Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Reasoning about Quality and Fuzziness of Strategic Behaviours

Patricia Bouyer' , Orna Kupferman?, Nicolas Markey?
Bastien Maubert', Aniello Murano®, Giuseppe Perelli®
L' LSV, CNRS & ENS Paris-Saclay, Univ. Paris-Saclay, France
2 Hebrew University, Israel
3 Trisa, CNRS & Inria & Univ. Rennes, France
4 Universita degli Studi di Napoli “Federico 117, Italy
® University of Leicester, UK

Abstract

We introduce and study SL[F]—a quantitative ex-
tension of SL (Strategy Logic), one of the most nat-
ural and expressive logics describing strategic be-
haviours. The satisfaction value of an SL[F] for-
mula is a real value in [0, 1], reflecting “how much”
or “how well” the strategic on-going objectives of
the underlying agents are satisfied. We demonstrate
the applications of SL[F] in quantitative reason-
ing about multi-agent systems, by showing how it
can express concepts of stability in multi-agent sys-
tems, and how it generalises some fuzzy temporal
logics. We also provide a model-checking algo-
rithm for our logic, based on a quantitative exten-
sion of Quantified CTL".

1 Introduction

One of the significant developments in formal reasoning
has been the use of temporal logics for the specification
of on-going behaviours of reactive systems [Pnueli, 1981;
Emerson and Halpern, 1986]. The need to reason about multi-
agent systems has led to the development of specification
formalisms that enable the specification of on-going strate-
gic behaviours in multi-agent systems. Essentially, these for-
malisms, most notably ATL, ATL* [Alur et al., 2002] and
Strategy Logic (SL) [Mogavero et al., 2014], include quan-
tification over strategies of the different agents, making it pos-
sible to specify concepts that have been traditionally studied
in game theory.

While SL, which subsumes ATL*, enables the specification
of rich strategic behaviours in on-going multi-agent systems,
its semantics is Boolean: a system may satisfy a specifica-
tion or it may not. The Boolean nature of traditional temporal
logic is a real obstacle in the context of strategic reasoning.
Indeed, while many strategies may attain a desired objective,
they may do so at different levels of quality or certainty. Con-
sequently, designers would be willing to give up manual de-
sign only after being convinced that the automatic procedure
that replaces it generates systems of comparable quality and
certainty. For this to happen, one should first extend the spec-
ification formalism to one that supports quantitative aspects
of the systems and the strategies.

1588

The logic LTL[F] is a multi-valued logic that augments
LTL with quality operators [Almagor et al., 2016]. The sat-
isfaction value of an LTL[F] formula is a real value in [0, 1],
where the higher the value, the higher the quality in which the
computation satisfies the specification. The quality operators
in F can prioritise different scenarios or reduce the satisfac-
tion value of computations in which delays occur. For ex-
ample, the set 7 may contain the min{z, y}, max{z, y}, and
1 —x functions, which are the standard quantitative analogues
of the A, V, and — operators. The novelty of LTL[F] is the
ability to manipulate values by arbitrary functions. For exam-
ple, 7 may contain the weighted-average function @,. The
satisfaction value of the formula v ®) - is the weighted
(according to \) average between the satisfaction values of
11 and 1. This enables the specification of the quality of the
system to interpolate different aspects of it.

LTL[F] with functions A, V and — also corresponds to
Fuzzy Linear-time Temporal Logic (Fuzzy LTL) [Lamine and
Kabanza, 2000; Frigeri ef al., 2014]. Note that by equipping
JF with adequate functions, we can capture various classic
fuzzy interpretations of Boolean operators, such as the Zadeh,
Godel-Dummett or Lukasiewicz interpretations (see for in-
stance [Frigeri er al., 2014]). However the interpretation of
the temporal operators is always that of Fuzzy LTL.

We introduce and study SL[F], an analogous multi-valued
extension of SL. In addition to the quantitative semantics that
arises from the functions in JF, another important aspect of
SL[F] is that its semantics is defined with respect to weighted
multi-agent systems, namely ones where atomic propositions
have truth values in [0, 1], reflecting quality or fuzziness.
Thus, a model-checking procedure for SL[F], which is our
main contribution, enables formal reasoning about both qual-
ity and fuzziness of strategic behaviours.

As a motivating example, consider security drones that
may patrol different height levels, and whose objectives are
to fly above and below all uncontrollable drones and perform
certain actions when uncontrollable drones exhibit some dis-
allowed behaviour. In SL[F] we can specify the quality of
strategies for the drones: the different heights are specified
with multi-valued atomic propositions, on-going behaviours
are expressed with temporal operators and the functions in F
may be used to refer to these behaviours in a quantitative
manner, for example to compare heights and specify the sat-
isfaction level of different possible scenarios. Note that the

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

SL[F] formula does not merely specify the ability of the
drones to behave in some desired manner, but rather it as-
sociates a satisfaction value in [0, 1] with each behaviour. For
example (see Section 2.4), beyond specifying that the agents
are in a Nash Equilibrium, we can specify how far they are
from an equilibrium, namely how much an agent may gain
by a deviation. As a result we can express and generalise
concepts such as e-Nash Equilibria [Nisan et al., 2007].

We show that the quantification of strategies in SL[F] can
be reduced to a Boolean quantification of atomic proposi-
tions, which enables us to reduce the model-checking prob-
lem of SL[F] to that of BQCTL*[F], a logic that merges
Quantified CTL* [Laroussinie and Markey, 2014] (an exten-
sion of CTL* with quantifiers on atomic propositions) with
CTL*[F] [Almagor et al., 2016]. A general technique for
CTL" model-checking algorithms is to repeatedly evaluate
the innermost state subformula by viewing it as an (existen-
tially or universally quantified) LTL formula, and add a fresh
atomic proposition that replaces this subformula [Emerson
and Lei, 1987]. This general technique is applied also to
CTL*[F], with the fresh atomic propositions being weighted
[Almagor et al., 2016]. For BQCTL*[F] formulas, how-
ever, one cannot apply it. Indeed, the externally quanti-
fied atomic propositions may appear in different subformulas,
and we cannot evaluate them one by one without fixing the
same assignment for the quantified atomic propositions. In-
stead, we extend the automaton-theoretic approach to CTL*
model-checking [Kupferman er al., 2000] to handle quanti-
fied propositions: given a BQCTL*[F] formula) and pred-
icate P C [0, 1], we construct an alternating parity tree au-
tomaton that accepts exactly all the weighted trees ¢ such that
the satisfaction value of ¢ in ¢ is in P. The translation, and
hence the complexity of the model-checking problem, is non-
elementary: we show that it is (k + 1)-EXPTIME-complete
for formulas involving at most k£ nested quantifications on
atomic propositions, and we show a similar complexity result
for SL[F], in terms of nesting of strategy quantifiers.

1.1 Related Work

Various kinds of quantitative objectives have been studied
in weighted games, both for two players (parity [Emerson
and Jutla, 19911, mean-payoff [Ehrenfeucht and Mycielski,
1979] or energy [Bouyer et al., 2008]) and n-player games
(see e.g. [Bruyere et al., 2014; Brenguier et al., 2016; Gutier-
rez et al., 2017]). Similarly, quantitative versions of LTL and
CTL have been studied in different contexts, with discount-
ing [Almagor et al., 2014], averaging [Bollig er al., 2012;
Bouyer et al., 20141, or richer constructs [Boker et al., 2014;
Almagor et al., 2016]. In contrast, the study of quanti-
tative temporal logics for strategic reasoning has remained
rather limited: works on LTL[F] include algorithms for syn-
thesis and rational synthesis [Almagor et al., 2016; 2017,
2018], but no logics combine the quantitative aspect of
LTL[F] with the strategic reasoning offered by SL.

A quantitative version of SL with Boolean goals over
one-counter games has been considered in [Bouyer er al.,
2015]; only a periodicity property was proven, and no model-
checking algorithm is known in that setting.

The other quantitative extensions we know of concern ATL/

ATL*, and most of the results are actually adaptations of sim-
ilar (decidability) results for the corresponding extensions of
CTL and CTL"; this includes multi-valued ATL [Jamroga et
al., 2016] and weighted versions of ATL [Laroussinie et al.,
2006; Bulling and Goranko, 2013; Vester, 2015]. Finally,
some works have considered non-quantitative ATL with quan-
titative constraints on the set of allowed strategies [Alechina
et al., 2010; Della Monica and Murano, 2018], proving de-
cidability of the model-checking problem.

A full version of the present paper with detailed proofs is
available as [Bouyer et al., 2019].

2 Quantitative Strategy Logic

Let X be an alphabet. A finite (resp. infinite) word over X is
an element of X* (resp. >¢). The length of a finite word w =
Wowy ... wy s |w] := n + 1, and last(w) := w, is its last
letter. Given a finite (resp. infinite) word w and 0 < i < |w|
(resp. ¢ € N), the word w<; = wp ... w; is the (non-empty)
finite prefix of w that ends at position 7 and w>; = w;w;41 - ..
is the suffix of w that starts at position ¢. We write Pref(w) for
the set of non-empty prefixes of w. As usual, for any partial
function f, we write dom(f) for the domain of f.

Strategy logic with functions, denoted SL[F], generalises
both SL and LTL[F] by replacing the Boolean operators of
SL with arbitrary functions over [0, 1]. The logic is actually a
family of logics, each parameterised by a set F of functions.

2.1 Syntax

We build on the branching-time variant of SL [Fijalkow et al.,
2018], which presents several benefits over classic SL, such
as making the connection with Quantified CTL* tighter. Let
F C{f:]0,1]™ — [0,1] | m € N} be a set of functions.

Definition 1. The syntax of SL[F] is defined with respect to a
finite set of atomic propositions AP, a finite set of agents Agt
and a set of strategy variables Var. The set of SL[F| formulas
is defined by the following grammar:

pu=pl{@he | (a,z)o | A | flo,. . 9)
Y= | XY [YUY | f(9,...,9)
wherep € AP, x € Var, a € Agt, and [€ F.

Formulas of type ¢ are called state formulas, those of
type ¢ are called path formulas. Formulas {(x))¢ are called
strategy quantifications whereas formulas (a, z)¢ are called
bindings. Modalities X and U are temporal modalities, which
take a specific quantitative semantics as we see below.

2.2 Semantics

While SL is evaluated on classic concurrent game structures
with Boolean valuations for atomic propositions, SL[F] for-
mulas are interpreted on weighted concurrent game struc-
tures, in which atomic propositions have values in [0, 1].

Definition 2. A weighted concurrent game structure (WCGS)
isatuple G = (AP, Agt, Act, V, v,, A, W) where AP is a finite
set of atomic propositions, Agt is a finite set of agents, Act is
a finite set of actions, V is a finite set of states, v, € Vis an
initial state, A: V x Act’% — V is the transition function,
andw: V — [0, 1]7P is a weight function.

1589

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

An element of Act"¥ is a joint action. For v € V, we let
succ(V) be the set {V/ € V | 3¢ € Act"®". v/ = A(v,d)}.

A play in G is an infinite sequence m = (V;);cn Of states
such that vo = v, and v, € succ(v;_1) for all ¢ > 0.
We write Play for the set of plays in G, and Play(v) for
the set of plays in G starting from v. Finite prefixes of plays
are called histories, and we let Histg(v) = Pref(PIayg (v))
and Histg = J, oy Histg(v).

A strategy is a mapping o : Histg — Act, and Strg is the
set of strategies in G. An assignment is a partial function
x: VarUAgt — Strg, that assigns strategies to variables and
agents. Assignment x|[a — o] maps a to o and is equal to x
otherwise. The set of outcomes of assignment y from history
p is the set Out(y, p) of plays m = p - V1Vs ... such that for
every ¢ € N, there exists a joint action ¢ € Act*® such that
for each agent a € dom(x),c(a) = x(a)(m<|p|4i—1) and
Vit1 = A(vy, @), where v = last(p).

Definition 3. Let G be a WCGS over AP and Agt, and x
an assignment for Agt and Var. The satisfaction value of an
SL[F] state formula o in the last state of a history p with
assignment x, denoted [[@ﬂg(p), and the satisfaction value of

an SL[F] path formula 1) in a play w starting at point i € N,
denoted [gpﬂg(p), are defined inductively as follows:

[p]3 (p) = w(last(p))(p)
[(=)elS(p) = _sup (215 0soy (P)

[(@, 2)#15(P) = [2]3 fars () (P)
[A]S(p) = inf [W]]g(ﬂﬁﬂ—l)

meOut(x,p
[/ (o1, om)IS (0) = <[[m19< oo LomlS(0))
[l (7. 8) = [#]§ (7<)
DXVl () = [W1E(m,i + 1)
{1Vl (r,9) = swpmin{ [eal (.),

min_ [e1]¢(m k) |

keli,j—1]
[f (@1, wM)]]g(Wﬂ i) = f([[wlﬂx(WJ% EERR) ﬂlpmﬂg(ﬂ—vl))

That is, the satisfaction value of {(2))¢ is the maximal value
that a choice of strategy for variable = can give to ¢. Bind-
ing (a, z)¢p just assigns strategy given by x to agent a. In the
semantics of 11 U2, while in the Boolean semantics we care
about the first position in which %5 holds, in the quantita-
tive setting we maximise over all positions along the play, the
minimum between the value of 1), at that position and the
minimal value of 1; before this position.

We may use T, V, and — to denote functions 1, max
and 1 — z, respectively. We can then define the following
classic abbreviations: L:= =T, p A = —=(-pV '),
o=@ i ==pVy, FY:=TUy, Gi:=-F- and
[x]¢ := ={x))—p. When the values of the atomic propo-
sitions are in {0,1}, one can then check that all standard
notations take their usual Boolean meaning.

Remark 1. We will see that when the set of possible satisfac-
tion values of atomic propositions is finite, as is the case when

1590

a model is chosen, then each formula has a finite set of possi-
ble satisfaction values. Therefore, the infima and suprema in
the above definition are in fact minima and maxima.

For a state formula ¢ and a WCGS G, let [¢]9 = [[(p]]g (v,).
2.3 Model Checking

The problem we are interested in is the following generalisa-
tion of the model checking problem, which is solved in [Al-
magor et al., 2016] for LTL[F] and CTL*[F].

Definition 4. Given an SL[F)] state formula ¢, a WCGS G
and a predicate P C [0, 1], decide whether [¢]¢ € P.!

The precise complexity of the model-checking problem is
stated in terms of nesting depth of formulas, which counts
the maximal number nd(¢) of nested strategy quantifiers in a
formula ¢. We establish the following result in Section ??:

Theorem 1. The model-checking problem for SL|F| formu-
las of nesting depth at most k is (k + 1)-EXPTIME-complete.

2.4 What can SL[.F] Express?

SL[F] naturally embeds SL. Indeed, if the values of the
atomic propositions are in {0,1} and 7 = {V, A, -}, then
the satisfaction value of every SL[F] formula ¢ is in {0, 1}
and coincides with the semantics of ¢ seen as an SL formula.
Also, the same way ATL* [Alur ef al., 2002] is embedded in
SL, so is ATL*[F] embedded in SL[F], where ATL*[F] is the
natural quantitative extension of ATL*.

Below we illustrate how quantities enable the specification
of rich strategic properties.

Drone Battle

A “carrier” drone c helped by a “guard” drone g try to bring
an artefact to a rescue point and keep it away from the “vil-
lain” adversarial drone v. They evolve in a three dimensional
cube of side length 1 unit, in which coordinates are triples
¥ = (71,7,73) € [0,1]3. We use the triples of atomic
propositions py = (Py,,Prs:Pys) and @5 = (41, Gya; s
to denote the coordinates of ¢ and v, respectively. Write
dist: [0,1]® x [0,1]> — [0, 1] for the (normalized) distance
between two points in the cube. Let the atomic proposition
safe denote that the artefact has reached the rescue point. In
SL[F], we can express the level of safety for the artefact de-
fined as the minimum distance between the carrier and the
villain along a trajectory to reach the rescue point. Indeed,
the formula

Prescue = (@) (¥) (e, 2)(9,y)

states that the carrier and guard drones cooperate to keep the
villain as far as possible from the artefact, until it is rescued.
Note that the satisfaction value of the LTL[F] specification
is 0 if there is a path in which the artifact is never rescued.

A(dist(p5, g7)U safe)

Synthesis with Quantitative Objectives

In LTL reactive synthesis [Pnueli and Rosner, 1989], a con-
troller and an environment operate on two disjoint sets of
variables in the system. The problem consists in synthesis-
ing a strategy for the controller such that, no matter the be-
haviour of the environment, the resulting execution satisfies

"Predicate P is finitely represented, typically as an interval.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1. Recently, this problem has been addressed in the context
of LTL[F], where the controller aims at maximising the value
of an LTL[F] formula ¢, while the environment acts as min-
imiser. This problem can be expressed in SL[F] with the

formula

Psynt = <<$>> (Cv 1) Ay
where ¢ and e are the controller and environment, and) is
the specification in LTL[F].

We mention (but do not develop, by lack of space) that we
can also express the variant of reactive synthesis called ratio-
nal synthesis [Kupferman et al., 2016]. This problem consid-
ers an environment composed of several rational components,
and aims at synthesising a strategy that ensures the specifica-
tion against all (or some) rational behaviours of the environ-
ment, where rational is characterised by some game-theoretic
concept such as Nash equilibrium of subgame-perfect equi-
librium. Our expressive logic allows us to deal with richer
objectives than in [Almagor et al., 2018].

Nash Equilibria in Weighted Games
An important feature of SL is that it captures Nash equilibria
(NE, for short) and other common solution concepts. This ex-
tends to SL[F], but in a much stronger sense: first, objectives
in SL[F] are quantitative, so that profitable deviation is not a
simple Boolean statement; second, the semantics of the logic
is quantitative, so that being a NE is a quantitative property,
and we can actually express how far a strategy profile is from
being a NE.

A strategy profile (0;)q, cagt is a NE if all agents play one
of their best responses against their opponents’ strategies.
Consider formula

PNE = (ahxl)-"(@mfﬂn)(/\ [vil ((as, yi)Ap;) = A%’)
a; EAgt

where o < f3 is actually a function <: [0,1]*> — [0, 1] such

that <(a, f) = 1 if @ < 8 and =<(«,) = 0 otherwise. Then

[enelf (v) = 1if, and only if, (x(;))a,cAqgt form a NE from

position V.

Adopting a more quantitative point of view, we can mea-
sure how much agent ¢ can benefit from a selfish deviation
using formula ((y;)diff((a;, yi)@s, i), where diff(z,y) =
max{0,z — y}. The maximal benefit that some agent may
get is then captured by the following formula:

ene = () (a1, 21)(answa) (V- diff((ai, 9)Agi A))).
a; EAgt

Formula ¢y can be used to characterise e-NE, by requiring

that g has value less than or equal to €; of course it also

characterises classical NE as a special case.

Secure Equilibria in Weighted Games

Secure equilibria [Chatterjee et al., 2006] are special kinds of
NEs in two-player games, where besides improving their ob-
jectives, the agents also try to harm their opponent. Following
the ideas above, we characterise secure equilibria in SL[F] as
follows:

PSE = (a17$1)(a2,ﬂ?2)

/\ [[yl]]((au yi)Agplv (a”ia yL)A(pQ) j’i (AQOL A<)02)
1€{1,2}

1591

where (a1, as) =<; (81,52) is equal to 1 when o; < f3; or
both a; = ; and a3_; < B3_;, and 0 otherwise.

Secure equilibria have also been studied in QQ-weighted
games [Bruyere er al., 2014]: in that setting, the objective
of the agents is to optimise e.g. the (limit) infimum or supre-
mum of the sequence of weights encountered along the play.
We can characterise secure equilibria in such setting (after
first applying an affine transformation to have all weights
in [0,1]): indeed, assuming that weights are encoded as the
value of atomic proposition w, the value of formula Gw is
the infimum of the weights, while the value of FGw is the
limit infimum. We can then characterise secure equilibria
with (limit) infimum and supremum objectives by using those
formulas as the objectives for the agents in formula psg.

3 Booleanly Quantified CTL*[F]

In this section we introduce Booleanly Quantified CTL*[F]
(BQCTL*[F], for short) which extends both CTL*[F] and
QCTL" [Laroussinie and Markey, 2014].

3.1 Syntax
Let F C {f:[0,1]™ — [0,1] | m € N} be a set of functions.

Definition 5. The syntax of BQCTL*[F] is defined with re-
spect to a finite set AP of atomic propositions, using the fol-
lowing grammar:

pu=p|3p.o|EY | flp,...,0)
Y= [XY [YUY | f(9, ..., 1)

where p ranges over AP and f over F.

Formulas of type ¢ are called state formulas, those of
type 1 are called path formulas, and BQCTL*[F] consists
of all state formulas. We again use T, V, and — to denote
functions 1, max and 1 — x, as well as classic abbreviations
already introduced for SL[F], plus Ay := —E—).

3.2 Semantics

While BQCTL*[F] formulas are interpreted over weighted
Kripke structures, thus with atomic propositions having val-
ues in [0, 1], the possible assignment for the quantified propo-
sitions are Boolean, hence the name of the logic.

Definition 6. A weighted Kripke structure (WKS) is a tuple
K = (AP,S,s,, R,w) where AP is a finite set of atomic
propositions, S is a finite set of states, S, € S is an ini-
tial state, R C S x S is a left-total transition relation, and
w: S — [0, 1]AP is a weight function.

A path in K is an infinite word m = w7y ... over S such
that my = s, and (7, 7;+1) € R for all i. We call finite
prefixes of paths histories, and Hist is the set of all histories
in K. We also let Vic = {w(s)(p) | s € Sandp € AP} be
the finite set of values appearing in K.

Given finite sets D of directions, AP of atomic proposi-
tions, and V' C [0, 1] of possible values, an (AP, V')-labelled
D-tree, (or tree for short when the parameters are under-
stood), is a pair t = (7,w) where 7 C D™ is closed under
non-empty prefixes, all nodes u € 7 start with the same direc-
tion 7, called the root, and have at least one child u-d € 7, and

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

w: 7 — VAP is a weight function. A branch A\ = ugu; . ..
is an infinite sequence of nodes such that for all 7 > 0, we
have that w;y; is a child of u;. We let Br(u) be the set of
branches that start in node u. We say that a tree ¢t = (7, W)
is Boolean in p, written Bool(¢, p), if for all u € 7 we have
w(u)(p) € {0,1}. As with weighted Kripke structures, we
let V; = {w(u)(p) | v € 7 and p € AP}.

Given two (AP, V)-labelled D-trees t,t' and p € AP, we
write t =, ¢ if ¢ and ¢’ differ only in assignments to p, which
must be Boolean in ¢': formally, t = (7, w), ' = (7,w'), for
the same domain 7, Bool(, p), and for all p’ € AP such that
p’ # pandall u € 7, we have w(u)(p’) = W' (u)(p’).

Finally, the tree unfolding of a WKS IC over atomic propo-
sitions AP and states S is the (AP, Vi)-labelled S-tree tx =
(Histx, w’), where W' (u) = w(last(u)) for every u € Hist.

Definition 7. Given a tree t, the satisfaction value [p]"(u)
of a BQCTL*[F] state formula ¢ in node u of t, and the
satisfaction value []'(\) of a BQCTL*[F] path formula v
along a path \ of t, are defined inductively as follows:

[p]" (u) = w(u)(p)

[Fp-] (u) = S [e1" (u)
[Ev]*(w) = sup [¢]"(N)
AEBr(u)
[f (1, 0n)] (u) = f(ln]"(w), ..., [on]" (w))
[el*(A) =[] (ho)
[X]"(A) = [¥1°(A=1)
(N

[1Us]"(A) = sup min([s]"(A>), min [v1]*(A>;))
i>0 Sy<e

Lf (1, e) (X) = (1] (N, oy [0a] (M)

Remark 2. As with SL[F), the suprema in the above defini-
tion can be replaced with maxima (see Lemma 3 below).

First, note that if 7 = {T,V, —}, then BQCTL*[F] eval-
uated on Boolean Kripke structures corresponds to classic
QCTL*. Note also that the quantifier on propositions does
not range over arbitrary values in [0, 1]. Instead, as in QCTL",
it quantifies only on Boolean valuations. It is still quantitative
though, in the sense that instead of merely stating the exis-
tence of a valuation, Jp. ¢ maximises the value of ¢ over all
possible (Boolean) valuations of p.

For a tree ¢ with root r we write [¢]* for []!(r), and for
a WKS K we write []* for []**. Note that this semantics
is an extension of the tree semantics of QCTL”*, in which the
valuation of quantified atomic propositions is chosen on the
unfolding of the Kripke structure instead of the states. This
allows us to capture the semantics of SL based on strategies
with perfect recall, where moves can depend on the history,
as opposed to the memoryless semantics, where strategies
can only depend on the current state (see [Laroussinie and
Markey, 2014] for more details).

We study the following model-checking problem:

Definition 8. Given a BQCTL*[F] state formula p, a WKS
K and a predicate P C [0, 1], decide whether [o]* € P.

Similarly to SL[F], the precise complexity of the model-
checking problem will be stated in terms of nesting depth of
formulas, which counts the maximal number of nested propo-
sitional quantifiers in a formula ¢, and is written nd(¢y).

In the next section we establish our main technical contri-
bution, which is the following:

Theorem 2. The model-checking problem for BQCTL*[F]
Sformulas of nesting depth k is (k + 1)-EXPTIME-complete.

This result, together with a reduction from SL[F] to
BQCTL*[F] that we present in Section ??, entails the decid-
ability of model checking SL[F] announced in Theorem 1.

4 Model Checking

We start by proving that, as for LTL[F], when the set of possi-
ble values of atomic propositions is finite, so is the set of pos-
sible satisfaction values of each BQCTL*[F] formula. This
property allows to use max instead of sup in Definition 7.

Lemma 3. Let V C [0,1] be a finite set of values with
{0,1} C Vand ¢ a BQCTL*[F] state formula. Define

Vo = {l¢]"(u) | tis a (AP, V)-labelled tree and u € t}

be the set of values taken by v in nodes of (AP, V')-labelled
trees. Then, |V,,| < |V|I?l, and one can compute V,, of size at
most |V|I¥! such that V,, C V.

The finite over-approximation of the set of possible satis-
faction values induces a finite alphabet for the automata our
model-checking procedure uses.

In the following, we use alternating parity tree automata
(APT in short), and their purely non-deterministic (resp. uni-
versal) variants, denoted NPT (resp. UPT). Given two APT A
and A’ we denote A A A’ (resp. AV A’) the APT of size lin-
ear in |.A| and |.A’| that accepts the intersection (resp. union)
of the languages of A and A’, and we call index of an au-
tomaton the number of priorities in its parity condition. We
refer the reader to [Kupferman and Vardi, 2005] for a detailed
exposition of alternating parity tree automata.

We extend the automata construction from [Kupferman et
al., 2000] to handle quantification on atomic propositions and
the quantitative aspect of our model-checking problem.

Proposition 4. Let V C [0,1] be a finite set of values such
that {0,1} C 'V, and let D be a finite set of directions. For
every BQCTL*[F] state formula o and predicate P C [0, 1],
one can construct an APT AYF such that for every (AP, V)-
labelled D-tree t, ,AZ’P accepts t if and only if [p]' € P.

The APT AY'" has at most (nd()+1)-exponentially many
states, and its index is at most nd()-exponential.

Proof sketch. 'We sketch how the two interesting inductive
cases are dealt with.

When ¢ is of the form Jp. ¢, the automaton has to check
that the maximal satisfaction value of ¢’ for all possible

Boolean valuations of p is in P. First, compute finite set Vi,

from Lemma 3. Then for each possible v € I~/¢/ NP, we build
an automaton for checking that the value of ¢’ is less than v
for all p-valuations, and that value v is reached for some p-

valuation. Inductively build the APTs AZ}{U} and AZ}[O’U]HP.

1592

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Turn the first one into a NPT N_, and the second one into
a UPT U<,. Project N_, existentially on p, and call the re-
sult NZ . Project U<, universally on p, call the result 2/~ .
Finally, define the APT Agfw’ = vv€‘7¢/ﬁPN;U AU,
This automaton accepts a tree if, and only if, there exists a
value in P that is the maximum of the possible values taken
by ' for all p-valuations.

When ¢ is of the form E, first let atoms(v)) be the set
of maximal state sub-formulas of v (called atoms). In a first
step we see ¢ as an LTL[F] formula over atoms(¢). For each

¢’ € atoms(1)), compute the set V,,» from Lemma 3, and let
V= UWEatoms(w) V. Build a non-deterministic parity au-

tomaton W that accepts the set of words w € (V/2toms(¥))«
such that [¢](w) € P [Almagor ef al., 2016]. Then com-

pute Ve, (again using Lemma 3), and for each v € ‘N/E¢ NP,
construct an NPT A=V that guesses a branch in its input
and simulates Wf’v} on it. Dually, build a universal word au-
tomaton WY

[0,0] and then a UPT U/“=<" that executes ng_v]
on all branches of its input. Finally, define the APT A" on
yatoms(¥)_trees as AP = VveXN/EwﬂP NE=v A yASv,

To go from atoms to atomic propositions, define an APT
AEVQZ)P that, in each state and each node of its input, guesses

a value v; in ‘7% for each ¢; € atoms(v)), simulates A" on

the resulting label, and launches a copy of AZ;{“} for each
p; € atoms(t)). Note that the automaton is alternating and
thus may have to guess several times the satisfaction value of
a formula ¢; in a same node, but launching the AZ;{“} forces
it to always guess the same, correct value. |

To check whether [¢]* € P, where atomic propositions
in KC take values in V; it is enough to build AZ’P as in Propo-
sition 4, take its product with a deterministic tree automa-
ton that accepts only tx, and check for emptiness of the
product automaton. The formula complexity is (nd(p) + 1)-
exponential, but the structure complexity is polynomial. The
time complexity is (nd(y) + 1)-exponential in the size of o,
but it is polynomial in the size of the game structure.

The lower bounds are obtained by reduction from the
model-checking problem for EQ*CTL*, a fragment of
QCTL” that consists in formulas in prenex normal form with
at most k alternations between existential and universal quan-
tifiers. This problem is (k 4+ 1)-EXPTIME-hard [Laroussinie
and Markey, 20141, and clearly, EQ*CTL* can be translated
in BQCTL*[F] with formulas of linear size and nesting depth
at most k (alternation is simply coded by inserting function —
between quantifiers).

The usual reduction for qualitative variants of SL (see
e.g. [Laroussinie and Markey, 2015; Berthon et al., 2017,
Fijalkow et al., 2018]) can be lifted to the quantitative setting
in a straightforward manner: for each instance (G, ¢, P) of
the model-checking problem for SL[F], we build a WKS K¢
and a BQCTL*[F] formula ¢’ such that [¢]9 = [¢']*¢.

The model-checking problem for (G, ¢, P) is then solved
by deciding whether [¢']*¢ € P, which can be done by The-
orem 2. This establishes the upper-bounds in Theorem 1.

1593

As in the case of BQCTL*[F], the lower-bounds are ob-
tained by reduction from the model-checking problem for
EQ"CTL*. This reduction is an adaptation of the one from
QCTL" to ATL with strategy context in [Laroussinie and
Markey, 2015], and that preserves nesting depth.

Remark 3. This reduction and Lemma 3 imply that when
we fix possible values for atomic propositions, then possible
values for an SL|F| formula are at most exponentially many.

We now consider the fragment SLig[F] of SL[F], in
which all formulas have the form @b 1) where @ only contains
strategy quantifiers, b binds strategies to all agents, and v is
an LTL[F] formula (possibly involving closed SLyg[F] sub-
formulas as subformulas). It is the quantitative extension of
SLig, the one-goal fragment of SL [Mogavero et al., 2014].

As in the Boolean case, where SLyg strictly subsumes
ATL* while enjoying the same elementary complexity for
the model-checking problem, in the quantitative setting also
SLyg[F] strictly subsumes ATL*[F], and we have:

Theorem 5. The model-checking problem for SL;g[F) is de-
cidable, and 2-EXPTIME-complete.

5 Discussion

We introduced and studied SL[F], a formalism for specifying
quality and fuzziness of strategic on-going behaviour. Be-
yond the applications described in the paper, we highlight
here some interesting directions for future research. In clas-
sical temporal-logic model checking, coverage and vacuity
algorithms measure the sensitivity of the system and its spec-
ifications to mutations, revealing errors in the modelling of
the system and lack of exhaustiveness of the specification
[Chockler et al., 2006]. When applied to SL[F], these al-
gorithms can set the basis to a formal reasoning about clas-
sical notions in game theory, like the sensitivity of utili-
ties to price changes, the effectiveness of burning money
[Hartline and Roughgarden, 2008; Souza and Rego, 2016]
or tax increase [Cole et al., 2006], and more. Recall that
our SL[F] model-checking algorithm reduces the problem to
BQCTL*[F], where the quantified atomic propositions take
Boolean values. It is interesting to extend BQCTL*[F] to a
logic in which the quantified atomic propositions are asso-
ciated with different agents, which would enable easy spec-
ification of controllable events. Also, while in our applica-
tion the quantified atomic propositions encode the strategies,
and hence the restriction of their values to {0, 1} is natural,
it is interesting to study QCTL*[F], where quantified atomic
propositions may take values in [0, 1].

Acknowledgements

Perelli thanks the support of the project “dSynMA”, funded
by the ERC under the European Union’s Horizon 2020
research and innovation programme (grant agreement No
772459). Bouyer and Markey thank the support of the ERC
Project EQualIS (308087).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Alechina er al., 2010] N. Alechina, B. Logan, N. Nguyen Hoang,
and A. Rakib. Resource-bounded alternating-time temporal
logic. AAMAS’10, p. 481-488.

[Almagor et al., 2014] S. Almagor, U. Boker, and O. Kupferman.
Discounting in LTL. T7ACAS’14, LNCS 8413, p. 424-439.
Springer.

[Almagor et al., 2016] S. Almagor, U. Boker, and O. Kupferman.
Formally reasoning about quality. JACM, 63(3):24:1-24:56.

[Almagor et al., 20171 S. Almagor, O. Kupferman, J. Ringert, and
Y. Velner. Quantitative assume guarantee synthesis. CAV’17,
LNCS 10427, p. 353-374. Springer.

[Almagor et al., 2018] S. Almagor, O. Kupferman, and G. Perelli.
Synthesis of controllable Nash equilibria in quantitative objective
games. I[JCAI'1S, p. 35-41.

[Alur et al., 2002] R. Alur, T. Henzinger, and O. Kupferman.
Alternating-time temporal logic. JACM, 49(5):672-713.

[Berthon et al., 2017] R. Berthon, B. Maubert, A. Murano, S. Ru-
bin, and M. Y. Vardi. Strategy logic with imperfect information.
LICS’17, p. 1-12.

[Boker et al., 2014] U. Boker, K. Chatterjee, T. Henzinger, and
O. Kupferman. Temporal specifications with accumulative val-
ues. ACM ToCL, 15(4):27:1-27:25.

[Bollig er al., 2012] B. Bollig, N. Decker, and M. Leucker. Fre-
quency linear-time temporal logic. TASE’12, p. 85-92. IEEE.

[Bouyer et al., 2008] P. Bouyer, U. Fahrenberg, K. G. Larsen,
N. Markey, and J. Srba. Infinite runs in weighted timed automata
with energy constraints. FORMATS 08, LNCS 5215, p. 33-47.
Springer.

[Bouyer et al., 2014] P. Bouyer, N. Markey, and R. M. Mat-
teplackel. Averaging in LTL. CONCUR’14, LNCS 8704, p. 266—
280. Springer.

[Bouyer et al., 2015] P. Bouyer, P. Gardy, and N. Markey. Weighted
strategy logic with boolean goals over one-counter games.
FSTTCS’15, LIPIcs 45, p. 69-83. LZI.

[Bouyer et al., 2019] P. Bouyer, O. Kupferman, N. Markey,
B. Maubert, A. Murano, and G. Perelli. Reasoning about qual-
ity and fuzziness of strategic behaviours. Research Report
1905.11537, arXiv.

[Brenguier er al., 2016] R. Brenguier, G. Pérez, J.-F. Raskin, and
M. Sassolas. Admissibility in quantitative graph games.
FSTTCS’ 16, LIPIcs 65, p. 42:1-42:14. LZI.

[Bruyere er al., 2014] V. Bruyere, N. Meunier, and J.-F. Raskin. Se-
cure equilibria in weighted games. CSL/LICS’ 14, p. 26:1-26:26.
ACM.

[Bulling and Goranko, 2013] N. Bulling and V. Goranko. How to
be both rich and happy: Combining quantitative and qualitative
strategic reasoning about multi-player games (extended abstract).
SR’13, EPTCS 112, p. 33-41.

[Chatterjee er al., 2006] K. Chatterjee, T. Henzinger, and M. Jur-
dzinski. Games with secure equilibria. TCS, 365(1-2):67-82.
[Chockler et al., 2006] H. Chockler, O. Kupferman, and M. Y.
Vardi. Coverage metrics for formal verification. STTT, 8(4-

5):373-386.

[Cole er al., 2006] R. Cole, Y. Dodis, and T. Roughgarden. How
much can taxes help selfish routing? JCSS, 72(3):444—467.

[Della Monica and Murano, 2018] D. Della Monica and A. Mu-

rano. Parity-energy ATL for qualitative and quantitative reason-
ing in MAS. AAMAS’18, p. 1441-1449.

1594

[Ehrenfeucht and Mycielski, 1979] A. Ehrenfeucht and J. Myciel-
ski. Positional strategies for mean payoff games. IJGT, 8(2):109-
113.

[Emerson and Halpern, 1986] A. Emerson and J. Halpern. ”Some-
times” and not never” revisited: On branching versus linear time
temporal logic. JACM, 33(1):151-178.

[Emerson and Jutla, 1991] A.Emerson and C. Jutla. Tree automata,
mu-calculus and determinacy. FOCS’91, p. 368-377. IEEE.

[Emerson and Lei, 1987] E. A. Emerson and C.-L. Lei. Modalities
for model checking: Branching time logic strikes back. SCP,
8:275-306.

[Fijalkow er al., 2018] N. Fijalkow, B. Maubert, A. Murano, and
S. Rubin. Quantifying bounds in strategy logic. CSL’IS,
LIPIcs 119, p. 23:1-23:23. LZI.

[Frigeri er al., 2014] A. Frigeri, L. Pasquale, and P. Spoletini.
Fuzzy time in linear temporal logic. ACM ToCL, 15(4):30.

[Gutierrez et al., 20171 J. Gutierrez, A. Murano, G. Perelli, S. Ru-
bin, and M. Wooldridge. Nash equilibria in concurrent games
with lexicographic preferences. IJCAI’I7, p. 1067-1073.

[Hartline and Roughgarden, 2008] J. D. Hartline and T. Roughgar-
den. Optimal mechanism design and money burning. STOC’08,
p- 75-84.

[Jamroga et al., 2016] W. Jamroga, B. Konikowska, and
W. Penczek. Multi-valued verification of strategic ability.
AAMAS’16, p. 1180-1189.

[Kupferman and Vardi, 2005] O. Kupferman and M. Y. Vardi.
Safraless decision procedures. FOCS’05, p. 531-540.

[Kupferman et al., 20001 O. Kupferman, M. Y. Vardi, and
P. Wolper. An automata-theoretic approach to branching-time
model-checking. J.JACM, 47(2):312-360.

[Kupferman et al., 2016] O. Kupferman, G. Perelli, and M. Y.
Vardi. Synthesis with rational environments. Ann. Math. Artif.
Intell., 78(1):3-20.

[Lamine and Kabanza, 2000] K. Lamine and F. Kabanza. Us-
ing fuzzy temporal logic for monitoring behavior-based mobile
robots. Robotics and Applications, p. 116—-121.

[Laroussinie and Markey, 2014] F. Laroussinie and N. Markey.
Quantified CTL: Expressiveness and complexity. LMCS, 10(4).

[Laroussinie and Markey, 2015] F. Laroussinie and N. Markey.
Augmenting ATL with strategy contexts. I.&C., 245:98-123.

[Laroussinie et al., 2006] F. Laroussinie, N. Markey, and G. Or-
eiby. Model-checking timed ATL for durational concurrent game
structures. FORMATS 06, LNCS 4202, p. 245-259. Springer.

[Mogavero et al., 2014] F. Mogavero, A. Murano, G. Perelli, and
M. Y. Vardi. Reasoning about strategies: On the model-checking
problem. ACM ToCL, 15(4):34:1-34:47.

[Nisan ef al., 20071 N. Nisan, T. Roughgarden, E. Tardos, and
V. Vazirani. Algorithmic Game Theory. CUP.

[Pnueli and Rosner, 1989] A. Pnueli and R. Rosner. On the synthe-
sis of a reactive module. POPL’89, p. 179-190.

[Pnueli, 1981] A. Pnueli. The temporal semantics of concurrent
programs. TCS, 13:45-60.

[Souza and Rego, 2016] F. Souza and L. C. Rego. Mixed equilib-
rium in 2 X 2 normal form games: when burning money is ratio-
nal. Pesqui. Oper., 36(1):81-99.

[Vester, 2015] S. Vester. On the complexity of model-checking

branching and alternating-time temporal logics in one-counter
systems. ATVA’15, LNCS 9364, p. 361-377. Springer.

