
Do You Need Infinite Time?

Alessandro Artale , Andrea Mazzullo and Ana Ozaki
KRDB Research Centre – Free University of Bozen–Bolzano

{artale, mazzullo, ozaki}@inf.unibz.it

Abstract

Linear temporal logic over finite traces is used as a
formalism for temporal specification in automated
planning, process modelling and (runtime) verifica-
tion. In this paper, we investigate first-order tem-
poral logic over finite traces, lifting some known
results to a more expressive setting. Satisfiability in
the two-variable monodic fragment is shown to be
EXPSPACE-complete, as for the infinite trace case,
while it decreases to NEXPTIME when we consider
finite traces bounded in the number of instants. This
leads to new complexity results for temporal descrip-
tion logics over finite traces. We further investigate
satisfiability and equivalences of formulas under a
model-theoretic perspective, providing a set of se-
mantic conditions that characterise when the distinc-
tion between reasoning over finite and infinite traces
can be blurred. Finally, we apply these conditions
to planning and verification.

1 Introduction
Since the introduction of linear temporal logic (LTL), several
propositional and first-order LTL-based formalisms have been
developed for applications such as automated planning [Bac-
chus and Kabanza, 2000; Baier and McIlraith, 2006], process
modelling [van der Aalst and Pesic, 2006; Maggi et al., 2011]
and verification of programs [Manna and Pnueli, 1995]. Re-
lated research in knowledge representation has focused on de-
cidable fragments of first-order temporal logic, TUQL [Hod-
kinson et al., 2000; Gabbay et al., 2003], and in particular on
temporal description logics [Wolter and Zakharyaschev, 1998;
Artale and Franconi, 2005] that combine LTL operators with
description logics (DLs). These logics usually lie within the
two-variable monodic fragment of TUQL, TUQL2

21 , obtained
by restricting to formulas having at most two variables, and
so that the temporal operators are applied only to subformu-
las with at most one free variable. The complexity of the
satisfiability problem ranges from EXPSPACE-complete, for
TUQL2

21 [Gabbay et al., 2003; Hodkinson et al., 2003], down
to NEXPTIME- or EXPTIME-complete, for temporal exten-
sions of ALC without temporalised roles and with restrictions
on the application of temporal operators [Lutz et al., 2008;

Baader et al., 2012], or even in NP or NLOGSPACE, by mod-
ifying further both the temporal and the DL components, as
in some temporal extensions of DL-Lite for conceptual data
modelling [Artale et al., 2014].

Besides the usual LTL semantics defined on infinite lin-
ear structures, attention has been devoted also to finite traces,
which are linear temporal structures with only a finite number
of time points [Cerrito et al., 1999; De Giacomo and Vardi,
2013; Fionda and Greco, 2016]. Indeed, the finiteness of
the time dimension is a fairly natural restriction. In auto-
mated planning, or when modelling business processes with a
declarative formalism, we consider finite action plans and ter-
minating services, often within a given temporal bound [Bauer
and Haslum, 2010; De Giacomo et al., 2014a; De Giacomo
et al., 2014b; Camacho et al., 2017]. In runtime verifica-
tion, only the current finite behaviour of the system is taken
into account. Infinite models are then considered to check
whether a given requirement is satisfied in the infinite exten-
sions of this finite trace [Giannakopoulou and Havelund, 2001;
Bauer et al., 2010]. Although some recent work has consid-
ered temporal extensions of DLs in the context of runtime
verification [Baader and Lippmann, 2014] and business pro-
cess modelling [van der Aalst et al., 2017], the proposals
developed so far are based on the usual infinite trace semantics
and are limited in expressivity.

This work focuses on first-order temporal logic on finite
traces [Cerrito et al., 1999], defined by extending the first-
order language with temporal operators interpreted on finite
traces. We obtain the following main results.

• The complexity of TUQL2
21 remains EXPSPACE-

complete on finite traces, but lowers down to NEXPTIME
if we restrict to traces with a bound k on the number of
instants. Moreover, it has the bounded model property.
• Similar results (including the bounded model property)

also hold for the temporal DL TUALC on finite traces,
where the complexity further reduces to EXPTIME if
only global axioms and finite traces with a fixed bound
on instants are allowed.
• We establish semantic and syntactic conditions which

characterise when the distinction between reasoning on
finite and infinite traces can be completely blurred, pro-
viding connections with planning and verification.

Concerning this last point, several approaches have been con-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1516

sidered to preserve satisfiability of formulas from the finite to
the infinite case, so to reuse algorithms developed for the infi-
nite case [Bauer and Haslum, 2010; De Giacomo et al., 2014b].
Here, we determine conditions that preserve satisfiability also
in the other direction, from infinite to finite traces. This opens
interesting research directions towards the application of effi-
cient finite traces reasoners [Li et al., 2014] to the infinite case.
We provide a uniform framework for these notions, bridging
finite and infinite trace semantics. Full proofs are available in
our technical report [Artale et al., 2019].

2 First-order Temporal Logics
The first-order temporal language, TUQL [Gabbay et al.,
2003], is obtained by extending the usual first-order language
with the temporal operator until (U) interpreted over discrete
linear structures, called traces.
Syntax The alphabet of TUQL consists of countably infi-
nite and pairwise disjoint sets of predicates NP (with ar(P) ∈
N being the arity of P ∈ NP), constants (or individual names)
NI, and variables Var; the logical operators ¬,∧; the existen-
tial quantifier ∃, and the temporal operator U (until). The
formulas of TUQL are of the form:

ϕ,ψ ::= P (τ̄) | ¬ϕ | ϕ ∧ ψ | ∃xϕ | ϕ U ψ,
where P ∈ NP, τ̄ = (τ1, . . . , τar(P)) is a tuple of terms,
i.e., constants or variables, and x ∈ Var. Formulas with-
out the until operator are called non-temporal. We write
ϕ(x1, . . . , xm) to indicate that the free variables of a formula
ϕ are in {x1, . . . , xm}. For p ∈ N, the p-variable fragment of
TUQL, denoted by TUQLp, consists of TUQL formulas with
at most p variables (TUQL0 is simply propositional LTL). The
monodic fragment of TUQL, denoted by TUQL21 , consists of
formulas such that all subformulas of the form ϕ U ψ have at
most one free variable.
Semantics A first-order temporal interpretation is a struc-
ture M = (∆M, (In)n∈T), where T is an interval of the form
[0,∞) or [0, l], with l ∈ N, and each In is a classical first-
order interpretation with domain ∆M (or simply ∆): we have
P In ⊆ ∆ar(P), for each P ∈ NP, and aIi = aIj ∈ ∆ for all
a ∈ NI and i, j ∈ N, i.e., constants are rigid designators (with
fixed interpretation, denoted simply by aI). The stipulation
that all time points share the same domain ∆ is called the
constant domain assumption (meaning that objects are not
created or destroyed over time), and it is the most general
choice in the sense that increasing, decreasing, and varying
domains can all be reduced to it [Gabbay et al., 2003]. An as-
signment in M is a function a from terms to ∆: a(τ) = a(x),
if τ = x, and a(τ) = aI , if τ = a ∈ NI (given a tuple of m
terms τ̄ = (τ1, . . . , τm), we set a(τ̄) = (a(τ1), . . . , a(τm)).
Satisfaction of a formula ϕ in M at time point n ∈ T under
assignment a (written M, n |=a ϕ) is inductively defined as:

M, n |=a P (τ̄) iff a(τ̄) ∈ P In ,
M, n |=a ¬ϕ iff not M, n |=a ϕ,
M, n |=a ϕ ∧ ψ iff M, n |=a ϕ and M, n |=a ψ,

M, n |=a ∃xϕ iff M, n |=a′ ϕ for some assignment a′
that can differ from a only on x,

M, n |=a ϕ U ψ iff ∃m ∈ T,m > n : M,m |=a ψ and
∀i ∈ (n,m) : M, i |=a ϕ.

We say that ϕ is satisfied in M (and M is a model of ϕ),
writing M |= ϕ, if M, 0 |=a ϕ, for some a. Moreover, ϕ is
said to be satisfiable if it is satisfied in some M. A formula
ϕ logically implies a formula ψ if every M that satisfies ϕ
satisfies also ψ, and we write ϕ |= ψ. We say that ϕ and ψ are
equivalent, writing ϕ ≡ ψ, if ϕ |= ψ and ψ |= ϕ.

In the following, we call finite trace a first-order tempo-
ral interpretation with T = [0, l], often denoted by F =
(∆F, (Fn)n∈[0,l]), while infinite traces, based on T = [0,∞),
will be denoted by I = (∆I, (In)n∈[0,∞)). We say that a
TUQL formula ϕ is satisfiable on infinite, finite, or k-bounded
traces, if it is satisfied in a trace in the class of infinite, finite,
or finite traces with at most k ∈ N, k > 0 (given in binary)
time points, respectively.

Let F = (∆F, (Fn)n∈[0,l]) and I = (∆I, (In)n∈[0,∞))

be, respectively, a finite and an infinite trace s.t. ∆F = ∆I

(writing ∆) and aF = aI , for all a ∈ NI. We denote by
F · I = (∆F·I, (F · In)n∈[0,∞)) the extension of F with I,
defined as the infinite trace with ∆F·I = ∆, aF·I = aF , for
all a ∈ NI, and for P ∈ NP, n ∈ N:

PF·In =

{
PFn , if n ∈ [0, l]

P In−(l+1) , if n ∈ [l + 1,∞).

In addition to the standard Boolean equivalences, we will
use the following equivalences for formulas: ⊥ ≡ ∃x(P (x) ∧
¬P (x)), > ≡ ¬⊥; ©ϕ ≡ ©1ϕ ≡ ⊥ U ϕ; ©qϕ ≡ ©©q−1ϕ,
with q > 1; 3ϕ ≡ > U ϕ; 2ϕ ≡ ¬3¬ϕ; 3+ϕ ≡ ϕ ∨ 3ϕ;
and 2+ϕ ≡ ¬3+¬ϕ. Over finite traces, last ≡ ¬©> is
satisfiable in the last time point.

3 Satisfiability over Finite Traces
In the following we show how to reduce the formula satisfiabil-
ity problem over finite traces to the same problem over infinite
traces. Similar to the encoding proposed in [De Giacomo and
Vardi, 2013] for propositional LTL, to capture the finiteness
of the temporal dimension, we introduce a fresh predicate E
(standing for the end of time) with the following properties:
(i) there is a least one instant before the end of time; (ii) the
end of time comes for all objects; (iii) the end of time comes
at the same time for every object; (iv) the end of time never
goes away. We axiomatise these properties as follows:

ψf1 = ∀x¬E(x) (Point (i)),
ψf2 = (∀x¬E(x)) U (∀xE(x)) (Points (ii), (iii)),
ψf3 = 2∀x(E(x)→ ©E(x)) (Point (iv)).

We now characterise models satisfying the end of time for-
mula ψf = ψf1 ∧ ψf2 ∧ ψf3 . Let F = (∆, (Fn)n∈[0,l]) and
I = (∆, (In)n∈[0,∞)) be, respectively, a finite and an infinite
trace with the same domain ∆ and such that aF = aI , for all
a ∈ NI. We denote by F ·E I the end extension of F with I,
defined as the extension F ·I, for all P ∈ NP \ {E}, such that:

EF·EIn =

{
∅, if n ∈ [0, l]

∆, if n ∈ [l + 1,∞)

Clearly, the extension of E characterises the satisfiability of
ψf . We formalise this in the next lemma.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1517

Lemma 1. For every infinite trace I, I |= ψf iff I = F ·E I′,
for some finite trace F and some infinite trace I′.

We now introduce a translation ·† for TUQL formulas, used
together with the end of time formula, ψf , to capture satisfia-
bility on finite traces. More formally, a TUQL formula ϕ is
satisfiable on finite traces if and only if its translation ϕ† is
satisfied in an infinite trace that also satisfies the formula ψf .
The translation ·† is defined as:

(P (τ̄))† 7→ P (τ̄), (¬ϕ)† 7→ ¬ϕ†,
(ϕ ∧ ψ)† 7→ ϕ† ∧ ψ†, (∃xϕ)† 7→ ∃xϕ†,

(ϕ U ψ)† 7→ ϕ† U (ψ† ∧ ψf1).

Lemma 2 states the correctness of ·†.
Lemma 2. Let F ·E I be an end extension of a finite trace F.
For every TUQL formula ϕ and every assignment a, F |=a

ϕ iff F ·E I |=a ϕ†.
From the previous lemmas, we obtain a reduction of the
TUQL satisfiability problem to the same problem for TUQL.
Theorem 3. Let ϕ be a TUQL formula. Then ϕ is satisfiable
on finite traces iff ϕ† ∧ ψf is satisfiable on infinite traces.

We use the translation to transfer the EXPSPACE upper
bound for TUQL2

21 over infinite traces to finite traces [Hod-
kinson et al., 2003]. The lower bound can be proved using
similar ideas as those used to prove hardness of TUQL2

21 .

Theorem 4. TUQL2
21 satisfiability on finite traces is

EXPSPACE-complete.
We now study TUQL2

21 satisfiability on traces with at most
k time points, with k given in binary, as part of the input.
We show that in this case the complexity of the satisfiability
problem decreases from EXPSPACE to NEXPTIME. Hardness
follows from the fact that: (1) one can translateALC-LTL with
rigid concepts to TUQL2

21 ; and (2) satisfiability in ALC-LTL
with rigid concepts on k-bounded traces is NEXPTIME-hard,
as for infinite traces [Baader et al., 2012, Lemma 6.2]. For
the upper bound, we resort to a classical abstraction of models
called quasimodels [Gabbay et al., 2003]. One can show
that there is a model with at most k time points iff there is
a quasimodel with a sequence of states (sets of subformulas
with certain constraints) of length at most k. Then, our upper
bound is obtained by guessing an exponential size sequence
of states which serves as a certificate for the existence of a
quasimodel (and therefore a model) for the input formula.

Theorem 5. TUQL2
21 satisfiability on k-bounded traces is

NEXPTIME-complete.
We end this section by establishing that TUQL2

21 on finite
traces enjoys the bounded trace property and the bounded
domain property. If there is a finite trace which satisfies a
TUQL2

21 formula ϕ then there is a finite trace with at most
k time points, with k double exponentially large w.r.t. the
size of ϕ. This bound follows from the fact that (1) if there
is a quasimodel for ϕ then there is a quasimodel for ϕ where
there is no repetition of states [Gabbay et al., 2003], except
for the last state; and (2) the fact that the length of the finite
non-repeting sequence of states is correlated with the number

of time points in a finite trace. The number of distinct states of
a TUQL2

21 formula on finite traces is the same as in the infinite
case, where it is known to be double exponential [Gabbay
et al., 2003]. This directly implies that TUQL2

21 enjoys the
bounded trace property.
Theorem 6. TUQL2

21 satisfiability ofϕ on finite traces implies
TUQL2

21 satisfiability of ϕ on k-bounded traces, with k double
exponential in |ϕ|.

We now establish that a TUQL2
21 formula has the bounded

domain property: if it is satisfiable, then there is a model with
the size of the domain exponential in k (meaning that it is
double exponential in the binary representation of k).

Theorem 7. TUQL2
21 satisfiability of ϕ on k-bounded traces

implies the existence of a model with domain size exponential
in k and ϕ.
Since TUQL2

21 satisfiability on finite traces implies satisfiabil-
ity on k-bounded traces, for some k > 0, the formula

2+∀x(P (x)→©2+(¬P (x) ∧ ∃yR(x, y) ∧ P (y))), (*)

which only admits models with an infinite domain [Lutz et al.,
2008], is unsatisfiable over finite traces.

4 Finite vs. Infinite Traces
While certain formulas, such as 2>, are satisfiable both on
finite and infinite traces, others, e.g., 3last and 2+©>, are
only satisfiable on finite traces and on infinite traces, respec-
tively. One then wonders, when does satisfiability on finite
and infinite traces coincide, so that solvers can simply stop
trying to build the lasso of an infinite trace when a finite trace
is built? A similar question can be posed for the problem of
equivalences between formulas. For example, 32(ϕ∨ψ) and
(32ϕ) ∨ (32ψ) are equivalent on finite traces but not on
infinite traces [Bauer and Haslum, 2010]. Moreover, 2+3+ϕ
and 3+2+ϕ are not equivalent on infinite traces, whereas on
finite traces they are both equivalent to 3+(last ∧ ϕ) [De
Giacomo and Vardi, 2013]. Conversely, ⊥ and last are only
equivalent on infinite traces.

In this section we address these questions and investigate
the distinction between reasoning on finite and on infinite
traces. More specifically, we propose semantic properties
which guarantee that formula satisfiability and equivalences
between formulas are preserved, and thus, the distinction can
be blurred. Given a finite trace F, we define the set of exten-
sions of F as the set Ext(F) = {I | I = F · I′, for some I′}.
Instead, given an infinite trace I, the set of prefixes of I is
the set Pre(I) = {F | I = F · I′, for some I′}. For a TUQL
formula ϕ and a quantifier Q ∈ {∃, ∀}, we say that ϕ is FQ

if, for all finite traces F and all assignments a, it satisfies the
finite trace property:

F |=a ϕ⇔ QI ∈ Ext(F).I |=a ϕ,

and, similarly, ϕ is IQ if, for all infinite traces I and all assign-
ments a, it satisfies the infinite trace property:

I |=a ϕ⇔ QF ∈ Pre(I).F |=a ϕ.

Examples of formulas satisfying F∃ and I∀ are formulas of the
form 2+ϕ, where ϕ is a formula without temporal operators

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1518

Property Formulas

F∃
3+last ∨3P (x);

3+last ∨3P (x) ∨ (*).

F∀
3+P (x);

3+P (x) ∨ (*).

I∃
2©> ∨ last;

2©> ∨©last.

I∀
2+P (x) ∨3+(P (x) ∧ last);

2+P (x) ∨3+(P (x) ∧©last).

Table 1: Formulas satisfying exactly one of the finite/infinite trace
properties (Formula (*) is from Section 3).

(formulas of the form 2ϕ are also I∀ but not F∃ because of,
e.g., 2⊥). On the other hand, the properties F∀ and I∃ capture
formulas of the form 3+ϕ, where ϕ is again a formula without
temporal operators (formulas of the form 3ϕ are also I∃ but
not F∀ because of, e.g., 3>).

The semantic properties, FQ and IQ, capture different
classes of TUQL formulas, as we illustrate in Table 1. We
formalise this statement with the following theorem.
Theorem 8. Let TUQL(P) denote the set of TUQL formulas
which satisfy property P . The sets TUQL(F∃), TUQL(F∀),
TUQL(I∃), and TUQL(I∀) are mutually incomparable.

One can also restrict to the ‘one directional’ version of the
above properties. We denote by F◦Q and I◦Q, where ◦ ∈ {⇒
,⇐}, the corresponding ‘⇒’ and ‘⇐’ directions of the FQ

and IQ properties, respectively. On the relationship between
these one directional properties, we have the following. Given
two different quantifiers Q and Q′ (among ∃ and ∀), a TUQL
formula ϕ is F⇒Q if, and only if, its negation ¬ϕ is F⇐Q′ .
Similarly, ϕ is I⇒Q if, and only if, ¬ϕ is I⇐Q′ . Moreover, if
a TUQL formula ϕ is F⇒∀, then it is also F⇒∃, and if ϕ is
I⇒∀, it is I⇒∃ as well. However, the sets of formulas satisfying
F⇒∀ and I⇒∃ are incomparable. Indeed, the formula 2+©>
is F⇒∀ and not I⇒∃. On the other hand, the sets of formulas
satisfying I⇒∃ and F⇒∀ are also incomparable. To see this,
consider 3last, which is I⇒∃ but not F⇒∀.

In Theorem 3, we have proved that TUQL formulas inter-
preted on finite traces can be translated into equisatisfiable
formulas on infinite traces. Such translation is not always
needed, since for some classes of formulas satisfiability is
already preserved. Indeed, for a TUQL formula ϕ: if ϕ is
F⇒∃, then it is satisfiable on finite traces only if it is satisfiable
on infinite traces; moreover, if ϕ is I⇒∃, then it is satisfiable
on infinite traces only if it is satisfiable on finite ones.

We now consider the problem of formula equivalence, by
showing under which semantic properties equivalence between
formulas can be blurred. Given TUQL formulas ϕ and ψ, we
write ϕ ≡I ψ if ϕ and ψ are equivalent on infinite traces, and
ϕ ≡F ψ if they are equivalent on finite traces. The following
theorem provides sufficient conditions to preserve formula
equivalence from the infinite to the finite case (cf. the notion
of LTL compliance in [Bauer et al., 2010]).
Theorem 9. Given TUQL formulas ϕ and ψ, ϕ ≡I ψ implies
ϕ ≡F ψ whenever both ϕ and ψ are (1) F∃; or (2) F∀; or (3)
F⇒∃ and I⇒∀.

Theorem 9 does not hold for formulas that satisfy only I∃ or I∀.
Consider the formulas 2©> ∨ last and 2©> ∨©last, which
are I∃. These formulas are equivalent only on infinite traces.
Also, 2+P (x)∨3+(P (x)∧ last) and 2+P (x)∨3+(P (x)∧
©last) are I∀, and equivalent on infinite but not on finite traces.
This example also shows that the condition I⇒∀ alone is not
sufficient for Theorem 9. Moreover, F⇒∃ alone is also not
sufficient. To see this, consider, e.g., 2+3>∨ (P (x)∧3last)
and 2+3>∨ (3last) , which are F⇒∃ but are equivalent only
over infinite traces. We now present sufficient conditions to
preserve equivalences from the finite to the infinite case.
Theorem 10. Given TUQL formulas ϕ and ψ, ϕ ≡F ψ im-
plies ϕ ≡I ψ whenever both ϕ and ψ are (1) I∃; or (2) I∀; or
(3) F⇒∀ and I⇒∃.
We point out that F∃ or F∀ are not sufficient to ensure that
formula equivalence on finite traces implies formula equiva-
lence on infinite traces. To illustrate this, consider for example
the formulas Φ = 3+last ∨3P (x), and the union of Φ and
Formula (*) from Section 3. These formulas are F∃, how-
ever, they are only equivalent on finite traces. Moreover, if
we take 3+P (x) and the union of 3+P (x) with Formula (*),
we have that they are both F∀, though equivalent only on fi-
nite traces. This example also shows that the condition F⇒∀
alone is not sufficient for Theorem 10. We now argue that
I⇒∃ alone is also not sufficient. To see this, consider, e.g.,
(P (x)∧2+3>)∨3last and 2+3>∨3last, which are I⇒∃
but are equivalent only on finite traces.

From Theorems 9 and 10 we have that if both ϕ and ψ are
F∃ or F∀, and I∃ or I∀ TUQL formulas, then, ϕ ≡F ψ iff
ϕ ≡I ψ. In particular, the above examples show that if, from
a given pair of conditions FQ and IQ′ , we remove any of the
two properties, then formula equivalences on finite and infinite
traces may not coincide. We now analyse syntactic features of
the properties introduced so far, providing a class of formulas
satisfying them.
Theorem 11. All non-temporal TUQL formulas satisfy the
finite/infinite trace properties F∃, F∀, I∃, and I∀.

3+-formulas ϕ,ψ are built according to (with P ∈ NP):

3+ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ∃xϕ | P (~τ) | ¬P (~τ)

We now show that the language generated by the grammar
rule for 3+-formulas contains only formulas which are F∀
and I∃. We call 3-formulas the set of formulas generated
by the result of further allowing 3ϕ in the grammar rule for
3+-formulas; and call 3+∀-formulas the result of allowing
∀xϕ in the grammar rule for 3+-formulas.
Theorem 12. All 3+-formulas are F∀ and I∃. Moreover, all
3+∀-formulas are F∀ and all 3-formulas are I∃.

The results of Theorem 12 are tight in the sense that we
cannot extend the grammar rule for 3+-formulas with ∀xϕ;
and we cannot extend the grammar rule for 3+∀-formulas
with 3ϕ. Simple counterexamples are ∀x3+P (x) and 3>,
which are not I∃ and F∀, respectively. To see that ∀x3+P (x)
is not I∃ consider the model with an infinite (and countable)
domain, where one element is in P exactly at time point n ∈ N,
another one exactly at time point n+ 1 and so on. There is no
finite prefix where ∀x3+P (x) holds.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1519

2+-formulas ϕ,ψ are built according to (with P ∈ NP):

2+ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ∀xϕ | P (~τ) | ¬P (~τ)

We call 2-formulas the set of formulas generated by the result
of further allowing 2ϕ in the grammar rule for 2+-formulas;
and call 2+∃-formulas the result of allowing ∃xϕ in the gram-
mar rule for 2+-formulas.
Theorem 13. All 2+-formulas are F∃ and I∀. Moreover, all
2+∃-formulas are F∃ and all 2-formulas are I∀.

The results of Theorem 13 are also tight in the sense that we
cannot extend the grammar rule for 2+-formulas with ∃xϕ;
and we cannot extend the grammar rule for 2+∃-formulas
with 2ϕ. Simple counterexamples are ∃x2+¬P (x) and 2⊥,
which are not I∀ and F∃, respectively. To see that ∃x2+¬P (x)
is not I∀, consider again the model described above with an
infinite (and countable) domain, where each element is in P at
a specific time point n ∈ N. The formula ∃x2+¬P (x) holds
in every finite prefix but it does not hold in this infinite trace.

It follows from our results that there is no distinction be-
tween reasoning on finite and infinite traces whenever a for-
mula is either a 3+- or a 2+-formula. As already pointed
out, 3+2+ϕ and 2+3+ϕ are only equivalent on finite traces,
and so, the distinction between reasoning on finite and infinite
traces cannot be blurred for the class of formulas that allow
both 3+ and 2+.

5 Applications
The problem considered so far, to determine when the differ-
ences between finite and infinite traces can be safely blurred,
is of interest for several applications. Here we show how it can
be related to planning and verification. Moreover, for knowl-
edge representation scenarios, we introduce temporal DLs on
finite traces, providing complexity results for the satisfiability
problem.

Planning. In automated planning, the sequence of states gen-
erated by actions is usually finite [Cerrito and Mayer, 1998;
Bauer and Haslum, 2010; De Giacomo and Vardi, 2013;
De Giacomo et al., 2014b]. To reuse temporal logics based on
infinite traces for specifying plan constraints, one approach,
developed by De Giacomo et al. 2014b for LTL, is based on
the notion of insensitivity to infiniteness. This property is
meant to capture those formulas that can be equivalently inter-
preted on infinite traces, provided that, from a certain instant,
these traces satisfy an end event forever and falsify all other
atomic propositions. The motivation for this comes from the
fact that propositional letters represents atomic tasks/actions
that cannot be performed anymore after the end of a process.

In order to lift this notion of insensitivity to our first-order
temporal setting, and to provide a characterisation analogous
to the propositional one, we introduce the following definitions.
Let F = (∆F, (Fn)n∈[0,l]) be a finite trace, and let E =

(∆E, (En)n∈[0,∞)) be the infinite trace such that ∆E = ∆F

(we write just ∆), aE = aF for all a ∈ NI, and for all P ∈
NP \ {E}, P En = ∅, while EEn = ∆, where n ∈ [0,∞). The
end extension (see Section 2) of F with E, F ·E E, will be
called the insensitive extension of F. A TUQL formula ϕ is
insensitive to infiniteness (or simply insensitive) if, for every

finite trace F and all assignments a, F |=a ϕ iff F ·E E |=a ϕ.
Clearly, all insensitive TUQL formulas are also F⇒∃.

Now, let Σ be a finite subset of NP. Assume w.l.o.g. that
the TUQL formulas we mention in this subsection have pred-
icates in Σ, and that Σ contains the end of time predicate E.
Recalling the definition of ψf , we define χf = ψf ∧χf1 , with

χf1 = 2∀x∀ȳ(E(x)→
∧

P∈Σ\{E}

¬P (x, ȳ)).

The next characterisation result extends Theorem 4 in [De
Giacomo et al., 2014b] to TUQL.
Theorem 14. A TUQL formula ϕ is insensitive to infiniteness
iff χf |= ϕ↔ ϕ† holds on infinite traces.
Insensitive formulas allow us to blur the distinction between
finite and infinite traces as soon as infinite traces satisfy χf .
Thus, we can check satisfiability of insensitive TUQL2

21 (or
other decidable languages) formulas on finite traces by using
satisfiability algorithms for the infinite case without the need
to apply the ·† translation.

We now analyse some syntactic features of this property.
Firstly, non-temporal TUQL formulas, are insensitive. More-
over, this property is preserved under non-temporal operators.
We generalise Theorem 5 in [De Giacomo et al., 2014b] in
our setting as follows.
Theorem 15. Let ϕ,ψ be insensitive TUQL formulas. Then
¬ϕ, ∃xϕ, and ϕ ∧ ψ are insensitive.
Concerning temporal operators, in [De Giacomo et al.,
2014b] it is shown how several standard temporal patterns
derived from the declarative process modelling language DE-
CLARE [van der Aalst and Pesic, 2006] are insensitive. On
the other hand, negation affects the insensitivity of temporal
formulas. For instance, given a TUQL formula P (x), we have
that 3+P (x) is insensitive while 3+¬P (x) is not. Dually,
2+¬P (x) is insensitive, while 2+P (x) is not. Therefore, if
a TUQL formula ϕ is insensitive, it cannot be concluded that
formulas of the form 3+ϕ or 2+ϕ are insensitive.

Finally, as a consequence of Theorem 14, we show that in-
sensitivity is sufficient to ensure that if formulas are equivalent
on infinite traces then they are equivalent on finite traces.
Theorem 16. Let ϕ and ψ be insensitive TUQL formulas.
Then ϕ ≡I ψ implies ϕ ≡F ψ.
However, the viceversa does not hold. Consider, e.g., For-
mula (*), which is trivially insensitive: this formula is equiv-
alent to ⊥ only on finite traces. We can obtain the converse
direction using Theorem 10. For instance, 3+P (x)∨3+R(x)
and 3+(P (x) ∨ R(x)) are insensitive and I∃ formulas for
which equivalence on finite and infinite traces coincides.

Verification. In this section we show how our comparison
between finite and infinite traces can be related to the litera-
ture on temporal logics for verification. We point out some
connections between the finite/infinite trace properties and:
(i) the definition of safety in LTL on infinite traces; (ii) some
notions related to the construction of monitoring functions in
runtime verification.

(i) Safety. Recall that a safety property intuitively asserts
that bad things never happen during the execution of a pro-
gram. In verification, LTL is often used as a specification

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1520

language for such properties, and the notion of safety is de-
fined accordingly on infinite traces [Sistla, 1994]. Let ϕ be a
TUQL formula asserting that some “bad thing” never happens.
According to the literature, we say that ϕ denotes a safety
property if, whenever ϕ does not hold for an infinite run of a
program, then it must be violated already after a finite execu-
tion. That is, the infinite trace contains a finite prefix in which
the bad thing (the violation of ϕ) has already happened. More
formally, we say that a TUQL formula ϕ expresses a safety
property iff, for an infinite trace I and an assignment a:

(∀F ∈ Pre(I).F |=a ϕ)⇒ I |=a ϕ.

In other words, safety is captured in TUQL by I⇐∀ formulas.
In particular, all 2+-formulas of Section 4 are I∀ and thus they
express safety properties.

(ii) Runtime verification. We recall that in runtime verifi-
cation the task is to evaluate a property with respect to the
current history (which is finite at each given instant) of a
dynamic system, and to check whether this property is satis-
fied in all its possible future evolutions [Bauer et al., 2010;
Baader and Lippmann, 2014; De Giacomo et al., 2014a]. Here
we discuss the relationship between our semantic conditions
and the maxims for runtime verification introduced by Bauer
et al. 2010, which relate finite trace semantics to the infinite
case. The authors suggest that every semantics to be used in
runtime verification should satisfy the following requirements.
• Impartiality: never evaluate to true or false a formula on

a finite trace, if one of its infinite extensions can possibly
change its value.
• Anticipation: if a formula has the same truth value on

every infinite extension of a finite trace, then it is equally
evaluated also on that finite prefix.

Impartiality cannot be guaranteed for TUQL: 2+P (x) is an
example of a formula violating this maxim. On the other hand,
3> is a formula that violates anticipation. Impartiality, as
formalised in [Bauer et al., 2010], is captured by F⇒∀ and
F⇐∃ properties. Instead, the formal version of anticipation
corresponds to properties F⇐∀ and F⇒∃ in our setting. There-
fore, any set of TUQL formulas satisfying both impartiality
and anticipation should belong to the intersection of F∀ and
F∃ formulas. Concerning the possibility to syntactically char-
acterise these formulas, we have that, due to Theorems 12
and 13, impartiality and anticipation are not guaranteed to be
preserved for 3+- or 2+-formulas.

Temporal Description Logics. We now consider temporal de-
scription logics. We define the temporal language TUALC as
a temporal extension of the description logic ALC [Gabbay
et al., 2003]. Let NC,NR ⊆ NP be, respectively, sets of
unary and binary predicates called concept and role names. A
TUALC concept is an expression of the form:

C,D ::= A | ¬C | C uD | ∃R.C | C U D,
where A ∈ NC and R ∈ NR. A TUALC axiom is either a
concept inclusion (CI) of the form C v D, or an assertion, α,
of the formA(a) orR(a, b), whereC,D are TUALC concepts,
A ∈ NC, R ∈ NR, and a, b ∈ NI. TUALC formulas have the
form:

ϕ,ψ ::= α | C v D | ¬ϕ | ϕ ∧ ψ | ϕ U ψ.

Since a TUALC formula can be mapped into an equisatisfiable
TUQL2

21 formula [Gabbay et al., 2003] we can transfer the
upper bounds of Theorems 4 and 5 to TUALC and TUALC;
the lower bounds can be obtained in a similar way as in the
mentioned theorems. Moreover, from Theorems 6 and 7, we
obtain immediately that TUALC on finite traces has both the
bounded trace and domain properties.

We now consider the TUALC satisfiability problem on
k-bounded traces restricted to global CIs, defined as the
fragment of TUALC in which formulas can only be of the
form T ∧ 2(T) ∧ φ, where T is a conjunction of CIs and
φ does not contain CIs. The EXPTIME upper bound we
provide has a rather challenging proof that uses a form of
type elimination [Gabbay et al., 2003; Lutz et al., 2008;
Gutiérrez-Basulto et al., 2016], but in a setting where the
number of time points is bounded by a natural number k > 0.
The main challenge in solving this problem when the number
of time points is arbitrarily large but finite is mainly due to
the presence of last sub-formulas (i.e., formulas of the form
¬©>) that can hold just in the last instant of the model. The
complexity is tight since satisfiability in ALC is already EXP-
TIME-hard [Gabbay et al., 2003].
Theorem 17. TUALC satisfiability is EXPSPACE-complete
on finite traces, and NEXPTIME-complete on k-bounded
traces. Moreover, TUALC satisfiability on k-bounded traces
restricted to global CIs is EXPTIME-complete.

6 Conclusion
We investigated first-order temporal logic over finite traces,
studying satisfiability of its two-variable monodic fragment,
TUQL2

21 . While being EXPSPACE-complete over arbitrary fi-
nite traces, it lowers down to NEXPTIME in case of TUQL2

21 ,
interpreted over traces with at most k time points. Similar
results have been shown for a temporal extension of the de-
scription logic ALC, with TUALC restricted to global CIs
being EXPTIME-complete. Moreover, in an effort to system-
atically clarify the correlations between finite vs. infinite rea-
soning we introduced various semantic conditions that allow
to formally specify when it is possible to blur the distinction
between finite and infinite traces. Grammars for TUQL for-
mulas satisfying some of these conditions have been provided
as well. In particular, we have shown that for 3+- and 2+-
formulas, equivalence over finite and infinite traces coincide.
Some notions used in planning (particularly, insensitivity to
infiniteness [De Giacomo et al., 2014b]) and verification have
been lifted to the first-order setting, and related to our semantic
conditions for blurring the distinction between reasoning over
finite and infinite traces.

As future work, we plan to apply the semantic conditions
to study the specific case where infinite extensions of finite
traces are obtained by repeating the last instant forever [Bauer
and Haslum, 2010], as well as to the analysis of monitor-
ing functions for runtime verification [Bauer et al., 2010;
Baader and Lippmann, 2014; De Giacomo et al., 2014a]. It
would also be interesting to study the precise complexity of
the satisfiability problem for TUALC with just global CIs.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1521

References
[van der Aalst and Pesic, 2006] Wil van der Aalst and Maja

Pesic. Decserflow: Towards a truly declarative service flow
language. In WS-FM, pages 1–23, 2006.

[van der Aalst et al., 2017] Wil van der Aalst, Alessandro Ar-
tale, Marco Montali, and Simone Tritini. Object-centric
behavioral constraints: Integrating data and declarative pro-
cess modelling. In DL, volume 1879, 2017.

[Artale and Franconi, 2005] Alessandro Artale and Enrico
Franconi. Temporal description logics. In Handbook of
Temporal Reasoning in Artificial Intelligence, pages 375–
388. Elsevier, 2005.

[Artale et al., 2014] Alessandro Artale, Roman Kontchakov,
Vladislav Ryzhikov, and Michael Zakharyaschev. A cook-
book for temporal conceptual data modelling with descrip-
tion logics. ACM Trans. Comput. Log., 15(3):25:1–25:50,
2014.

[Artale et al., 2019] Alessandro Artale, Andrea Mazzullo,
and Ana Ozaki. Do you need infinite time? Techni-
cal Report 01, Free University of Bozen-Bolzano, 2019.
Available at https://www.inf.unibz.it/krdb/KRDB%20files/
tech-reports/KRDB19-01.pdf.

[Baader and Lippmann, 2014] Franz Baader and Marcel
Lippmann. Runtime verification using the temporal descrip-
tion logicALC-LTL revisited. J. Applied Logic, 12(4):584–
613, 2014.

[Baader et al., 2012] Franz Baader, Silvio Ghilardi, and
Carsten Lutz. LTL over description logic axioms. ACM
Trans. Comput. Log., 13(3), 2012.

[Bacchus and Kabanza, 2000] Fahiem Bacchus and Froduald
Kabanza. Using temporal logics to express search control
knowledge for planning. Artif. Intell., 116(1-2):123–191,
2000.

[Baier and McIlraith, 2006] Jorge A. Baier and Sheila A.
McIlraith. Planning with first-order temporally extended
goals using heuristic search. In AAAI, pages 788–795, 2006.

[Bauer and Haslum, 2010] Andreas Bauer and Patrik Haslum.
LTL goal specifications revisited. In ECAI, pages 881–886,
2010.

[Bauer et al., 2010] Andreas Bauer, Martin Leucker, and
Christian Schallhart. Comparing LTL semantics for runtime
verification. J. Log. Comput., 20(3):651–674, 2010.

[Camacho et al., 2017] Alberto Camacho, Eleni Triantafillou,
Christian J. Muise, Jorge A. Baier, and Sheila A. McIl-
raith. Non-deterministic planning with temporally extended
goals: LTL over finite and infinite traces. In AAAI, pages
3716–3724, 2017.

[Cerrito and Mayer, 1998] Serenella Cerrito and
Marta Cialdea Mayer. Bounded model search in
linear temporal logic and its application to planning. In
TABLEAUX, pages 124–140, 1998.

[Cerrito et al., 1999] Serenella Cerrito, Marta Cialdea Mayer,
and Sébastien Praud. First order linear temporal logic over
finite time structures. In LPAR, pages 62–76, 1999.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI, pages 854–860, 2013.

[De Giacomo et al., 2014a] Giuseppe De Giacomo, Riccardo
De Masellis, Marco Grasso, Fabrizio Maria Maggi, and
Marco Montali. Monitoring business metaconstraints based
on LTL and LDL for finite traces. In BPM, pages 1–17,
2014.

[De Giacomo et al., 2014b] Giuseppe De Giacomo, Riccardo
De Masellis, and Marco Montali. Reasoning on LTL on
finite traces: Insensitivity to infiniteness. In AAAI, pages
1027–1033, 2014.

[Fionda and Greco, 2016] Valeria Fionda and Gianluigi
Greco. The complexity of LTL on finite traces: Hard and
easy fragments. In AAAI, pages 971–977, 2016.

[Gabbay et al., 2003] Dov M. Gabbay, Agi Kurucz, Frank
Wolter, and Michael Zakharyaschev. Many-dimensional
Modal Logics: Theory and Applications, volume 148. Else-
vier, 2003.

[Giannakopoulou and Havelund, 2001] Dimitra Gian-
nakopoulou and Klaus Havelund. Automata-based
verification of temporal properties on running programs. In
ASE, pages 412–416, 2001.

[Gutiérrez-Basulto et al., 2016] Víctor Gutiérrez-Basulto,
Jean Christoph Jung, and Ana Ozaki. On metric temporal
description logics. In ECAI, pages 837–845, 2016.

[Hodkinson et al., 2000] Ian M. Hodkinson, Frank Wolter,
and Michael Zakharyaschev. Decidable fragment of first-
order temporal logics. Annals of Pure and Applied Logic,
106(1-3):85–134, 2000.

[Hodkinson et al., 2003] Ian M. Hodkinson, Roman
Kontchakov, Agi Kurucz, Frank Wolter, and Michael
Zakharyaschev. On the computational complexity of
decidable fragments of first-order linear temporal logics.
In TIME-ICTL, pages 91–98, 2003.

[Li et al., 2014] Jianwen Li, Lijun Zhang, Geguang Pu,
Moshe Y. Vardi, and Jifeng He. LTLf Satisfiability Check-
ing. In ECAI, pages 513–518, 2014.

[Lutz et al., 2008] Carsten Lutz, Frank Wolter, and Michael
Zakharyaschev. Temporal description logics: A survey. In
TIME, pages 3–14, 2008.

[Maggi et al., 2011] Fabrizio Maria Maggi, Marco Montali,
Michael Westergaard, and Wil M. P. van der Aalst. Moni-
toring business constraints with linear temporal logic: An
approach based on colored automata. In BPM, pages 132–
147, 2011.

[Manna and Pnueli, 1995] Zohar Manna and Amir Pnueli.
Temporal verification of reactive systems - Safety. Springer,
1995.

[Sistla, 1994] A. Prasad Sistla. Safety, liveness and fairness
in temporal logic. Formal Asp. Comput., 6(5):495–512,
1994.

[Wolter and Zakharyaschev, 1998] Frank Wolter and
Michael Zakharyaschev. Temporalizing description logics.
In FroCoS, pages 104–109, 1998.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1522

