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Abstract
Among the most expressive knowledge representa-
tion formalisms are the description logics of the Z
family. For well-behaved fragments of ZOIQ, en-
tailment of positive two-way regular path queries
is well known to be 2EXPTIME-complete under
the proviso of unary encoding of numbers in car-
dinality constraints. We show that this assumption
can be dropped without an increase in complexity
and EXPTIME-completeness can be achieved when
bounding the number of query atoms, using a novel
reduction from query entailment to knowledge base
satisfiability. These findings allow to strengthen
other results regarding query entailment and query
containment problems in very expressive descrip-
tion logics. Our results also carry over to GC2, the
two-variable guarded fragment of first-order logic
with counting quantifiers, for which hitherto only
conjunctive query entailment has been investigated.

1 Introduction
Recent years have seen a convergence of the fields of logic-
based knowledge representation (KR) and databases, with
querying over knowledge bases (KBs, aka ontologies) as the
archetypical inferencing task considered. Thereby, the query
languages of interest have evolved from plain conjunctive
queries to more expressive formalisms with path-navigational
components such as the positive two-way regular path queries
(P2RPQs) considered here. One popular and practically used
way of specifying the to-be-queried knowledge bases is via
description logics (DLs), whose most expressive exemplars
feature advanced constructors for roles and path expressions.
Certainly, the DLs from the Z family [Calvanese et al., 2009]
are among the most powerful KR formalisms on the verge
of decidability. For its most expressive proponent, ZOIQ,
featuring nominals (O), role inverses (I), and number re-
strictions (Q), querying is undecidable [Ortiz et al., 2010;
Rudolph, 2016] and even decidability of KB satisfiability is
open, owing to the intricate interplay of the three mentioned
features, but restricting the interaction of O, I, and Q (or
∗Work supported by “Diamentowy Grant” no. DI2017 006447
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excluding one of the features altogether) leads to beneficial
model-theoretic properties, which give rise to upper bounds
of EXPTIME for KB satisfiability and 2EXPTIME for query-
ing, established using elaborate automata techniques [Cal-
vanese et al., 2009]. While the first bound holds under the as-
sumption of binary encoding of number restrictions, the proof
for the second one requires unary encoding.

In our paper, we overcome this restriction. Leveraging said
model-theoretic property of the considered DLs, we provide a
novel reduction from the query entailment problem K |= q to
the problem of checking unsatisfiability of some other knowl-
edge baseK¬q . Thereby, the size of the latter is exponential in
the total size of q and K (even when assuming binary encod-
ing), leading to a 2EXPTIME-complete complexity. Our tech-
nique also yields the new insight that the complexity drops to
EXPTIME, when the number of atoms in q is bounded by a
constant. The obtained results allow to correspondingly im-
prove a number of previous results on query containment and
can be transferred to DLs from the SR family.

Reaching out to the community researching decidable frag-
ments of first-order logic, we show that our results also extend
to entailment of P2RPQs by GC2 databases, i.e. sets of unary
and binary ground facts in the presence of a sentence of the
guarded two-variable fragment with counting as defined by
Pratt-Hartmann (2007).

2 Preliminaries
Description Logics
We will briefly recap syntax and semantics of the very ex-
pressive DL ZOIQ and its relevant sublogics following Cal-
vanese et al. (2009). We assume a fixed signature consisting
of sets NI of individual names, NC of concept names, and
NR of role names. We let NC contain the special concept
names > and ⊥, and NR the special role names > and ⊥.
The following EBNF grammar defines atomic concepts B,
concepts C, atomic roles R, simple roles S and roles T , with
o, a, b ∈ NI, A ∈ NC, P ∈ NR \ {>}:

B ::= A | {o}
C ::= B | ¬C | C u C | C t C | ∀T.C | ∃T.C |

>nS.C | 6nS.C | ∃S.Self
R ::= P | P−
S ::= R | S ∩ S | S ∪ S | S \ S
T ::= > | S | T ∪ T | T ◦ T | T ∗ | id(C)
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Name Syntax Semantics
top > ∆I

bottom ⊥ ∅
nominal {o} {oI}
negation ¬C ∆I \ CI
conc. intersection C1 u C2 CI1 ∩ CI2
conc. union C1 t C2 CI1 ∪ CI2
univ. restriction ∀T.C {x | ∀y.(x, y) ∈ T I → y ∈ CI}
exist. restriction ∃T.C {x | ∃y.(x, y) ∈ T I ∧ y ∈ CI}
qualified number 6nS.C {x | #{y∈CI | (x, y)∈SI} ≤ n}
restriction >nS.C {x | #{y∈CI | (x, y)∈SI} ≥ n}
Self concept ∃S.Self {x | (x, x) ∈ SI}
universal role > ∆I ×∆I

bottom role ⊥ ∅
inverse role P− {(x, y) | (y, x) ∈ P I}
role intersection S1 ∩ S2 SI1 ∩ SI2
role union S1 ∪ S2 SI1 ∪ SI2
role difference S1 \ S2 SI1 \ SI2
role concatenation T1 ◦ T2 T I1 ◦ T I2
Kleene star T ∗

⋃
i≥0(T I)i

concept test id(C) {(x, x) | x ∈ CI}
Table 1: Semantics of concepts and (simple) roles in ZOIQ .

Axiom α I |= α, if
C v D CI ⊆ DI TBox T
C(a) aI ∈ CI ABox A
R(a, b) (aI , bI) ∈ RI
a ≈ b aI = bI

a 6≈ b aI 6= bI

Table 2: Syntax and semantics of ZOIQ axioms.

An assertion is of the form C(a), R(a, b), a ≈ b, or a 6≈ b,
a general concept inclusion (GCI) has the form C1 v C2.
We use C1 ≡ C2 as abbreviation for C1 v C2, C2 v C1.
A ZOIQ knowledge base (short: KB) K = (A, T ) consists
of a finite set A (called ABox) of assertions and a finite set T
(called TBox) of GCIs.

The semantics of ZOIQ is defined via interpretations
I = (∆I , ·I) composed of a non-empty set ∆I called the
domain of I and a function ·I mapping individual names to
elements of ∆I , concept names to subsets of ∆I , and role
names to subsets of ∆I × ∆I . This mapping is extended to
concepts, simple roles, and roles (cf. Table 1) and finally used
to define satisfaction of assertions and GCIs (see Table 2). We
say that an interpretation I satisfies a KB K = (A, T ) (or I
is a model of K, written: I |= K) if it satisfies all axioms
of A and T . K is called satisfiable if it has a model and un-
satisfiable otherwise. From ZOIQ, we obtain ZIQ by dis-
allowing nominal concepts {o}, ZOQ, by disallowing role
inverses (.)− and ZOI by disallowing number restrictions.

Queries
We use variables from a countably infinite set V. A Boolean
positive two-way regular path query (P2RPQ) is an expres-
sion q = ∃~x.ϕ, where ϕ is a positive formula (i.e., one using
∧ and ∨) over expressions T (s, t) or C(t), where T is a role,
C is concept, and s and t are from ~x∪NI. A P2RPQ is a con-
junctive two-way regular path query (C2RPQ) if it does not
use disjunction. It is a union of conjunctive two-way regular

path queries (UC2RPQ) if it is a disjunction of C2RPQs.1 A
(variable) assignment Z for I is a mapping V → ∆I . For
x ∈ V, we set xI,Z := Z(x); for c ∈ NI, we set cI,Z := cI .
T (s, t) evaluates to true under Z and I if (sI,Z , tI,Z) ∈ T I .
C(t) evaluates to true underZ and I if tI,Z ∈ CI . A P2RPQ
q = ∃~x.ϕ is satisfied by I (written: I |= q) if there is an as-
signmentZ (called match) such that ϕ evaluates to true under
I and Z . A P2RPQ q is entailed by a KB K (written: K |= q)
if every model of K satisfies q. If q uses only signature ele-
ments of K, we call it a query over K.

Simplifications
A P2RPQ is simplified if all its atoms are of the form T (x, y)
where x and y are variables and T is built from role names
using ∪, ◦, and ∗. For any KB K and P2RPQ q, we can con-
struct in polynomial time a KB K′ and simplified P2RPQ q′

such that K |= q iff K′ |= q′. This justifies that from here on,
we will focus on simplified queries.

Automata
For each atom T (x, y) of a simplified P2RPQ, T is a reg-
ular expression over NR. Every such expression can be
represented by a nondeterministic finite automaton A =
(Σ,Q, I,F,T) with an alphabet Σ ⊆ {P, P− |P ∈NR} of
possibly inverted role names, a finite set Q of states, ini-
tial states I ⊆ Q, final states F ⊆ Q, and transitions
T ⊆ Q × Σ × Q.2 The size of A is polynomially bounded
by T . In the following, we assume queries in automaton
form, where the atoms T (x, y) have been replaced by the cor-
responding A(x, y). Given A = (Σ,Q, I,F,T), let A− =
(Σ−,Q,F, I,T−) with Σ− = {P− | P ∈ Σ} be the corre-
sponding reverse automaton3 with initial and final states
swapped and the state transitions flipped: (q′, R−, q) ∈ T−

for every (q, R, q′) ∈ T. Moreover, we obtain the automa-
ton Aq,q′ = (Σ,Q, {q}, {q′},T) from A by setting the initial
state to q and the final state to q′.

3 A Little Bit of Model Theory
The “well-behavedness” of certain sublogics of ZOIQ can
be conveniently characterised in model-theoretic terms.
Definition 1 (quasi-forest model, Calvanese et al., 2007)
Let K be a KB. A model I of K is a quasi-forest model if:
• the domain ∆I of I is a forest, i.e., a prefix-closed subset

of Roots× N∗ for some finite set Roots,
• Roots = {oI | o is an individual name in K}, and
• for every δ, δ′ ∈ ∆I with (δ, δ′) ∈ P I for some role name
P ∈ NR \ {>}, either (i) {δ, δ′} ∩ Roots 6= ∅, or (ii)
δ = δ′, or (iii) δ is a child of δ′, or (iv) δ′ is a child of δ.

A KB K has the quasi-forest model property (short: qfmp)
if K is either unsatisfiable or it has a quasi-forest model. A
DL L has the qfmp if every L KB K has the qfmp.
For such well-behaved KBs, tight and quite decent complex-
ity bounds for satisfiability checking have been established.

1Note that ∃~x.
∨

i ϕi ≡
∨

i ∃~x.ϕi, so the order of disjunction
and existential quantification is irrelevant.

2The correspondence is such that (δ, δ′) ∈ T I iff there is a role
path δ P1−−→ · · · Pk−−→ δ′ in I such that A accepts P1 . . . Pk.

3For convenience, we consider (P−)− identical to P .
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Theorem 1 (Calvanese et al., 2009) Satisfiability checking
of ZOIQ KBs having the qfmp is EXPTIME-complete even
with binary encoding of number restrictions.

When it comes to query answering, a useful notion for relat-
ing interpretations to each other is via homomorphisms. For
two interpretations I = (∆I , ·I) and J = (∆J , ·J ), a func-
tion h : ∆I → ∆J is a homomorphism from I to J if for all
δ, δ′ ∈ ∆I we have δ ∈ AI ⇒ h(δ) ∈ AJ for all concept
namesA, and (δ, δ′) ∈ P I ⇒ (h(δ), h(δ′)) ∈ PJ for all role
names P . If a homomorphism from I to J exists, we write
I B J . We note that I |= q and I B J imply J |= q for
every simplified P2RPQ q.

Definition 2 (qfhcp, Bourhis et al., 2014) A KB K has the
quasi-forest homomorphism-cover property (short: qfhcp) if
for every model I ofK, there exists a quasi-forest model J of
K with J B I. A description logic L has the qfhcp if every L
KB K has the qfhcp. We let tame ZOIQ denote the set of all
ZOIQ KBs having the qfhcp.

Obviously, the qfhcp implies the qfmp. Note that unre-
stricted ZOIQ does not even have the qfmp. The most
expressive syntactically defined sublogics of tame ZOIQ
known today are ZIQ, ZOQ, and ZOI [Calvanese et al.,
2009; Bonatti et al., 2008].

From the fact that the set of models for any P2RPQ is
closed under homomorphisms now follows that for any tame
ZOIQ KB with K 6|= q, there must exist a quasi-forest
model I, satisfying I |= K and I 6|= q.

4 Annotating (Partial) Query Matches
In the following, we consider a tame ZOIQ KB K and a
simplified P2RPQ q over K in automaton form. We note that
q can be rewritten into an equivalent disjunction

∨
1≤i≤n qi

of n (also simplified) C2RPQs, where n may be exponential
in the size of q, but every single qi’s size is polynomial. Let
[q] denote {q1, . . . qn}. Then, testing K 6|= q amounts to de-
termining if K has a model I which is a simultaneous coun-
termodel (i.e., I 6|= qi) for all qi ∈ [q].

We now give an intuitive description of our technique to
detect (or refute) matches of q. Given some model I ofK, we
iteratively, deterministically annotate all its domain elements
δ with fresh concept names QM that indicate which “parts”
M of some query qi match into I and how δ participates in
these partial matches. To this end, we employ descriptionsM
of query parts which contain information about (i) the query
variables matched (ii) (the existence of) paths realising cer-
tain state transitions in the query’s automata and (iii) option-
ally, the “position” of the current δ in the query match by use
of a marker • acting like an additional, distinguished query
variable. In the annotation process, the QM s will be assigned
to domain elements δ based on their local environment and
known annotations QM ′ for “smaller” partial queries to the
same element δ or its direct (role) neighborhood. As an excep-
tion, non-localised query matches M not containing • will be
“broadcast”, i.e., uniformly attached to all domain elements.
This way, in the annotation process,QM s for larger and larger
partial queries are assigned, until finally (after reaching the

unique fixpoint) also the full matches for any qi are recog-
nised by annotations Qqi . This process will accurately detect
partial and full query matches, if I is a quasi-forest model
(which is sufficient for our purposes as K has the qfhcp). The
annotation process is realised by virtue of a KB Kq , the size
of which is exponential in q, but only polynomial in K. In
the following, we will stepwise introduce the KB, interleaved
with some necessary definitions.
Definition 3 (partial query) Consider some C2RPQ qi =
{A1(x1, y1), . . . ,Am(xm, ym)}.4 A partial query for qi and
a set X ⊆ {x1, y1, . . . , xm, ym} of variables from qi is a set
M consisting of
• all atoms A(x, y) from qi for which {x, y} ⊆ X ,
• for every A(x, y) from qi with x ∈ X but y 6∈ X , one of

the atoms Aq,q′(x, •) or Aq,q′(x, o) where q is initial in A,
• for every A(x, y) from qi with x 6∈ X but y ∈ X , one of

the atoms A−q,q′(y, •) or A−q,q′(y, o) where q is final in A,

• in case X = ∅, exactly one atom of the form Aq,q′(•, o) or
A−q,q′(•, o) (called nominal-anchored path) or Aq,q′(•, •)
or A−q,q′(•, •) (called round trip) for some A from qi.

A partial query is called monodic, if |X| = 1. A partial query
is called local if it contains • and global otherwise.

Nominal-Anchored Paths
First, we want to detect role paths that start in the to-be-
annotated individual, end in named individual oI , and realise
state transitions in one of the query’s automata. Let o be any
individual name in K, let A± be either A or A− for any au-
tomaton A occurring in q with states q, q′, q′′. Then let Kq
contain the axiom

Q{A±q,q(•,o)}(o) (1)

and whenever A± has a transition (q, R, q′):
∃R.Q{A±

q′,q′′ (•,o)}
v Q{A±

q,q′′ (•,o)}
(2)

Round Trips
Next, we are concerned with paths which start and end in the
to-be-annotated individual. Assuming an automaton A with
states q, q′, q′′, q′′′ and transition set T as well as an individual
name o, we add the axioms:

> v Q{Aq,q(•,•)} (3)

Q{Aq,q′ (•,•)} uQ{Aq′,q′′ (•,•)} v Q{Aq,q′′ (•,•)} (4)

Q{Aq,q′ (•,o)} uQ{A−
q′′,q′ (•,o)}

v Q{Aq,q′′ (•,•)} (5)

for (q, R, q′) ∈ T: ∃R.Self v Q{Aq,q′ (•,•)} (6)

for {(q, R, q′), (q′′, R′, q′′′)} ⊆ T:
∃(R ∩R′−).Q{Aq′,q′′ (•,•)} v Q{Aq,q′′′ (•,•)} (7)

Initialising monodic partial queries
Next we determine domain elements to which separate query
variables could possibly be mapped in a match.
Definition 4 We call a monodic partial query M original, if
q = q′ for every Aq,q′(x, •) ∈M and every A−q,q′(x, •) ∈M .
For M an original monodic partial query for q and {x}, the
set PrecM of precondition concepts consists of:

4In cases, we may equate a C2RPQ qi with the set of its atoms.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1532



• Q{Aq,q′ (•,o)} for each atom Aq,q′(x, o) in M ,

• Q{A−
q,q′ (•,o)}

for each atom A−q,q′(x, o) in M ,

•
⊔

q initial
q′ final

Q{Aq,q′ (•,•)} for each atom A(x, x) in M .

Now we can initialise all original monodic partial queries M
by adding the following axioms to Kq:

l
PrecM v QM (8)

Updating partial queries
Partial queries can be updated by roundtrips: Let M be a par-
tial query containing some A±q,q′(x, •). Then we realise the
update by adding the following axioms to Kq:
QM uQ{A±

q′,q′′ (•,•)}
v QM\{A±

q,q′ (x,•)}∪{A
±
q,q′′ (x,•)}

(9)

Furthermore, a partial query can “progress” when making a
“step” in the model, moving from the considered δ to some
role neighbour. In such a step, all the “unready” paths (corre-
sponding to atoms with •) must be updated in a synchronous
manner. Given a partial query M for qi and nonempty X as
well as a set {R1, . . . , Rk} of (possibly inverted) role names,
assume M ′ can be obtained from M by replacing each atom
of the form A±q,q′(x, •) by an atom A±q,q′′(x, •) such that A±

has a transition (q′, R, q′′) for any R ∈ {R1, . . . , Rk}. Then
add the following axiom to the KB Kq:

∃(R−1 ∩R
−
2 ∩ . . . ∩R−m).QM v QM ′ (10)

Joining partial queries
When two partial queries corresponding to the same query
qi “meet” in a domain element δ, they can – under certain
circumstances – be “glued together” into a “bigger” partial
query of qi.
Definition 5 (joinable, join) Let M1 be a partial query
for qi and X1 and let M2 be a partial query for qi and X2.
We call M1 and M2 joinable if
• X1 6= ∅, X2 6= ∅, X1 ∩X2 = ∅, and
• for each A(x, y) ∈ qi \ (M1∪M2) with {x, y} ⊆ X1∪X2,

there are states q, q′, q′′ of A with q initial and q′′ final,
such that either {Aq,q′(x, •),A−q′′,q′(y, •)} ∈ M1∪M2 or
{Aq,q′(x, o),A

−
q′′,q′(y, o)} ∈M1 ∪M2 for some o ∈ NI.

For joinable M1 and M2, their join, denoted M1 ./ M2, is
the partial query obtained from M1 ∪M2 by replacing any
pair of atoms Aq,q′(x, ∗) and A−q′′,q′(y, ∗) by A(x, y), where
∗ is either an individual name o or •.
We implement the join operation for every pair M1, M2 of
joinable partial queries for a qi ∈ [q] by extending Kq with:

QM1 uQM2 v QM1./M2 (11)
Broadcasting global partial queries
Whenever a partial queryM does not have any occurrences of
•, which would tie it to a specific element, it will be “broad-
cast” to all domain elements:

∃>.QM v QM (12)
This concludes the definition of Kq . Revisiting our initial
intuition of Kq’s purpose of deterministically annotating a
model I of K, the following lemma formalises this by sin-
gling out one unique annotated model I∗ for every I.

Lemma 2 Let K be a ZOIQ KB and q a simplified P2RPQ.
For every model I of K there exists a unique model I∗ of
K ∪ Kq which extends I and satisfies QI

∗

M ⊆ QJM for every
QM in Kq and for every model J of K ∪ Kq that extends I.
We will call models I∗ from Lemma 2 Q-minimal. Note that
for every model I of K, any concept membership δ ∈ QI

∗

M
holding in the correspondingQ-minimal model I∗ can be de-
rived from concept and role memberships in I through a finite
sequence of “applications” of axioms from Kq .5

5 Reduction to Satisfiability
Now we establish technical results relating the presence of
QM -annotations in models and the actual semantic satisfac-
tion of the corresponding partial query M . Note that any par-
tial queryM can be seen as a (set representation of a) C2RPQ
in automaton form, assuming • is just an ordinary variable.
Definition 6 ((tight) satisfaction of a partial query) Given
an interpretation I, a domain element δ ∈ ∆I , and a
partial query M , we say M is satisfied or holds in δ, written
I, δ |= M , if there is a match Z for M in I with Z(•) = δ.
M is satisfied or holds tightly in δ, written I, δ |=|=M , if Z
is such that every A±q1,q2

(x, •) ∈ M is realized by a path
Z(x) ; δ not containing oI for any individual name o.
Note that |= and |=|= coincide whenever M is global or does
not contain variables. Note also that, as a consequence of
this definition, if M is global, then QM holds (tightly) ev-
erywhere or nowhere throughout the domain. With this no-
tion in place, the next two lemmas can be seen as soundness
and completeness results regarding the deduction calculus for
(partial) query matches embodied by Kq .
Lemma 3 (soundness) Let I be a Q-minimal model of
K ∪ Kq and let δ ∈ ∆I . Let M be any partial query for
any C2RPQ qi ∈ [q]. Then δ ∈ QIM implies I, δ |= M .
Lemma 4 (completeness) Let I be a quasi-forest model of
K ∪ Kq and let δ ∈ ∆I . Let M be any partial query for any
C2RPQ qi ∈ [q]. Then I, δ |=|=M implies δ ∈ QIM .
Soundness is proven by induction over the length of the
derivation for δ ∈ QIM . Completeness is shown by induc-
tion over the spread of the match for M , i.e., the number of
variables (excluding •) plus the sum of the lengths of all paths
realising the query atoms.

Thanks to these correspondences, we can essentially rule
out models with matches of any q1, . . . , qn by forcing the ex-
tensions of Qq1 , . . . , Qqn to be empty. Therefore, let

K¬q = K ∪ Kq ∪ {Qqi v ⊥ | qi ∈ [q]}. (13)

We establish some syntactic and semantic properties of K¬q:
Some easy calculations yield size bounds for K¬q , tameness
is not affected by the reduction, and unsatisfiability of K¬q
indeed coincides with query entailment.
Fact 5 (size of K¬q) The size of K¬q is single exponential in
the total size of K and q. It is polynomial, if the number of
atoms in q is bounded by a constant.

5To see this, it may help to realise that all axioms of Kq can be
easily expressed in monadic Datalog.
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Lemma 6 If K is in tame ZOIQ then so is K¬q .

Proof. First note that K¬q is in ZOIQ. For tameness, con-
sider a model I of K¬q . As I is a model of K and the latter
is tame, there exists a quasi-forest model J of K and a ho-
momorphism h : J → I. Now, we can construct a quasi-
forest model J ′ of K¬q by extending J , letting δ ∈ QJ

′

M if
h(δ) ∈ QIM for all QM occurring in K. �

Theorem 7 Let K be a tame ZOIQ KB and let q be a sim-
plified P2RPQ over K. Then K |= q if and only if K¬q is
unsatisfiable.

Proof. For convenience, we show the equivalent statement:
K 6|= q if and only if K¬q satisfiable.
“only if”: Assume K 6|= q, that is there exists an I with
I |= K and I 6|= q. Consider I∗, the Q-minimal model of
K∪Kq extending I. If some QI

∗

qi were nonempty, then there
would be a query match of q into I by Lemma 3, contradict-
ing our assumption. Therefore, I∗ |= Qqi v ⊥ for all qi ∈ [q]
and hence, I∗ |= K¬q .
“if”: Assume K¬q is satisfiable and hence has a model I. As
K¬q has the qfmp thanks to Lemma 6, we can assume I to be
a quasi-forest model. I |= Qqi v ⊥ implies emptiness ofQIqi
for every qi ∈ [q]. If I |= q held true, witnessed by I |= qi
for some qi ∈ [q], Lemma 4 would require δ ∈ QIqi for all
δ ∈ ∆I , leading to a contradiction. Hence I 6|= q. On the
other hand, I |= K¬q implies I |= K, therefore K 6|= q. �

Based on this theorem, we can now prove our central result:

Theorem 8 The problem of checking entailment of simplified
P2RPQs from tame ZOIQ KBs with binary number encod-
ing is 2EXPTIME-complete. It is EXPTIME-complete if the
number of atoms in the query is bounded.

Proof. By Theorem 7, entailment of a simplified C2RPQ q
from a tame ZOIQ KB K can be reduced to checking un-
satisfiability of K¬q , which can be computed in output-poly-
nomial time and the size of which is exponential (polynomial,
if number of atoms in q is bounded). By Theorem 1, (un)sat-
isfiability of K¬q can be checked in EXPTIME in the size of
K¬q , hence we obtain the desired 2EXPTIME and EXPTIME
upper bounds. The matching lower bounds are well-known
even for much weaker logics [Ortiz and Simkus, 2012]. �

6 Querying GC2 Databases
We now consider the problem of P2RPQ entailment from
GC2 databases, i.e., sets of unary and binary ground facts
in the presence of a sentence in the guarded two-variable
fragment with counting quantifiers as defined by Pratt-
Hartmann (2007). We will show that there is a poly-
time query-entailment-preserving transformation from GC2

databases to ZIQ KBs. This allows us to transfer the results
from Theorem 8. Matching lower bounds follow from known
results for much weaker logics and query formalisms (such
as CQs over ALCI [Lutz, 2008]).

Definition 7 (GC2; Pratt-Hartmann, 2007) For a signa-
ture S of nullary (N0), unary (NC), and binary (NR ∪ {≈})

predicates,6 let GC2 be the smallest set of formulae that con-
tains all atoms over S using only variables from {x, y}, that
is closed under Boolean combinations, and that contains

• all formulae ∃u.ϕ and ∀u.ϕ with u ∈ {x, y} whenever ϕ
is a GC2 formula with at most one free variable, and

• all formulae ∀u.(γ → ϕ) as well as

Q

u.(γ ∧ ϕ) andQ

u.(γ) where γ is a binary atom (called “guard”) con-
taining both x and y, ϕ is a GC2 formula, and

Q

is any of
∃, ∃6n, ∃=n, or ∃>n.

A GC2 database DB is a theory {Φ} ∪ A consisting of a GC2

sentence Φ and a finite setA of unary and binary ground facts
over constants from NI.7 We denote by GC2

qef the set of GC2

formulae which are quantifier-free and do not use ≈.

A P2RPQ over a GC2 database is a P2RPQ where for every
atom of the form C(t) holds C ∈ NC and for every atom
of the form T (s, t), every subexpression of the form id(C)
satisfies C ∈ NC. P2RPQ entailment from GC2 databases is
defined in the same way as for DLs.

For convenience, we make use of a special normal form for
GC2 introduced in the following.

Lemma 9 (normal form; Pratt-Hartmann, 2009) For any
GC2 sentence Φ, one can compute in polynomial time a GC2

sentence NF(Φ) of the form

∀xα ∧
∧

1≤h≤` ∀x∀y (Eh(x, y)→ βh ∨ x ≈ y))

∧
∧

1≤i≤m ∀x∃=ni
y (Fi(x, y) ∧ x 6≈ y) ,

(14)

with α ∈ GC2
qef not using y, {E1, ... , E`, F1, ... , Fm} ⊆ NR,

{β1, ... , β`} ⊆ GC2
qef , and {n1, ... , nm} ⊆ N, such that

(i) NF(Φ) |= Φ and (ii) every model of Φ with at least
maxh nh elements can be extended to a model of NF(Φ).

Given a GC2 database DB = {Φ} ∪ A, we let NF(DB) =
{NF(Φ)} ∪ A. Thanks to the previous lemma and the known
property that models of GC2 sentences are closed under dis-
joint self-union, the normal form can be shown to be query-
entailment-preserving.

Lemma 10 For every P2RPQ q over a GC2 database DB
holds DB |= q if and only if NF(DB) |= q.

We next provide a query-entailment-preserving polynomial
translation of GC2 databases into ZIQ KBs.

Definition 8 Let Ψ be a GC2 sentence in normal form as in
Lemma 9. We define the ZIQ TBox TΨ by

TΨ = T≈ ∪ Tps ∪ Tα ∪
⋃

1≤h≤l

TEh,βh
∪

⋃
1≤i≤m

TFi,ni
, (15)

where (introducing fresh concept names PropP and role
names R≈ and REh,at):

6As unary and binary predicates correspond to concept and role
names, respectively, we use the same set symbols to denote them.

7Note that ABoxes, as defined before, are syntactically and se-
mantically identical to finite sets of unary and binary ground facts,
so we consider the notions the same and use the same symbol A.
Note also that by definition, Φ does not contain constants.
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• T≈ = {> v 61R≈.>, > v ∃R≈.Self}
• Tps = {PropP ≡ ∃>.P ropP | P ∈ N0}
• Tα = {> v tr(α)}, where

tr(P ) = PropP
tr(P (x)) = P

tr(P (x, x)) = ∃P.Self

tr(¬ϕ) = ¬tr(ϕ)
tr(ϕ ∧ ψ) = tr(ϕ) u tr(ψ)
tr(ϕ ∨ ψ) = tr(ϕ) t tr(ψ)

• TEh,βh
=

⋃
at∈atoms(βh) axEh

(at)

∪ {> v ∀(REh,at \ Eh).⊥ | at ∈ atoms(βh)}
∪ {> v ∀(Eh \ (R≈ ∪ trEh

(βh))).⊥}

where axEh
maps atoms in βh to sets of GCIs as follows:

P 7→ { ∃REh,P .> v PropP ,
∃(Eh \REh,P ).> v ¬PropP }

P (x) 7→ { ∃REh,P (x).> v P,
∃(Eh \REh,P (x)).> v ¬P }

P (x, x) 7→ { ∃REh,P (x,x).> v ∃P.Self,
∃(Eh \REh,P (x,x)).> v ¬∃P.Self}

P (y) 7→ { ∃R−Eh,P (y).> v P,
∃(E−h \R

−
Eh,P (y)).> v ¬P }

P (y, y) 7→ { ∃R−Eh,P (y,y).> v ∃P.Self,
∃(E−h \R

−
Eh,P (y,y)).> v ¬∃P.Self}

P (x, y) 7→ { ∃(REh,P (x,y) \ P ).> v ⊥,
∃(Eh∩P \REh,P (x,y)).> v ⊥ }

P (y, x) 7→ { ∃(R−Eh,P (y,x) \ P ).> v ⊥,
∃(E−h ∩P \R

−
Eh,P (y,x)).> v ⊥ }

and trEh
maps GC2

qef formulae to simple roles:

trEh
(at) = REh,at

trEh
(¬ρ) = Eh \ tr(ρ)

trEh
(ρ ∧ ρ′) = trEh

(ρ) ∩ trEh
(ρ′)

trEh
(ρ ∨ ρ′) = trEh

(ρ) ∪ trEh
(ρ′)

• TFi,ni
= { > v 6ni(Fi\R≈).> u >ni(Fi\R≈).> }

Given a GC2 database DB = {Φ}∪A, we letKDB denote the
ZIQ KB (TNF(Φ),A).

Intuitively, T≈ axiomatises equality, Tps introduces synchro-
nised concept names PropP for every propositional symbol
P from DB, sinceZIQ does not allow for nullary predicates.
Tα, TEh,βh

, and TFi,ni
implement the conjuncts from NF(Φ).

Lemma 11 Let DB = {Φ}∪A be a GC2 database. Then the
following hold:

1. KDB can be computed in polytime wrt. the size of DB.
2. KDB has the qfhcp.
3. Any model of KDB can be extended to one of NF(DB).
4. Any model of NF(DB) can be extended to one of KDB.
5. For any P2RPQ q over DB holds DB |= q iff KDB |= q.

Proof. Point 1 is obvious from the given translation. Point 2
is a direct consequence from the fact that KDB is a ZIQ KB.

For Point 3, we have to extend the model I by interpretations
for all P ∈ N0: we map P to true exactly if PropP = ∆I .
For Point 4, we have to extend the model I by interpretations
for all PropP , R≈, and REh,at: we let PropIP = ∆I if P
holds true in I and PropIP = ∅ otherwise; we let RI≈ =
{(δ, δ) | δ ∈ ∆}; and we let RIEh,at

= {(Z(x),Z(y)) |
I,Z |= Eh(x, y) ∧ at}. Point 5 can be shown in two steps:
by Lemma 10, the queries entailed by DB and by NF(DB)
coincide. Then, as a consequence of the fact that by Point 3
and Point 4, the model sets of NF(DB) and KDB coincide on
all unary and binary predicates occurring in DB, hence also
the entailed queries coincide. �

Theorem 12 P2RPQ entailment from GC2 databases is
2EXPTIME-complete. It is EXPTIME-complete if the number
of query atoms is bounded by a constant.

Proof. Given a GC2 database DB and a P2RPQ q over DB,
we can compute KDB in polynomial time, and it is of polyno-
mial size by Lemma 11, Point 1. Moreover, DB |= q can be
checked by testing KDB |= q by Lemma 11, Point 5, which
in turn can be checked in doubly exponential time (singly ex-
ponential if q is bounded) by Theorem 8, since KDB has the
qfhcp by Lemma 11, Point 2. �

7 Conclusion
We have established tight complexity bounds for expressive
querying in very expressive DLs under the assumption of suc-
cinct (i.e. binary) encoding of number restrictions. Arguing
along the lines of Calvanese et al. (2009), we can leverage
our findings to strengthen their results on query containment
as well as the SR family as follows:8

Theorem 13 (query containment) Testing query entailment
K |= q′ ⊆ q is in 2EXPTIME with respect to the total size of
q′, q, and K (with binary encoding of number restrictions) if
(i)K is inZOQ orZOI and q′ and q are P2RPQs overK, or
(ii) K is in ZIQ, q′ is a conjunctive query and q is a P2RPQ
over K. The complexity drops to EXPTIME if the number of
atoms occurring in q is bounded by a constant.

Theorem 14 (SR family) Deciding K |= q and K |= q′ ⊆ q
is in 3EXPTIME in the total size of q′, q, K (with binary en-
coding of numbers) – and in 2EXPTIME if K’s RBox is given
by defining regular expressions for the non-simple roles – if
(i)K is in SROQ or SROI and q′, q are P2RPQs overK, or
(ii) K is in SRIQ, q′ is a CQ and q is a P2RPQ over K.
The complexities are in 2EXPTIME and in EXPTIME, respec-
tively, if the number of atoms in q is bounded by a constant.

There are plenty of open questions left for future work. First,
the results established here hold for arbitrary models, how-
ever, so far, very little is known about finite (model) query
answering in DLs from the Z family. Second, while the ex-
tension of our query formalism by nestings in the sense of
Bienvenu et al. (2014) seems straightforward without impact-
ing complexities, our technique seems not readily extend-
able to capture more elaborate query languages [Rudolph and
Krötzsch, 2013; Bourhis et al., 2015; Reutter et al., 2017].

8For space reasons, we have to assume the reader to be familiar
with the notions used in these theorems.
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