Rr=1 denotes its
multiple noisy label set provided byR labelers. Each element
lir represents the label provided by the r-th (r = 1, 2, · · · , R)
labeler, which takes the value from the class label set Y =
{y1, y2, · · · , yc}. To construct the multiple noisy label space,
Li is first transformed into a multiple noisy label distribution
Pi = {py1

i , p
y2

i , · · · , p
yc

i }, where pym

i (m = 1, 2, · · · , c) de-
notes the probability (frequency) that all labelers label xi as
ym. Obviously, pym

i ∈ [0, 1] and
∑c

m=1 p
ym

i = 1. Based on
the defined distribution, the dataset S can then be transformed
into S = {(xi,Pi)|1 ≤ i ≤ n}.

In addition, to construct the multiple noisy label space, we
still must construct a feature space with the neighbor informa-
tion of each data point. As with many common graph-based
learning methods, the topological structure of the feature s-
pace can be represented by G =< V, E ,W >, where V is the
vertex set corresponding to data points, E is the edge set as-
sociated with each edge eij representing the relationship be-
tween each pair of data points xi and xj , andW is the weight
matrix of G with each element wij measuring how similar xi

is to xj . Note that usually wij 6= wji.
For computational simplicity, we assume that each data

point can be optimally reconstructed using a linear combi-
nation of its neighbors in the feature space [Roweis and Saul,
2000; Wang and Zhang, 2008]. Thus, our objective is to min-
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imize the following:

ε(W ) =
n∑

i=1

‖xi −
∑

j:xj∈N (xi)
wijxj‖2 (1)

where N (xi) is the set of the k-nearest neighbors of xi. We
further constrain 1Twi = 1, where

wi =

{
wij , if xj∈ N (xi)

0, otherwise
(2)

∑
j wij = 1 and wij ≥ 0. For the local weight matrix wi,

the minimization can be defined as:

ε(wi) =
∑

j,k:xj ,xk∈N (xi)
wijG

i
jkwik (3)

where Gi
jk = (xi − xj)

T (xi − xk) is the (j, k)-th entry of
the local Gram matrixGi.

Thus, the construction can be solved by the following n
standard least square programming problems, which is for-
mulated as Equation 4. Note that we first obtain a series of
weight matrixwi and then merge them to construct the whole
space.

minwi
wT

i G
iwi

s.t. 1Twi = 1

∀wij ∈ wi, wij ≥ 0

(4)

Inspired by the smoothness assumption [Zhu et al., 2005]
and multi-label manifold learning [Hou et al., 2016], we
can naturally infer that the multiple noisy label space locally
shares the topological structure of the feature space. Howev-
er, learning the topological structure from the feature space
to the multiple noisy label space is difficult. Thus, we further
assume that the global topological structure can be simply
shared. With the W and the aforementioned assumption, the
multiple noisy label space is approximately formulated as:

µi ∝
∑

j:xj∈N (xi)
wijµj (5)

where µi = {µy1

i , µ
y2

i , ..., µ
yc

i } is the multiple noisy label
distribution of xi in the propagation. µi is different from Pi.
Pi is the initial multiple noisy label distribution. However, µi
is the multiple noisy label distribution at a particular propaga-
tion state. Although this hypothesis is naive, we believe it is
reasonable in most cases because the annotators provide the
multiple noisy labels based on the features of the instance.

In the t-th propagation, the propagated multiple noisy label
distribution can be divided into two sections: 1) a fraction of
the multiple noisy label distributions from its nearest neigh-
bors, and 2) some multiple noisy label information of its ini-
tial state (i.e., Pi). Thus, the µi at the t+1-th propagation is:

µt+1
i = αi

∑
j:xj∈N (xi)

wijµ
t
j + (1− αi)Pi (6)

where αi ∈ (0, 1) is the controlling factor that adjusts the
proportions from its nearest neighbors and its own original
state (distribution). More specifically, when αi < 0.5, the
propagated multiple noisy label distribution relies more on its
own original state. The extreme case is αi = 0, and thus our

Figure 1: Framework of MNLDP.

MNLDP degenerates into the simplest MV (i.e., µi = Pi).
Conversely, when αi > 0.5, the propagated multiple noisy
label distribution relies more on its nearest neighbors. When
αi = 1, MNLDP completely abandons its own original state
Pi (i.e., µt+1

i =
∑

j:xj∈N (xi)
wijµ

t
j).

We estimate the controlling factor αi using the label uncer-
tainty [Sheng et al., 2008]. The detailed equation is:

αi =

∑c
m=1 α

ym

i

c
+ η (7)

where η ∈ [0, 0.5] is a hyper-parameter used to adjust the
influence from its nearest neighbors, and

αym

i = min{Id(Lym
p +1, Lym

n +1), 1−Id(Lym
p +1, Lym

n +1)}
(8)

where

Id(L
ym
p + 1, Lym

n + 1) =
∑Lym

p +Lym
n +1

j=Lym
p +1

(Lym
p +Lym

n +1)!

j!(Lym
p +Lym

n +1−j)!d
j(1− d)L

ym
p +Lym

n +1−j

(9)
where Lym

p is the number of the class label ym, Lym
n is the

number of other classes, and the decision threshold d = 0.5.
After a certain number of iterations, Equation 6 reaches to

a state of convergence. The convergence analysis of Equation
6 is presented in Section 4. Let µi = {µ

ym

i }cm=1 be the final
multiple noisy label distribution of xi. Its integration label is
then defined as:

c(xi) = argmax
ym∈Y

µym

i (10)

Figure 1 graphically shows the basic framework of our pro-
posed MNLDP.

Now, let us take an artificial binary toy classification
dataset as an example to illustrate the process and effective-
ness of our proposed MNLDP. The dataset is artificially gen-
erated from two interleaving half circles, and the standard
deviation of the Gaussian noise is 0.1. It contains 200 da-
ta points with two-dimensional features. We then employ 20
simulated labelers who possess the same level of reliability
to label each point. In our experiments, we set the number
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(a) (b)

(c) (d)

Figure 2: Label integration process and results on the toy dataset.

of nearest neighbors k to 5, and then we observe the label in-
tegration process and results when the numbers of iterations
are 0, 10, and 20.

Figure 2 graphically shows the detailed process and results,
where Figure 2 (a) shows the original data with the true class
label distributions. The blue squares and red triangles repre-
sent two classes. When the numbers of iterations are 0, 10,
and 20, the label integration process and results are shown
in Figure 2 (b), Figure 2 (c), and Figure 2 (d), respectively.
The grey dashed lines among the different data points con-
nect their five nearest neighbors. From these, the multiple
noisy label space is constructed and then the multiple noisy
label distributions are propagated through the multiple noisy
label space.

4 Convergence Analysis of MNLDP
In this section, we analyze the convergence proper-
ty of MNLDP theoretically. Let the entire propaga-
tive multiple noisy label distribution sequence U t =
[(µt

1)
T , (µt

2)
T , · · · , (µt

n)
T ]T , the entire initial multiple noisy

label distribution sequence P = [PT
1 ,PT

2 , · · · ,PT
n ]

T , and
the diagonal matrix be expressed as:

α =

α1 · · · 0
... αi

...
0 · · · αn

 (11)

where αi is the controlling factor for xi. Equation 6 can then
be rewritten as:

U t+1 = αWU t + (1−α)P (12)

Because the initial condition is U0 = P , Equation 12 be-
comes:

U t = (αW )tP +
t−1∑
i=0

(αW )i(1−α)P (13)

Because of αiwij ∈ αW ≥ 0 and
∑

i αiwij =
αi, from the Perron-Frobenius theorem, the spectral ra-
dius of αW ranges from rmin(αW ) to rmax(αW )
(i.e., rmin(αW ) ≤ ρ(αW ) ≤ rmax(αW )), where
rmin(αW ) = mini

∑
j αiwij and rmax(αW ) =

maxi
∑

j αiwij . The eigendecomposition of (αW )t can be
represented as:

(αW )t = V diag(λ)tV −1 (14)

where diag(λ) is the diagonal matrix composed of all eigen-
values and V is connected by all eigenvectors. With the pro-
cess of propagation, the eigenvalues, which are less than 1,
are reduced to 0. Thus,

lim
t→∞

(αW )t = lim
t→∞

V diag(λ)tV −1 = 0 (15)

where
∑t−1

i=0(αW )i can be regarded as the infinite series. It
is rewritten as:

t−1∑
i=0

(αW )i =
1− (αW )t

1−αW
(16)

Therefore,

lim
t→∞

t−1∑
i=0

(αW )i = (1−αW )−1 (17)

Based on this analysis, U t will converge to:

lim
t→∞

U t = (1−αW )−1(1−α)P (18)

5 Experiments and Results
We validated the effectiveness of our proposed MNLDP by
comparing it with five baseline methods, namely, MV, DS,
ZC, KOS, and GTIC on simulated and real-world datasets.
We implemented our proposed MNLDP on the crowd envi-
ronment and its knowledge analysis (CEKA) platform [Zhang
et al., 2016b] and used the existing implementations of MV,
DS, ZC, KOS, and GTIC on the CEKA platform [Zhang et
al., 2016b]. In MNLDP, we set the number of nearest neigh-
bors k to 5 and the hyper-parameter η to 0.5.

5.1 Experiments on Simulated Datasets
To validate the effectiveness of our proposed MNLDP in a s-
lightly more controlled environment, six popular benchmark
datasets were used by simulating multiple labelers with d-
ifferent levels of expertise. Table 1 provides detailed infor-
mation on these datasets, which came from the University
of California at Irvine (UCI) repository and represent a wide
range of domains and data characteristics.

To simulate a crowdsourcing process to obtain multiple
noisy labels of each instance, the original true labels of all
instances were hidden. For each labeler, the original true la-
bel was assigned to each instance with the probability p and
any one of false labels otherwise. To maintain the robustness
of the experiments under different situations, two simulating
strategies were considered:

1. In the first series of experiments, the labeling quality of
each labeler was fixed at 0.6 and the number of labelers
varied from 3 to 50.
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Dataset Features Instances Classes
Glass 9 214 7
Ionosphere 35 351 2
Iris 4 150 3
Image Segmentation 19 2310 7
Vehicle 18 846 4
Vote 17 435 2

Table 1: Six UCI datasets used in the experiments.

(a) (b)

(c) (d)

(e) (f)
Figure 3: Integration accuracy comparisons in the first series of ex-
periments, where the labeling quality of each labeler was fixed at
0.6.

2. In the second series of experiments, the number of la-
belers was fixed at 10 and the labeling quality of each
labeler was randomly generated from a uniform distri-
bution on the interval [0.1, 0.95].

After obtaining the multiple noisy label set of each in-
stance, we applied label integration (consensus) methods to
infer its integration label. We know that each simulation pro-
cess has a certain degree of randomness that cannot be avoid-
ed. To reduce the fluctuations caused by this randomness,
each experiment was repeated 20 times independently and the
integration accuracies were averaged.

Figure 3 displays the detailed comparison results for the
first series of experiments. From these results, we can see
that: 1) The integration accuracy of MNLDP was much high-
er than the five baseline methods, particularly when the num-
ber of labelers was less than 10. 2) The differences among
the different label integration (consensus) methods gradually

(a) (b)

(c) (d)

(e) (f)
Figure 4: Integration accuracy comparisons in the second series of
experiments, where the number of labelers was fixed at 10.

disappeared as the number of labelers increased, particularly
when the number of labelers approached 50.

Figure 4 displays the detailed comparison results for the
second series of experiments. From these comparison result-
s, we can see that: 1) As expected, the integration accuracy
improved as the labeling quality of each labeler increased. 2)
Compared to the five baseline methods, an apparent turning
point was reached, which mainly concentrated at around 0.3
in the different datasets. When the labeling quality of each
labeler was below this turning point, our proposed MNLDP
was even worse than a few of the baseline methods. However,
when the labeling quality of each labeler surpassed this turn-
ing point, our proposed MNLDP significantly outperformed
all the baseline methods until the labeling quality approached
0.7. 3) The differences among different label integration
(consensus) methods gradually disappeared when the label-
ing quality reached 0.8.

Based on these comparison results, we can see that the per-
formance of MNLDP was much better overall, that is, more
stable and robust than all the other baseline methods. This is
because, in MNLDP, each instance absorbed a fraction of the
multiple noisy label distributions from its nearest neighbors
and yet simultaneously maintained a fraction of its own o-
riginal multiple noisy label distribution. Therefore, when the
labeling quality of each labeler was very low (for example,
less than 0.3), MNLDP was even worse than some existing
baseline methods because it enlarged the incorrect label dis-
tributions in the process of propagation.
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Information Leaves LabelMe Music Genre
Classes 6 8 10
Features 64 512 31
Instances 384 1000 700
Labelers 83 59 44
Labels 3840 2547 2946
Mean Labeling Quality 0.638 0.692 0.7328

Table 2: Three real-world crowdsourced datasets used in the experi-
ments.

5.2 Experiments on Real-World Datasets
To evaluate further the performance of MNLDP, we conduct-
ed our experiments on three real-world crowdsourced dataset-
s: Leaves, LableMe, and Music Genre, which were collect-
ed from Amazon Mechanical Turk (AMT) and are publicly
available.

The crowdsourced dataset Leaves [Zhang et al., 2016b]
is a traditional classification dataset, which distinguishes six
types of leaves depending on their shape and other character-
istics. The LabelMe dataset [Rodrigues and Pereira, 2017]
is an image classification domain derived from LabelMe da-
ta [Russell et al., 2008]. To find neighbor images, MNLD-
P computes the image similarities based on 512 numerical
features determined by the GIST descriptor 3, which was
proposed by [Oliva and Torralba, 2001]. The Music Genre
dataset 4 is published on AMT and used to collect multiple
noisy labels by [Rodrigues et al., 2013]. Because differen-
t genres have different extraction criteria and the criteria are
non-overlapping [Aucouturier and Pachet, 2003], we utilized
Principal Component Analysis to extract 31 pivotal features
from the 124-dimensional full combined feature vector. Table
2 summarizes the detailed data characteristics of these crowd-
sourced datasets.

Table 3 presents detailed comparison results obtained by
different label integration (consensus) methods on three real-
world crowdsourced datasets. As expected, our proposed
MNLDP significantly outperformed all the baseline method-
s. The integration accuracies of MNLDP on three real-world
crowdsourced datasets were 65.1%, 82.3%, and 79%, respec-
tively, which were much higher than those of MV, DS, ZC,
KOS, and GTIC. Based on these results, we can draw nearly
the same conclusions as those from the simulated benchmark
datasets. However, we also should note that the KOS per-
formed very poorly on both the LabelMe and Music Genre
datasets. We believe that this was because some labelers only
labeled a tiny portion of instances, and KOS failed to estimate
the reliabilities of these labelers.

To explore the effect of the global sharing of the topologi-
cal structure on both the feature and multiple noisy label s-
paces, we modified the parameters of the GIST descriptor
to obtain different features on the LabelMe dataset. Based
on these different features, the degree of sharing between the
feature and multiple noisy label spaces was approximated as
different. In the GIST descriptor, the number of blocks and
scale of filters were fixed at 4. In addition, the number of ori-
entations per scale was changed from 2 to 16, which indicates

3http://people.csail.mit.edu/torralba/code/spatialenvelope
4http://fprodrigues.com//mturk-datasets.tar.gz

Method Leaves LabelMe Music Genre
MV 63.8 76.2 70.57
DS 63.54 74.7 52.57
ZC 64.58 77.2 78.29
KOS 64.5 8.9 22.71
GTIC 62.24 76.7 70.71
MNLDP 65.1 82.3 79

Table 3: Integration accuracy (%) comparisons on three real-world
crowdsourced datasets.

Figure 5: Integration accuracy (%) comparisons with different num-
bers of orientations per scale.

that the number of features varied from 2 ∗ 4 ∗ 42 = 128 to
16 ∗ 4 ∗ 42 = 1024. Figure 5 shows that the integration ac-
curacy (%) improved as the number of different orientations
per scale increased. These comparison results reveal that the
integration accuracy (%) of our proposed MNLDP steady im-
proved as the number of different orientations per scale in-
creased until the number of generated features approximated
9 ∗ 4 ∗ 42 = 576. These results also reveal the rationality for
the global sharing of the topological structure between the
feature and multiple noisy label spaces.

6 Conclusion and Feature Work
This study proposed an MNLDP method to improve the per-
formance of label integration for crowdsourcing. MNLDP
first transforms the multiple noisy label set of each instance
into its multiple noisy label distribution and then propagates
this distribution to its nearest neighbors. The extensive ex-
perimental results on simulated and real-world crowdsourced
datasets show that, in many cases, our proposed MNLDP sig-
nificantly outperformed all the other state-of-the-art label in-
tegration (consensus) methods used in comparison.

For simplicity, we naively assumed that the multiple noisy
label space shared nearly the same topological structure with
the feature space. We noticed that this global sharing assump-
tion is quite simple and rough. Therefore, alleviating this as-
sumption more or less to improve further the performance of
the current MNLDP and strengthen its advantage is a main
direction for our future work.
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