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Abstract

In recent years the possibility of relaxing the so-
called Faithfulness assumption in automated causal
discovery has been investigated. The investiga-
tion showed (1) that the Faithfulness assumption
can be weakened in various ways that in an impor-
tant sense preserve its power, and (2) that weak-
ening of Faithfulness may help to speed up meth-
ods based on Answer Set Programming. However,
this line of work has so far only considered the dis-
covery of causal models without latent variables.
In this paper, we study weakenings of Faithfulness
for constraint-based discovery of semi-Markovian
causal models, which accommodate the possibility
of latent variables, and show that both (1) and (2)
remain the case in this more realistic setting.

1 Introduction

Causal inference is of great interest in many scientific ar-
eas, and automated discovery of causal structure from data
is drawing increasingly more attention in the field of ma-
chine learning. One of the standard approaches to auto-
mated causal discovery, known as the constraint-based ap-
proach, seeks to infer from data statistical relations among
a set of random variables, and translate those relations into
constraints on the underlying causal structure so that fea-
tures of the causal structure may be determined from the con-
straints [Spirtes et al., 2000; Pearl, 2000]. In this approach,
the most commonly used constraints are in the form of con-
ditional (in)dependence, which can serve as constraints on
the causal structure due in the first place to the well known
causal Markov assumption. The assumption states roughly
that a causal structure, as represented by a directed acyclic
graph (DAG), entails a certain set of conditional indepen-
dence statements. With this assumption, a conditional de-
pendency found in the data constrains the causal DAG.

The causal Markov assumption is almost universally ac-
cepted by researchers on causal discovery. However, by itself
the assumption is too weak to enable interesting causal infer-
ence [Zhang, 2013]. Tt is therefore usually supplemented with
an assumption known as Faithfulness, which states roughly
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that unless entailed by the causal structure according to the
Markov assumption, no conditional independence relation
should hold. With this assumption, conditional independence
relations found in the data also constrain the causal DAG.

Unlike the causal Markov assumption, the Faithfulness as-
sumption is often regarded as questionable. The standard
defense of the assumption is that violations of Faithfulness
involve fine-tuning of parameters (such as two causal path-
ways balancing out exactly), which is very unlikely if we as-
sume parameter values are somehow randomly chosen. How-
ever, parameter values may not be randomly chosen, espe-
cially in situations where balancing of multiple causal path-
ways may be part of the design. More importantly, even if
the true distribution is faithful to the true causal structure,
with finite data, “apparent violations” of faithfulness can re-
sult from errors in statistical tests, when a false hypothe-
sis of conditional independence fails to be rejected. Such
apparent violations of faithfulness cannot be reasonably as-
sumed away [Uhler et al., 2013] and will bring troubles
to causal discovery that assumes Faithfulness [Meek, 1996;
Robins et al., 2003].

For these reasons, in recent years the possibility of relax-
ing the Faithfulness assumption has been investigated [Ram-
sey et al., 2006; Zhang and Spirtes, 2008; Zhang, 2013;
Spirtes and Zhang, 2014; Raskutti and Uhler, 2018; Forster
et al., 2017]. This line of work made it clear that in the con-
text of learning causal models with no latent variables, the
Faithfulness assumption can be weakened or generalized in a
number of ways while retaining its inferential power, because
in theory these assumptions all reduce to the Faithfulness as-
sumption when the latter happens to hold.

On a more practical note, causal discovery algorithms have
also been developed to fit some of these weaker assumptions,
most notably the Conservative PC algorithm [Ramsey et al.,
2006] and the greedy permutation-based algorithms [Wang et
al., 2017; Solus et al., 2017]. More systematically, [Zhalama
et al., 2017] implemented and compared a number of weak-
enings of Faithfulness in the flexible approach to causal dis-
covery based on Answer Set Programming (ASP) [Hyttinen
et al., 2014]. Among other things, they found, rather surpris-
ingly, that some weakenings significantly boost the time ef-
ficiency of ASP-based algorithms. Since the main drawback
of the ASP-based approach lies with its feasibility, this find-
ing is potentially consequential for the further development
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of this approach.

However, neither the theoretical investigation nor the ASP-
based practical exploration went beyond the limited (and un-
realistic) context of learning causal models in the absence of
latent confounding, also known as causal discovery with the
assumption of causal sufficiency [Spirtes et al., 2000]. Since
latent confounding is ubiquitous, it is a serious limitation to
restrict the study to causally sufficient settings. And it is es-
pecially unsatisfactory from the perspective of the ASP-based
approach, which boasts the potential to deal with a most gen-
eral search space that accommodates the possibility of latent
confounding and that of causal loops [Hyttinen er al., 2013].

In this paper, we make a step towards remedying this lim-
itation by generalizing the aforementioned investigation in a
setting where latent confounding is allowed (but not causal
loops; we remark on a complication that will arise in the
presence of causal loops in the end.) Since the investigation
appeals to the ASP-based platform, we will follow previous
work on this topic to use semi-Markovian causal models to
represent causal structures with latent confounders. Among
other things, we show that it remains the case that (1) the
Faithfulness assumption can be weakened in various ways
that in an important sense preserve its power, and (2) weaken-
ing of Faithfulness may help to speed up ASP-based methods.

The remainder of the paper will proceed as follows. In
Section 2, we introduce terminologies and describe the ba-
sic setup. In Section 3, we review a few ways to relax the
Faithfulness assumption that have been proposed in the con-
text of causal discovery with causal sufficiency and have been
proved to be conservative in a sense we will specify. Then,
in Section 4, we discuss the complications that arise with
semi-Markovian causal models, and establish generalizations
of the results mentioned in Section 3. This is followed by
a discussion in Section 5 of how to implement the weaker
assumptions in the ASP platform. Finally, we report some
simulation results in Section 6 that demonstrate the speed-up
mentioned above, and conclude in Section 7.

2 Preliminaries

In this paper, the general graphical representation of a causal
structure is by way of a mixed graph. The kind of mixed
graph we will use is a triple (V,E;, E5), where V is a set
of vertices (each representing a random variable), E; a set
of directed edges (—) and Es a set of bi-directed edges ().
In general, more than one edge is allowed between two ver-
tices, but no edge is allowed between a vertex and itself. Two
vertices are said to be adjacent if there is at least one edge
between them. Given an edge X — Y, X is called a par-
ent of Y and Y a child of X. We also say the edge has
a tail at X and an arrowhead at Y. An edge X < Y is
said to have an arrowhead at both X and Y. A path be-
tween X and Y consists of an ordered sequence of distinct
vertices (X = Vi,..,V, = Y) and a sequence of edges
(Eq,...,Ep_1) such that for 1 < ¢ < n —1, E; is an edge
between V; and V1. Such a path is a directed path from X
toY ifforall 1 < ¢ < n —1, E; is a directed edge from V;
to Viy1. X is an ancestor of Y and Y an descendant of X,
if either X = Y or there is a directed path from X to Y. A
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Figure 1: An inducing path between two non-adjacent vertices

directed cycle occurs when two distinct vertices are ancestors
of each other.

If a mixed graph does not contain any directed cycle, we
will call it a semi-Markovian causal model (SMCM), also
known as an acyclic directed mixed graph (ADMG). Intu-
itively a directed edge in an SMCM represents a direct causal
relationship, and a bi-directed edge represents the presence
of latent confounding. A directed acyclic graph (DAG) is a
special case where no bi-directed edge appears. A DAG can
be thought of as representing a causal model over a causally
sufficient set of random variables, which may be referred to
as a Markovian causal model (MCM).

The conditional independence statements entailed by a
graph can be determined graphically by a separation crite-
rion. One statement of this criterion is m-separation, which
is a natural generalization of the celebrated d-separation cri-
terion for DAGs [Pearl, 1988]. Given any path in a mixed
graph G, a non-endpoint vertex V' on the path is said to be a
collider on the path if both edges incident to V' on the path
have an arrowhead at V. Otherwise it is said to be a non-
collider on the path.

Definition 1 (m-connection and m-separation). Given a
mixed graph G over V and Z C V, a path in G is m-
connecting given 7, if every non-collider on the path is not
in Z and every collider on the path has a descendant in Z.

For any distinct X, Y ¢ Z, X and Y are m-separated by Z
in G (written as X L Y | Z) if there is no path between X
and Y that is m-connecting given Z. Otherwise X and Y are
said to be m-connected by Z.

For any X,Y,Z C V that are pairwise disjoint, X and
Y are m-separated by Z in G if every vertex in X and every
vertex in Y are m-separated by Z.

This definition obviously reduces to that of d-connection
and d-separation in the case of DAGs. It is well known that
in a DAG, two vertices are adjacent if and only if no set of
other vertices d-separates them. The ‘only if” direction holds
for SMCMs, but the ‘if” direction does not. For example, in
the simple SMCM in Figure 1, V; and V3 are not adjacent,
but neither the empty set nor the set {V>} m-separates them.
This motivates the following definition.

Definition 2 (inducing path). A path between X and Y is an
inducing path if every non-endpoint vertex on the path is a
collider and also an ancestor of either X or Y.

For example, in Figure 1, the path V; — V5 <> V3 is an
inducing path between V; and V3. In general, two vertices
in an SMCM are not m-separated by any set of other vari-
ables if and only if there is an inducing path between them
[Verma, 1993]. Note that an edge between two vertices con-
stitutes an inducing path. Following [Richardson, 1997], we
call two vertices virtually adjacent if there is an inducing path
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between them. Adjacency entails virtual adjacency, but not
vice versa.

3 Faithfulness and Its Weakening for
Learning Causal Models without Latent
Variables

We now review some proposals of weakening the Faithful-
ness assumption in the context of learning (acyclic) causal
structures in the absence of latent confounding. In such
a case, the target is a DAG over the given set of random
variables V, in which each edge represents a direct causal
relation relative to V [Spirtes et al., 2000]. Let G denote the
unknown true causal DAG over V, and P denote the true
joint probability distribution over V. The causal Markov
assumption can be formulated as:

Causal Markov assumption For every pairwise dis-
joint X, Y, ZCV,if X 1gY|Z,then X L pY | Z.

where ‘X Lg Y | Z° means that X and Y are d-separated
by Z in G, and ‘X L pY |Z’ means that X and Y are
independent conditional on Z according to P.

The converse is the causal Faithfulness assumption:

Causal Faithfulness assumption For every pairwise
disjoint X, Y, ZC V,if X L pY |Z,thenX Lo Y | Z.

As mentioned earlier, the Faithfulness assumption is
regarded as much more questionable than the Markov
assumption, and the literature has seen a number of proposals
to relax it. In this paper, we focus on the following three.'

Adjacency-faithfulness assumption For every distinct
X,Y € V,if X and Y are adjacent in G, then X { .Y | Z,
forevery Z C V\{X,Y}.

Number-of-Edges(NoE)-minimality assumption: G is
NoE-minimal in the sense that no DAG with a smaller
number of edges than G satisfies the Markov assumption
with P.

Number-of-Independencies(Nol)-minimality assump-
tion: GG is Nol-minimal in the sense that no DAG that entails
a greater number of conditional independence statements
than G does, satisfies the Markov assumption with P.

Under the Markov assumption, these assumptions are
all weaker than the Faithfulness assumption. In words,
Adjacency-faithfulness says that two variables that are adja-
cent in the causal structure are dependent given any condi-
tioning set. It was first introduced in [Ramsey er al., 2006]
and motivated the CPC (conservative PC) algorithm. NoE-
minimality says that the true causal structure has the least

'Another two proposals are known as ‘Triangle-Faithfulness
plus SGS-minimality’ [Spirtes and Zhang, 2014] and ‘P-minimality’
[Zhang, 2013]. Tt is not yet clear how to implement the latter in ASP,
and the former did not seem to help much with ASP-based methods
[Zhalama et al., 2017].
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number of edges among all structures that satisfy the Markov
assumption. It underlies the novel permutation-based al-
gorithms that were developed recently [Raskutti and Uhler,
2018; Wang et al., 2017; Solus et al., 2017]. NoI-minimality
says that the true causal structure entails the greatest number
of conditional independence statements among all structures
that satisfy the Markov assumption. In the ASP-based meth-
ods, the ‘hard-deps’ conflict resolution scheme in [Hyttinen et
al., 2014] happened to implement this minimality constraint.

Theoretically these assumptions are particularly interesting
because although they are weaker than Faithfulness (given the
Markov assumption), they are in a sense strong enough to pre-
serve the inferential power of Faithfulness. It has been shown
that when Faithfulness happens to hold, all these weaker as-
sumptions become equivalent to Faithfulness [Zhalama et al.,
2017]. In other words, while they are weaker than Faithful-
ness and therefore still hold in many cases when Faithful-
ness does not, they rule out exactly the same causal graphs as
Faithfulness does when the latter happens to be satisfied. We
propose to call this kind of weakening conservative, for it re-
tains the inferential power of Faithfulness whenever Faithful-
ness is applicable. The choice between a stronger assumption
and a weaker one usually involves a trade-off between risk (of
making a false assumption) and inferential power, but there is
no such trade-off if the weakening is conservative.

In addition to this theoretical virtue, both Adjacency-
faithfulness and NoE-minimality, and especially Adjacency-
faithfulness, have been shown to significantly improve the
time efficiency of ASP-based causal discovery methods,
without significant sacrifice in performance [Zhalama et al.,
2017]. We aim to extend these findings to the much more
realistic setting where latent confounding may be present.

4 Weakening Faithfulness for Learning
Semi-Markovian Causal Models

When the set of observed variables V is not causally suffi-
cient, which means that some variables in V share a common
cause or confounder that is not observed, it is no longer ap-
propriate to represent the causal structure in question with a
DAG over V. One option is to explicitly invoke latent vari-
ables in the representation and assume the underlying causal
structure is properly represented by a DAG over V plus some
latent variables L. Another option is to suppress latent vari-
ables and use bi-directed edges to represent latent confound-
ing. The use of SMCMs exemplifies the latter approach.?

As [Verma, 1993] showed, for every DAG over V and
set of latent variables L, there is a unique projection into an
SMCM over V that preserves both the causal relations among
V and the entailed conditional independence relations among
V. Moreover, as [Richardson, 2003] pointed out, the original
causal DAG with latent variables and its projection into an
SMCM are equivalent regarding the (nonparametric) identifi-
cation of causal effects. These facts justify using SMCMs to
represent causal structures with latent confounding.

So let us suppose the underlying causal structure over V
is properly represented by an SMCM G and let P denote

% Another important example is the use of ancestral graph Markov
models [Richardson and Spirtes, 2002].
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the true joint distribution over V. In this setting, the causal
Markov and Faithfulness assumptions can be formulated as
before (in Section 3), except that the separation criterion is
now understood as the more general m-separation. Next we
examine the proposals of weakening Faithfulness.

Regarding Adjacency-faithfulness, it is easy to see that it
remains a logical consequence of Faithfulness. If two vari-
ables are adjacent in an SMCM, then given any set of other
variables, the two are m-connected (any edge between them
constitutes a m-connecting path). Thus, if Faithfulness holds,
then they are not independent conditional on any set of other
variables, exactly what is required by Adjacency-faithfulness.
Since Adjacency-faithfulness does not entail Faithfulness in
the case of DAGs and DAGs are special cases of SMCMs,
Adjacency-faithfulness remains weaker than Faithfulness.

Howeyver, it is now too weak to be a conservative weak-
ening of Faithfulness. Here is a very simple example. Sup-
pose the true causal structure over three random variables is
a simple causal chain V; — V5, — V3, and suppose the joint
distribution is Markov and Faithful to this structure. So we
have V7 1L V3 | V. Then the distribution is not Faithful to
the structure in Figure 1, because that structure does not en-
tail that V; and V3 are m-separated by V5. Still, Adjacency-
faithfulness is satisfied by the distribution and the structure
in Figure 1, for the only violation of Faithfulness occurs with
regard to V; and V3, which are not adjacent. Therefore, in
this simple case where Faithfulness happens to hold, if we
just assume Adjacency-faithfulness, we are not going to rule
out the structure in Figure 1, which would be ruled out if we
assumed Faithfulness.

This simple example suggests that we should consider the
following variation:

V(irtual)-adjacency-faithfulness assumption: For ev-
ery distinct X, Y € V,if X and Y are virtually adjacent in
G (i.e., if there is an inducing path between X and Y in G),
then X X .Y | Z, forevery Z C V \ {X,Y}.

V-adjacency-faithfulness is obviously stronger than
Adjacency-faithfulness, but we can prove that it remains
weaker than Faithfulness. More importantly, it is strong
enough to be a conservative weakening of Faithfulness.

How about NoE-minimality? Since more than one edge
can appear between two vertices, NoE-minimality (as it is
formulated in Section 3) is no longer a consequence of Faith-
fulness. To see this, just suppose the true structure over two
random variables is simply V; — V5 together with V; <> V5
(i.e., V1 is a cause of V5 but the relation is also confounded),
and suppose the distribution is Markov and Faithful to this
structure. NoE-minimality is violated here, for taking away
either (but not both) of the two edges still results in a structure
that satisfies the Markov assumption.

So NoE-minimality is not a weakening of Faithfulness.
Note that in the case of DAGs, minimization of the number
of edges is equivalent to minimization of the number of ad-
jacencies. If we replace the former with the latter, the above
example is taken care of (for taking away the adjacency in
that example will result in a structure that fails the Markov
assumption). However, it is also easy to construct an example
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where an adjacency in an SMCM can be taken away without
affecting the independence model [Richardson and Spirtes,
2002], so adjacency-minimality also fails to be a weakening
of Faithfulness. The right generalization of NoE-minimality
is unsurprisingly the following:

V(irtual)-adjacency-minimality assumption: G is V-
adjacency-minimal in the sense that no SMCM with a
smaller number of virtual adjacencies than G satisfies the
Markov assumption with P.

Finally, Since Nol-minimality is concerned with entailed
conditional independence statements, it is straightforwardly
generalized to the setting of SMCMs (just replace ‘DAG’
with ‘SMCM’ in the original formulation), and remains a
conservative weakening of Faithfulness. Here then is the
main result of this section.’

Theorem. Given the causal Markov assumption, the V-
adjacency-faithfulness assumption, V-adjacency-minimality
assumption, and Nol-minimality assumptions are all conser-
vative weakenings of the Faithfulness assumption, in the fol-
lowing sense: for each of the 3 assumptions AS,

(a) AS is entailed by, but does not entail, Faithfulness.

(b) For every joint probability distribution P over V, if there
exists an SMCM that satisfies both Markov and Faith-
fulness assumptions with P, then for every SMCM G
that satisfies the Markov assumption with P, G satisfies
Faithfulness if and only if G satisfies AS with P.

S5 ASP-based Causal Discovery of SMCMs

We instantiated causal discovery algorithms, which adopt
V-adjacency-faithfulness and V-adjacency-minimality, using
the framework of [Hyttinen er al., 2014]. This framework
offers a generic constraint-based causal discovery method
based on Answer Set Programming (ASP). The logic is
used to define Boolean atoms that represent the presence
or absence of a directed or bi-directed edge in an SMCM.
In addition, conditional independence/dependence statements
(CI/CDs) obtained from tests on the input data are encoded in
this logic. Finally, background assumptions, such as Markov
and Faithfulness, are written as logical constraints enforcing a
correspondence between the encoded test results and the un-
derlying Boolean atoms (the edges of the SMCM). Solutions,
which are truth-value assignments to the Boolean atoms, sat-
isfying such a correspondence are found using off-the-shelf
solvers. The set of solutions specifies the set of SMCMs
that satisfy all the input CI/CDs and the background assump-
tions. Given that the results of the statistical tests may conflict
with the background assumptions, there may be no solution,
i.e. there is no SMCM that satisfies all the input CI/CDs and
background assumptions. For that case [Hyttinen et al., 2014]
introduced the following optimization to resolve the conflict:

G* e arg min Z w(k) (1)
keK st Gk

3For a proof of the theorem, we refer readers to the appendices
in the expanded version of the paper [Zhalama et al., 2019].
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In words, an output graph G* minimizes the weighted sum of
input CI/CDs, which it does not satisfy given the encoded
background assumptions. [Hyttinen et al., 2014] adopted
three weighting schemes for the weights w(.): (1) “constant
weights” (CW) assigns a weight of 1 to each CI and CD con-
straint. (2) “hard dependencies weights” (HW/Nol-m) as-
signs infinite weight to any observed CD, and a weight of 1 to
any CL. (3) “log weights” (LW) is a pseudo-Bayesian weight-
ing scheme, where the weights depend on the log posterior
probability of the CI/CDs being true (see their Sec. 4).

To encode V-adjacency-faithfulness and V-adjacency-
minimality, we need to encode in ASP what it is for an
SMCM to have an inducing path and a virtual adjacency,
and then replace the encoding of the Faithfulness assumption
in [Hyttinen et al., 2014] with its weaker versions. Figure
2 summarizes the ASP-encoding of V-adjacency-faithfulness
and V-adjacency-minimality. We briefly explain the predi-
cates:

e edge(X,Z) and conf(X,Z): X — Z and X < Z,
respectively, are in the SMCM.

e ancestors(Z,X,Y): Z is an ancestor of X or Y in the
SMCM.

e h(X,Z,Y): There is a path between X and Z which is
into Z, and if the path consists of two or more edges,
every non-endpoint vertex on the path is a collider and
every vertex on the path is an ancestor of either X or Y.

e (X, Z,Y): It differs from h(X, Z,Y) only in that the
path between X and Z is out of Z. Together, ¢(.) and
h(.) are used to specify the possible inducing paths.

e vadj(X,Y): X and Y are virtually adjacent.

Inference rules for virtual-adjacency:
hMX,Z,Y) - edge(X, Z), ancestors(Z, X,Y).

WX, Z,Y):-conf(X,Z),ancestors(Z,X,Y).
MX,Z,Y):-h(X,UY),conf(Z,U),ancestors(Z, X,Y).
HX,Z,Y):- h(X,UY),edge(Z,U), ancestors(Z, X,Y).

vadj(X,Y) - h(X,Y,Y).
vadj(X,Y) - t(X,Y,Y).
vadj(X,Y) :- edge(Y, X).

Virtual-adjacency-faithfulness (violations):
VXVY > X,VC C V)}{}i(,Y},
-notvadj(X,Y),indep(X,Y, C,w)

Virtual-adjacency-minimality (optimization of weak con-
straints):
VXVY > X,

faill(X,Y,w=1) :-vadj(X,Y).
i~ fail (X, Y, w). [w]

(Variables are in an arbitrary order so that indep(X,Y, C, w)
and dep(X, Y, C,w) are considered only if Y > X, in order
to avoid double counting.)

Figure 2: ASP Encoding of V-adjacency-faithfulness and V-
adjacency-minimality
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e indep(X,Y,C,w): X and Y are independent condi-
tional on C, given as input fact, with weight w.

For V-adjacency-faithfulness, we encode that any CI state-
ment X 1 Y | C implies that X and Y are not virtually
adjacent. For V-adjacency-minimality, we employ the mini-
mization of the number of virtual-adjacencies. By encoding
the weaker assumptions in the framework of [Hyttinen er al.,
2014], we then have the following algorithms (Hyttinen et
al.’s algorithm based on the ‘hard dependencies’ weights is
equivalent to one based on Nol-minimality):

e VadjF: Virtual-adjacency-faithfulness + Markov
e VadjM: Virtual-adjacency-minimality + Markov

6 Simulations

We report two types of simulation, one using an independence
oracle that specifies the true CI/CDs of the causal model, and
one that uses the CI/CDs inferred from the sample data.

For both simulations we followed the model generation
process of [Hyttinen er al., 2014] for causally insufficient
models: We generated 100 random linear Gaussian mod-
els over 6 vertices with an average edge degree of 1 for di-
rected edges. The edge coefficients were drawn uniformly
from [—0.8, —0.2] U [0.2, 0.8]. The error covariance matrices
(which also represent the confounding) were generated using
the observational covariance matrix of a similarly constructed
causally sufficient model (with its error covariances sampled
from N (0.5,0.01)).

In the oracle setting, we randomly generated 100 lin-
ear Gaussian models with latent confounders over 6 vari-
ables and then input the independence oracles implied by
these models. We observed that the algorithms based on
V-adjacency-faithfulness, on V-adjacency-minimality, and on
Nol-minimality (which is equivalent to using ‘hard depen-
dencies’ weighting) all returned the exact same results as the
algorithm based on Faithfulness did, which is consistent with
the theoretical results in Section 4 and confirms the correct-
ness of our encoding.

In the finite sample case we generated five data sets with
500 samples from each of the 100 models. We used correla-
tional t-tests and tried 10 threshold values for rejecting the
null hypothesis (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1, 0.15, 0.2, 0.25). The test results formed the input for
the algorithms. We also used the log-weighting scheme and
tried 10 values for the free parameter of the Bayesian test
(0.05,0.09,0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.9).

For each algorithm we output all possible solutions and
compared the d-connections common to all the output graphs
against those of the true data generating graph. In all the
100(models)*5(data)x10(parameters) = 5,000 runs, Faith-
fulness was satisfied in only 367/5000 of the cases while
V-adjacency-faithfulness was satisfied in 2065/5000 of the
cases. This shows that V-adjacency-faithfulness is indeed sig-
nificantly weaker than Faithfulness and greatly reduces the
number of conflicts. By definition, V-adjacency-minimality
can always be satisfied. Figure 3 plots the ROC curves for the
inferred d-connections. Under “constant weighting” (CW)
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“hard dependencies weighting” (HW), using V-adjacency-
faithfulness achieves comparable accuracy to using faith-
fulness, with some trade-offs between false-positive rates
and true-positive rates. Under “log weighting” (LW), how-
ever, using Faithfulness seems slightly more accurate than
using V-adjacency-faithfulness, though using V-adjacency-
minimality seems to generally yield the lowest false-positive
rates. How to adapt the “log weighting” to fit V-adjacency-
faithfulness better is an interesting question for future work.
Finally, to explore the efficiency gain of the weakened
faithfulness assumptions, we generated 100 random linear
Gaussian models with latent confounders over 8 variables and
generated one data set with 500 samples from each model.
For each algorithm, we only required that one graph be found.
Figure 4 shows the sorted solving times for the different back-
ground assumptions (with maximum time budget of 5,000s).
As in the causally sufficient case, we see a significant im-
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Figure 4: Sorted Solving Times for 8 Variables (time-out at 5,000s)
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Figure 5: Illustration of a complication in cyclic models

(a) (b)

provement in solving times when using the weakened faith-
fulness assumptions.

7 Conclusion

We have shown how to extend the results on weakening Faith-
fulness in the context of learning causal DAGs to the more
realistic context of learning SMCMs that allow for the rep-
resentation of unmeasured confounding. We identified gen-
eralizations of some proposals of weakening Faithfulness in
the literature and showed that they continue to be what we
call conservative weakenings. Moreover, we implemented
ASP-based algorithms for learning SMCMs based on these
weaker assumptions. The simulation results suggest that
some of these weaker assumptions, especially V-adjacency-
faithfulness, help to save solving time in ASP-based algo-
rithms to a significant extent.

In this connection, a direction of future work is to explore
how the apparent advantage of using weaker assumptions
may be realized on top of other ASP-based causal discovery
methods, such as ETIO in [Borboudakis and Tsamardinos,
2016] and ACI in [Magliacane et al., 2016].

One great appeal of the ASP-based approach is that the
background assumptions that determine the search space can
be flexibly adjusted to include causal models with both la-
tent confounding and causal feedback. We close with an
illustration of a (further) complication that arises in cyclic
causal models. Suppose the true causal structure is the cyclic
one in Figure 5(a), which entails that V; 1 V5 and V; L
Va | {V5,V4}. Suppose the true distribution is Markov and
Faithful to this structure and hence features exactly two non-
trivial conditional independencies. Then the distribution is
not Faithful to the structure in Figure 5(b) (for that struc-
ture does not entail V3 L V5 | {V3,V4}), but it is still V-
adjacency-faithful (for V7 and V5 are not virtually adjacent).

This means that even V-adjacency-faithfulness is not a con-
servative weakening of Faithfulness when causal feedback is
allowed. Whether it can be strengthened into a useful conser-
vative weakening for the purpose of learning cyclic models is
worth further investigation.
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