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Abstract

We propose that modern existential rule reason-
ers can enable fully declarative implementations of
rule-based inference methods in knowledge repre-
sentation, in the sense that a particular calculus is
captured by a fixed set of rules that can be evaluated
on varying inputs (encoded as facts). We introduce
Datalog(S) — Datalog with support for sets — as a
surface language for such translations, and show
that it can be captured in a decidable fragment of
existential rules. We then implement several known
inference methods in Datalog(S), and empirically
show that an existing existential rule reasoner can
thus be used to solve practical reasoning problems.

1 Introduction

Rules of inference are of fundamental importance in logi-
cal reasoning, and the central building block of many proof
systems, including tableaux-based model constructions, res-
olution calculi, type-theoretic procedures [Ortiz et al., 2010],
and “consequence-driven” approaches in ontological reason-
ing [Kazakov, 2009]. Indeed, rule-based calculi of logical
deduction are as old as formal logic itself.

More recently, rules have also seen much renewed interest
as a declarative computing paradigm, and many rule-based
reasoning systems have been presented [Benedikt et al., 2014;
Geerts et al., 2014; Aref et al., 2015; Baget et al., 2015;
Nenov et al., 2015; Urbani et al., 2016]. At the core of these
implementations is the simple rule language Datalog, which
is often extended with support for existential quantifiers or
function terms in the consequences of rules. While this makes
reasoning undecidable in general, there are many fast and
scalable reasoners for cases where a finite model can be con-
structed using some variant of the chase procedure [Benedikt
et al., 2017; Urbani et al., 2018]. It seems natural to exploit
such systems to solve reasoning tasks in other areas of logic.

This can be achieved by translating theories of a relevant
logic into sets of rules that entail equivalent consequences.
This idea has been applied, e.g., to description logics [Ortiz
et al., 2010] and guarded logics [Ahmetaj et al., 2018]. Many
such approaches do not play to the strengths of modern rule
engines, though, since they create exponentially many (i.e.,
millions of) rules [Carral et al., 2018] or rules with linearly
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many (i.e., thousands of) variables [Ahmetaj er al., 2018]. A
more promising approach might be to “implement” reasoning
algorithms in a fixed (small) set of logical rules that operates
on instances of logical reasoning tasks encoded as (large) sets
of input facts. This is closer to the typical presentation of
rule-based deduction calculi, and was already proposed for
rule-based implementations of some logics [Krotzsch, 2011].

Unfortunately, this approach is severely limited by the low
data complexity of known rule languages, which is PTIME
not just for Datalog, but for every previously proposed decid-
able existential rule language that guarantees the chase to be
finite [Krotzsch et al., 2019]. All of the aforementioned tools
can only be used if the chase is finite;! otherwise reasoning
will not terminate. We seem to be faced with a big dilemma:
either to deal with large rule sets (in terms of rule number or
size), or to be content with solving polynomial problems.

Surprisingly, however, the limits of decidable criteria that
guarantee chase termination do not apply to the chase algo-
rithm as such: Krétzsch et al. recently showed that, in theory,
even current rule engines can perform complex computations
based on a fixed “program” of rules while still being guaran-
teed to terminate with a finite chase [2019].

In this paper, we show that this theoretical insight can be
turned into a practical approach for solving a wide range of
logical reasoning tasks with existing rule engines. To unlock
the necessary expressive power while guaranteeing termina-
tion, we need rather complex existential rule sets that would
be difficult to adapt for implementing further reasoning tasks.
We overcome this problem by proposing a more convenient
intermediate language, Datalog(S), which extends Datalog
with relationships over sets of constants (Section 3). This
is inspired by the Datalog® language of Ortiz et al. [2010],
but differs in that the available sets are not fixed as part of
the schema, but can grow with the size of the input: Dat-
alog(S) achieves EXPTIME-complete data complexity. We
show that every Datalog(S) program can be translated poly-
nomially into a set of existential rules for which a previously
proposed (and implemented) variant of the standard chase
algorithm terminates in exponential time (Section 4). No-
tably, the translated rule set does not fall into any known frag-

"Even though weakly (frontier) guarded rules are a decidable
existential rule fragment with EXPTIME-complete data complexity
[Gottlob er al., 20141, the chase does not terminate for this language,
and no reasoners have been implemented for this fragment.
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ment that guarantees chase termination, and we believe that it
would be difficult to design an appropriate new fragment that
is nearly as easy to use as Datalog(S).

We illustrate the capabilities of this new approach by im-
plementing two previously proposed reasoning algorithms in
Datalog(S): a consequence-based algorithm for description
logics (Section 5), and a type-based algorithm for guarded
Horn logic (Section 6). Moreover, we demonstrate practical
applicability for the former by executing it on an existing rule
engine to classify several real-world ontologies (Section 7).
Details we had to omit are found online [Carral ef al., 2019].

2 Preliminaries

We consider a signature based on mutually disjoint, count-
ably infinite sets of constants C, variables V, nulls N, and
predicates P. We assign some arity ar(p) > Otoallp € P.
A term is an element in T = C UV UN. We abbreviate lists
of terms 1, . .., t, as ¢, and treat such lists as sets. An atom
is a formula p(t) with p € P,# C T, and ar(p) = |].

We write ¢[Z] to indicate that Z is the set of all free vari-
ables in the formula . An (existential) rule is a null-free
formula of the form VZ, Z.8[Z, Z] — 3y.n[Z, y] where Z and
i/ are disjoint lists of variables, 3 (the body) and 7 (the head)
are conjunctions of atoms, and 7 contains at least one atom.
Often, we omit universal quantifiers from rules. A fact is a
variable-free rule with an empty body and a single atom in
the head. A rule is generating if it contains existential vari-
ables, and non-generating (or Datalog) otherwise.

For a formula ¢ and a substitution 0 : V. — C U N, let
(o be the expression obtained by replacing all unbound oc-
currences of all x € V in ¢ by o(z) if o is defined for x.

Definition 1. Consider a rule p = B[Z,Z] — 3y.n, an atom
set A, and a substitution o. The rule and substitution (p, o)
is applicable to A if (i) the domain of o is U Z, (ii) Bo C A,
and (iii) no’ € A for all 7' O o. Then, p(A) is the superset
of A which, for all tuples {p, o) applicable to A, contains the
facts inno’ C p(A) with o’ O o a substitution mapping each
y € i to a fresh null. For a rule set R and an atom set A,
let R(A) = U, er p(A). Let Ry and R be the sets of all
non-generating and generating rules in ‘'R, respectively; and
let RY(A) be the superset of A with Ry(R%(A)) = RY(A).
Definition 2 (Datalog-First Chase). For a rule set R, let
Ro =0, Ri, ... be the sequence with R; = R3(R(Ri-1))
foralli > 1. The chase of R is the set chase(R) = J;~; Ri.
The chase of R terminates if R_1 = Ry, for some k > 1.

Note that the Datalog-first chase is not a radically different
chase method but simply a specific type of rule-application
strategy for the standard chase (also referred to as restricted).

Fact 1. A fact ¢ is entailed by a rule set R iff ¢ € chase(R).

This follows from the fact that the standard chase produces
a universal model under all strategies [Deutsch et al., 2008].

3 Datalog with Sets

We now introduce the syntax and semantics of a language
that extends Datalog with a set datatype that can represent
collections of (non-set) elements. It is defined as a sorted

logic with built-in set-related functions and predicates of the
expected semantics. This approach is close in spirit to the
extension of Datalog with complex values [Abiteboul er al.,
1994] for the special case with only two sorts (called dom
and {dom} by Abiteboul et al.), no negation, and a restricted
choice of complex value operators.

We consider two sorts: a sort of objects obj and a sort of
sets set. A signature of Datalog(S) is based on countably in-
finite sets of object constants Copj, object variables V opj,
set variables 'V get, and predicate names P including special
predicates {€,C} C P. The signature of a predicate symbol
p is a tuple sig(p) = (S1,...,Sn) of sorts, with sig(e) =
(obj, set) and sig(C) = (set,set). An object term is any
object constant or object variable. A set term is any set vari-
able, the special constant @, an expression {¢} where ¢ is an
object term, or, recursively, an expression (77 U Ty) where
T, T5 are set terms. We consider {¢1,...,%,} an abbrevia-
tion for ({t1}U ({t2}U...U{¢t,}...)) and omit parentheses
for U. Unless otherwise stated, we use lower-case letters for
object terms and upper-case letters for set terms.

An atom is an expression p(t1,...,t,) where p € P with
sig(p) = (S1,...,Sn) and t; is a term of sort S;. We write
e(t,S)ast € S, and C(S1,52) as S; C Sa. A Datalog(S)
rule is an expression of the form By A...ABy — Hi A... A
Hj., with atoms By, ..., By (the body) and Hy, ..., Hy (the
head), and where we require that:

e every object variable in the head occurs in a body atom,

e every set variable in the rule occurs in a body atom that
uses some non-special predicate p € P\ {e, C}, and

o the head does not use a special predicate.

A Datalog(S) program is a set of Datalog(S) rules. We admit
rules with empty body for representing Datalog(S) facts.

Example 1. Before defining Datalog(S) semantics formally,
we give an example that can be understood with an intuitive
reading of Datalog(S) rules. Consider input facts forming
a chain succ(1,2), succ(2,3),. .., succ( — 1,1), starting at
the constant 1 (the other constant names are immaterial). The
following program entails facts for binary predicate n that
form an n-chain of length 2¢:

full(0) n(@,{1}) parts({1},1,0) (1)
n(U, V) A parts(V,z, V') An(V', W) o

— n(V,{z} UW’) A parts({z} UW' 2, W)
n(U, V) A parts(V,z, V') A full(V") A suce(x,y) 3)

— n(V, {y}) A parts({y}, y, D) A full(V)

Elements of the n-chain are represented by sets, ordered as
if each input constant in the succ-chain defines one bit of a
binary number. full(S) means that the represented number
is of the form 0---01---1; parts(S,xz,S’) means that the
number S has its most significant bit at position x from the
left, and that S = {x} U S’. The three facts (1) start the
chain, and the two other rules define the next n-successor for
when the most significant bit stays the same (2), or moves to
the left (3), respectively.
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Using an exponentially long chain structure, it is easy to
simulate exponential time deterministic Turing machine com-
putations in Datalog [Dantsin et al., 2001]. Based on Exam-
ple 1, we can apply a similar construction to Datalog(S) to
obtain the following result, which should be contrasted to the
polynomial data complexity of regular Datalog:

Lemma 1. There is a fixed Datalog(S) program without spe-
cial predicates € and C for which fact entailment checking is
EXPTIME-hard with respect to the size of the input data.

The formal semantics of Datalog(S) codifies the intuitive
idea of the set functions and relations. An interpretation
T of Datalog(S) is defined by an object domain obj” and
an interpretation function -Z. The set domain set® of T is
the powerset of ob j*. The interpretation maps non-special
predicates p of signature sig(p) = (S1,...,Sy) to relations
pf C ST x ... x SZ, and special predicates as expected:
el ={(8,I) |6 el eset’}and ¥ = {(I',I5) | I} C
I'; € setl}. Object constants ¢ are mapped to elements
& € obj’. A variable assignment Z is a function mapping
object variables x to elements Z(z) € ob %, and set vari-
ables Y to sets Z(Y') € set”. Given an arbitrary (set or ob-
ject) term ¢, we define t7+% recursively as follows: ¢2'% = ¢Z
for ¢ € Cobj, 272 = Z(z) for ¥ € Vobj U Vget, 072 = (),
{s}5Z = {sTZ},and (81 U $p) T2 = 577 U 512,

An interpretation Z and variable assignment Z satisfy
an atom p(ty,...,t,), written Z,Z = p(t1,...,t), if
<t{’z, .. 52y € pl. T satisfies a Datalog(S) rule By A
...\ By — Hy A ...\ Hy if, for all variable assignments Z
for Z suchthat Z, Z |= B; forall 1 < i < ¢, we also have
Z,Z = Hjforalll < j < k. A program is satisfied if all of
its rules are. A variable-free atom A is a logical consequence
of a program P if Z = A for all Z with Z |= P.

Since we require object and set variables to occur in (non-
special) body predicates, it is easy to see that rules are only
applicable to variable assignments that use values that corre-
spond to (sets of) constants in the given input facts. A Dat-
alog(S) program is therefore equivalent to its finite ground-
ing, obtained by replacing variables by variable-free terms
that represent all possible constants and sets of constants, re-
spectively. This grounding results in an exponentially large
propositional Horn theory for which reasoning tasks can be
solved polynomially. Together with Lemma 1, we obtain:

Theorem 1. Checking fact entailment for Datalog(S) is
EXPTIME-complete for both data and combined complexity.

4 From Datalog(S) to Existential Rules

We now show how to polynomially translate Datalog(S) into
existential rules while preserving (suitably translated) conse-
quences. The heart of our approach is the following set Rsy
of existential rules (4)—(6), which can represent sets by nulls:
— Jv.empty(v) A set(v) 4)

getSU (z,u) — Jv.SU(x,u,v) A 5)

SU (z,v,v) A set(v)
SU(x,u,v) A SU(y,u,u) = SU(y,v,v) 6)

Intuitively, set(s) means “s is a set” and empty(s) means
“s = 0. SU is for Singleton Union: SU(a,s,t) means
“{a} Us = ¢ and getSU(a,s) means “{a} U s should
be computed.” Note that all terms are object terms in this
one-sorted logic. Given an atom set 4 and a constant or
null s € C U N, we therefore define the corresponding set
[sJ]a ={a € CUN | SU(a,s,s) € A}. We will combine
Rsuy with additional non-generating rules, but some restric-
tions are needed to guarantee correctness.

Definition 3. A type assignment « is a function that maps
each predicate p € P to a tuple a(p) = (S1,...,Sn) with
n = ar(p) and S; € {obj,set} for 1 < i < n, and where we
require that a(empty) = (set), a(SU) = (obj, set, set),
and a(getSU) = (obj, set). We say position i in p is of type
S;. A non-generating rule p is admissible if there is a type
assignment such that:

(i) constants in p only occur on positions of type obj,
(ii) variables in p only occur on positions of a single type,
(iii) empty and SU do not occur in the head of p, and
(iv) getSU does not occur in the body of p.
A set of rules (or facts) is admissible if all of its elements are.

Example 2. Rsy already suffices to simulate some Data-
log(S) programs using further admissible rules. For example,
rule (2) can be expressed with the following admissible rules,
where the type assignment is as defined by the signature of
the corresponding Datalog(S) predicates:

n(u,v) A parts(v, z,v") A n(v',w") — getSU (z,w") (7)

n(u,v) A parts(v,z,v") A n(v',w') A SU(z,w',w) ®

— n(v,w) A parts(w, z,w")

The original rule is split into two: (7) requests the creation of
an element to represent the set “{x}Uw’” by rule (5), and (8)
uses this new element to instantiate the original head atoms.

Example 2 illustrates how admissible rules can “call” the
rules in Rsy to provision “sets” as required. The following
main correctness result confirms that this works as expected:

Theorem 2. For every admissible set of non-generating rules
R, the chase C = chase(R U Rsy) is such that

(a) empty(s) € C implies [s]c = 0, and
(b) SU(a,s,t) € Cimplies {a} U [s]c = [t]c.
If n is the size of R, then the size of C is in O(2"1°8™).

Proof. 1t is clear that rule (4) is applied exactly once, irre-
spective of R, introducing some null ng for v. By admissi-
bility, the only rule heads with SU in R U Rgy are in (5) and
(6), and an easy induction shows that ng can never occur in
such facts. Hence, [ng]c = 0, showing claim (a).

For (b), first note that the claim follows from the definition
of [t]¢ if s = t. Facts SU (a, s, t) with s # ¢ are only derived
by (5), and each null ¢ occurs in at most one such fact. By the
same rule, we get SU(a,t,t), showing a € [t]c. If s = ny,
then rule (6) cannot produce further consequences, and we
get [t]e = {a} as required. If s # ngp, then we have a fact
SU(b, s, s) for each b € [s]c by definition of [s]c. Rule (6)
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getU (v, w) A empty(v) — U(v,w,w) ©)
getU (v, w) A SU(z,v_,v) — getSU (z,w) (10)
getU (v, w) A SU(xz,v_,v) A

SU(x,w,wy) — getU(v_,wy) (i

getU(v,w) A SU(z,v_,v) A (12)
SU(x,w,wy) A U(v—,wy,u) = Uv,w,u)

SU(z,u,u) — in(z,u) (13)

set(v) A set(w) — ckSub(v,v,w)  (14)

ckSub(u, v, w) A (15)
SU(z,u_,u) Ain(z,w) = ckSub(u_,v, w)

ckSub(u, v, w) A empty(u) — sub(v,w) (16)

Figure 1: Rules for arbitrary unions, membership, and containment
(subscripts +/— are part of variable names; they hint at sets with
additional/fewer elements)

therefore derives SU(b,t,t), i.e., b € [t]c. No other facts
SU (b, t,t) can be derived, therefore [t]c = {a} U [s]c.

For the size of C, note that, all facts of the form
SU(a,s,s) € C are derived either when introducing s in
(5), or immediately afterwards when closing under non-
generating rule (6) (which is prioritised in the Datalog-first
chase). Therefore, whenever (5) is applied with a sub-
stitution ¢ to introduce a fresh null n = o(v), all facts
SU(b,o(u),o(u)) for b € [o(u)]c were already derived.
Since (5) is applicable, o(z) ¢ [o(u)]c. Let Cr be the
finite set of constants that occur in R. By admissibility
(and a simple induction), o(z) € Cg, and by claim (b),
[0(u)]e € [n]e € 2C%. With £ = |Cg|, there are at most
0! < 1¢ € O(2¢1°8%) possible sequences of applications of
rule (5). This bounds the number of terms in the chase, and
hence the number of derived facts, as claimed. O

Note that the proof relies on the prioritisation of rule (6) in
the Datalog-first chase. However, by adapting a technique by
Krotzsch et al. [2019, Proof of Theorem 13], one can also ob-
tain a (fixed) rule set that achieves the same termination and
worst-case complexity properties for the standard chase. We
omit this here as it makes rules more complicated and pre-
sumably less efficient in practice (since it artificially prevents
the parallel application of rule (6) to all set elements).

As the proof of Theorem 2 suggests, each set might be
represented by several elements in the simulation via Rgy.
The elements generated by Rsy correspond to sequences of
unions of mutually distinct singleton sets, and several se-
quences might result in the same set. This has to be taken
into account when simulating C and when performing joins
over set terms. Singleton sets and the empty set have at most
one representative.

Rsu can only simulate the empty set and unions with sin-
gletons. Arbitrary unions are supported by the rules (9)—-(12)
in Figure 1. Unions are constructed recursively by adding sin-
gle elements from the first to the second input set. Rule (9)
defines the base case. The other three rules split off a single
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element, use Rsy to construct unions with singletons, and use
the output to define the overall union. The rules are admis-
sible for the intuitive type assignment a(getU) = (set, set)
and a(U) = (set, set, set).

As the last ingredient, the rules (13)—(16) in Figure 1 de-
fine predicates in and sub that capture the built-in Datalog(S)
predicates € and C, respectively. The complicated part is
sub: facts of the form ckSub(u,v,w) (“check subset”) ex-
press “v \ u C w.” We initialise this for all pairs of sets (14),
and recursively compare elements of the first argument (15)
until reaching the empty set (16).

This completes the required set of auxiliary rules. Be-
fore specifying the intended translation, we slightly nor-
malise Datalog(S) rules. Let S; = S5 be a shortcut for
S1 C Sy ASy; C S;. First, we replace every set term of
the form S; U S5 in a non-special predicate in the body with
a fresh set variable S, and we add body atoms S = S7 U Ss.
Second, as long as a set variable S occurs more than once in
a non-special predicate in the body of a rule, we replace one
of these occurrences by a fresh variable S’ and add S = S’ to
the body. It is easy to see that these transformations preserve
semantics. Rules of the resulting form are called normalised.
Normalisation ensures that set equality checks are performed
using sub.

Now consider a normalised Datalog(S) rule p. We will
translate it to a set ER(p) of existential rules. For every
set term S, let v(S) be a fresh (non-sorted) variable. Let
S1,...,5k be a sequence of all set terms in p that are nei-
ther variables nor (), such that no sub-term of any S; occurs
to its right. For each term S;, we define atoms «; and f3;:

o if S; = {t} then a; = getSU(t,v(0)) and B; =

SU(tv ’U(@), U(Sl))’
o if S; = T1 U Ty, then o; = getU(v(Th),v(T2)) and
Bi = U(’U(Tl), U(Tg), ’U(Sl))
Finally, set v = empty(v(0)), and v;11 = 7v; A Bj41 for all
0 < j < k. Now rule p = ¢ — 9 is translated into the set
ER(p) of the following k + 1 rules:

(1) foreach0 <i < k,arule ' Avy; — a;i1,
(2) arule ' Ay, — Y,
where ' and ¢’ are obtained from ¢ and 1, respectively, by

replacing all atoms ¢ € S by in(t, S), all atoms S C S’ by
sub(S,S’), and all set terms S by v(S).
Example 3. Ler p = p(a,S,T,{a} US) — q(SUT). Its
normalisation p' has the body ¢ = p(a,S,T,R) N (R C
{a} US) A ({a} US C R). A possible order of set terms
is S1 = {a}, So = {a} US, S5 = SUT. The translated
body is ¢’ = p(a,v(S),v(T),v(R)) A sub(v(R),v(S2)) A
sub(v(S2),v(R)). We obtain the following rules in ER(p'):
o' N empty(v(0)) — getSU (a,v(0)) (17)
... ANSU(a,v(0),v(S1)) = getU(v(S1),v(S)) (18)
A U(v({a}), v(9),v(S2)) = getU(v(S),v(T)) (19)
A UW(S),0(T),v(S3)) = q(v(Ss)) (20)
where each “...” abbreviates the body of the previous rule.

Definition 4. For a Datalog(S) program P, let ER(P) be the
union of all rule sets ER(p) for p € P and the rules (4)—(6)
and (9)—(16).



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

The following result is immediate from this definition:

Theorem 3. For a Datalog(S) program P, the size of ER(P)
is polynomial in the size of P.

Theorem 4. For a Datalog(S) program P and Datalog(S)
fact o, P |= aif and only if ER(P) |= ER(«). Moreover, the
Datalog-first chase decides ER(P) |= ER(«) in EXPTIME.

Proof sketch. The correctness of the extended set of rules
(9)—(16) can be shown with a suitable extension of Theo-
rem 2. We can restrict the notion of admissibility to also
avoid the misuse of auxiliary predicates in these rules while
requiring the expected type signatures. The correctness of the
translation is easy; especially the translated rules are admis-
sible when using the Datalog(S) signatures to define type sig-
natures. The size bound on the chase carries over from Theo-
rem 2, which establishes the second part of the claim. O

Together with Theorem 1, this correctness result implies
that fact entailment is also EXPTIME-complete w.r.t. data
complexity for the sets of rules obtained from our transfor-
mation. Therefore, these transformed sets are not covered by
any decidable fragment of existential rules of P (or lower)
data complexity, including previously proposed criteria that
ensure termination of the skolem chase [Cuenca Grau et al.,
2013] and Datalog-first chase [Carral et al., 2017], as well as
first-order rewritability [Baget ef al., 2011]. Weakly (frontier)
guarded rules are one of the few fragments with similarly high
data complexity [Gottlob er al., 2014], but already the rules
in Figure 1 are not weakly frontier guarded.

S Description Logics Reasoning

To demonstrate the utility of our approach, we look at de-
scription logics (DLs) first. DLs are highly expressive logics
with many applications, and for which numerous reasoning
procedures have been proposed [Baader e al., 2007]. Among
the many DLs that give rise to EXPTIME-complete reasoning
tasks, we select Horn-ALC as a comparatively simple case
that allows us to focus on our main ideas.”

DL is based on mutually disjoint sets of concept names
N¢, role names Nr, and individual names N1. We define
Horn-ALC using axioms in normalised form [Krétzsch et al.,
2013]. Given A, B,C € N¢, R € Ng, and a,b € Ny, the
following are axioms of Horn- ALC in normal form:

A(a) (1) TCO (24 ACL 27)
R(a,b) (22) 3JRACC (25 ALCVRC (28)
ACC (23) ANBCC (26) AC3RC (29

Axioms (21) and (22), called class assertions, respectively
role assertions, are ABox axioms, corresponding to unary and
binary facts. The others are TBox axioms, with D C E repre-
senting a first-order formula Vz.[D] — [E], where we define
[A] = A(z). [B] = B(x), BR.C] = 3y.R(x,y) A C(y),
VR.C] = Vy.R(z,y) — C(y), and [AN B] = A(x) A B(x).
T represents truth, and L falsity.

2Qur use of Horn DLs is not related to the fact that existential
rules are in Horn logic. Rule-based reasoning methods for non-Horn
DLs, e.g., from [Siman&ik er al., 2011], could also be implemented.
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Classification is the task of computing all axioms of form
(23) that are entailed by an ontology—i.e. a DL axiom set.
Kazakov [2009] proposes a consequence-driven classification
method for Horn-ALC. Figure 2 (left) shows the correspond-
ing rules of inference in the version of Simanéik et al. [2011,
Table 2]. Given a set 7 of TBox axioms, the rules produce
inferences of the form H C B and H C dR.K where H, K
are conjunctions of elements in Nc U {_L, T} (viewed as sets
when convenient). A rule is applicable if its pre- (above the
line) and side conditions (on the right) are satisfied; then it
derives the conclusion (below the line). A conjunction H is
active if it is either defined to be active initially, or occurs in
some inference, and rules (R4 ) and (Rp) are restricted to such
conjunctions. For classification, one initially sets all single-
ton conjunctions (i.e., concept names) to be active.

The right of Figure 2 shows the corresponding Datalog(S)
rules. It is easy to see how each rule corresponds to the
inference rule to its left. We represent inferences by predi-
cates SC and Ex with sig(SC) = (set, obj) and sig(Ez) =
(set, obj, set), respectively. Predicates axc, axnc, azcy,
ar3c, and axc3 encode Horn-ALC axioms as facts. All el-
ements of Nc U Ng correspond to object constants in Dat-
alog(S), and conjunctions are represented as sets. Only rules
(R;) and (Ry) can activate new conjunctions, as recorded by
predicate Act. To initialise the computation, we need to acti-
vate all singleton sets, which can be done by rules such as

azac(a,r,b) — Act({a}) N Act({d}) (30)

and analogous rules for all other types of axioms. It is obvi-
ous that this translation is faithful and therefore leads to an
ExXPTIME-complete (hence worst-case optimal) chase-based
classification algorithm for Horn- ALC.

We also note that the translation exhibits similar pay-as-
you-go characteristics as the original approach. In particular,
in £L-type description logics, which do not include axioms
of type (28), only a linear number of singleton sets is needed,
and the chase likewise terminates in polynomial time. It is
an advantage of our approach that it can be used to make an
existential rule engine perform essentially the same derivation
steps as the original abstract inference-rule calculus.

6 Guarded Rules Reasoning

We now apply our approach to reasoning with guarded exis-
tential rules (where all universally quantified variables ap-
pear in a single body atom). Ahmetaj et al. [2018] give
an entailment-preserving translation from guarded rules with
bounded predicate arity & to a polynomial Datalog program.
However, they require predicate arities in the order of 2°.

Their translation actually simulates sets in Datalog. For
maximal arity a, we consider the set A of all atoms that can
be formed from a predicate in the guarded rules and generic
variables z1,...,xs. A type is a subset of A, represented in
Datalog by vectors of |.A| constants 0 or 1. Datalog(S) rules
are obtained, in essence, by replacing these vectors by sets,
where we use constants c,, for each o € A.

The rules frequently test for the absence of an element in
a set. While not in Datalog(S), we can define this using an
inequality predicate % (even without logical inequality, this
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Act(H)Nae H— SC(H,a)
Act(H) A azc(eT,c) — SC(H,c)
SC(H,a1) A azc(a1,c) = SC(H,c)
a1) N SC(H,az2) A aznc (a1, a2,¢) = SC(H,c)
SC(H,a) A axc3(a,r,b) — Ex(H,r, {b})
A Act({b})

Ex(H,r,K) A SC(K,a) A azac(a,r,b) - SC(H,b)

Ex(H,r, K)NSC(K,c1 ) — SC(H,c,)

Ex(H,r,K) A SC(H,a) A azcy(a,r,b) = Ex(H,r, {b} U K)

A Act({b} U K)

Figure 2: Horn- ALC inference rules by Simancéik et al. (left) and corresponding Datalog(S) program (right), where ¢t and ¢, are constants,
lower-case letters are object variables, and upper-case letters are set variables

can be axiomatised for constants; this suffices). We can now
derive ckNotin(u,a,u) whenever a rule needs to know if
“a ¢ u”, and then apply the following rules:

ckNotin(u, z,w) A
SU(x,u_,u) Nz % z — ckNotin(u_, z, w)
ckNotin(u, z,w) A empty(u) — notin(z, w)

(€29}
(32)

Confirmed non-memberships are recorded as notin(a,u).
The approach resembles our computation of sub in Figure 1.

With this additional feature, most rules of Ahmetaj et al.
have a straightforward translation to Datalog(S). Their rules
are organised in groups (I) to (IX), where (II) and (VI) only
matter in the disjunctive case. Even the remaining rules are
too many to specify, but we explain the key steps. Rules (I)
initialise non-set predicates of arity < a, and require no mod-
ification. The rules in (IIT) define all types (vectors) and es-
tablish a linear order on them. This can be achieved in Data-
log(S) along the lines of Example 1. Rules (IV) mark types
based on the given guarded rules. Using a simple decomposi-
tion of rule bodies, we can assume that all guarded rules have
the form p = A A B — Jy.H. Then, for each mapping h
from rule variables to {z1,...,z;}, we define a rule:

Type(U) A chay€U A cnpy€U A cpygU — Marked(U)

If we assume that rules restrict to a common set of variables,
there are only polynomially many possible mappings i due to
the bounded arity. Therefore, instead of adding many rules,
we can also encode those mappings and the rule p in Data-
log(S) facts, and use a single Datalog(S) rule instead.

The rules (V) are again very close to Datalog(S). They use
predicates such as MarkedOne, 5, named using rules ¢ and
certain mappings h. As in (IV), we can remove the depen-
dence on these input-related parts by representing rules and
mappings as elements in the facts, and adding two additional
parameters to MarkedOne to refer to them. Note that side
conditions such as “R(Z) € A with & € h(vars(0))” can
simply be precomputed and stored as facts.
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Rules (VII) highlight some elements in types using a spe-
cial constant 2 instead of 1, as in

Marked (1,0, 0) A Marked(u, 1,v) — Marked(, 2, v)
We achieve this adding another constant d,, for each o € A:
Marked(X) A ca, ¢ X N Marked(X U {ca, })
— Marked(X U ({cq, } U{da,}})

Such rules also depend on the given guarded rules that define
A, but this dependence can easily be moved to the facts by
encoding A there. Rules (VIII) define Horn types as those
missing exactly one atom. We can build such types itera-
tively, so as to avoid the explicit mentioning of all elements
in one rule. The remaining rules are also easy to express. Fi-
nally, rules (IX) infer entailed facts from marked Horn types
by removing elements from the type sets iteratively. Instead
of removing elements, we can simply iterate by remembering
the current position in an additional parameter.

By these transformations, we can obtain a Datalog(S) pro-
gram that captures the original Datalog program in a polyno-
mial number of rules that each use only a bounded number
of variables and atoms (based on the arity a). If we further
encode guarded rules, atoms, and mappings in Datalog(S)
facts as indicated, we obtain a fixed Datalog(S) program that
can reason on arbitrary guarded existential rules (encoded as
facts), depending only on the signature of relevant predicates.
Applying Theorem 4, we obtain a similarly small existential
rule set for which the Datalog-first chase terminates:
Theorem 5. For any fixed finite set of predicates P with max-
imal arity a, there is a set of existential rules AOSp that

1. consists of polynomially many rules (in the size of P),

2. each with bounded number of atoms (independent of P),
3. using predicates of arity bounded by max(a, 3), and

4. where chase(AOSp U F) is exponential for every set of
facts F, such that

every set of guarded existential rules R over P can be trans-
lated into a polynomial set of facts Fr such that AOSpUFgr
and R entail the same ground facts over P.
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ID #Ax. #Set #SC  #FEx VLog (sec)
00040 223K 2K 1051K 334K 432
00048 142K 19 718K 171K 387
00477 318K 0 162K 167K 1
00533 159K 0 965K 351K 132
00786 152K 12K 2283K 978K 549

Figure 3: Ontologies and results for classification (A) showing: ax-
iom count; number of non-singleton “set terms” introduced (#Set);
number of SC and Ex facts derived; reasoning time in VLog

|
sec sec

10° | Reactome 4

| UOBM
103 E

.| 1 §
10° | i el

10! 10t

‘ 10°
1.7M 3.1M 4.4M 1.9M 4M 5.9M
Number of assertions Number of assertions

10°

Figure 4: Experimental results for class retrieval (B) in VLog
(pink/grey) and Konclude (black); note the log scale

7 Evaluation

We conducted two experiments: (A) compute all conse-
quences of the calculus in Figure 2, and (B) compute all en-
tailed axioms of type (21) (class retrieval). All experiments
where run on a MacBookPro (2.4GHz Intel Core i5, 8GB
RAM). The rule engine VLog was used as an implementa-
tion for the Datalog-first chase [Urbani er al., 2018]. Further
evaluation details can be found in [Carral ef al., 2019].

For (A), we created a simplified rule set R¢; from the rules
in Figure 2, exploiting the fact that they do not need nor-
malisation or all Datalog(S) features [Carral et al., 2019].
We classified five large and diverse ontologies from the Ox-
ford Ontology Repository:3 00040 (GO x-anatomy), 00048
(GO x-taxon), 00477 (Gazetteer), 00533 (ChEBI mol. func-
tion), and 00786 (NCI). The ontology statistics and results are
shown in Figure 3. We measured pure reasoning time without
the time needed to read the input file from disk.

Columns #Set, #5C, and #FEz confirm that the ontologies
require significant reasoning effort, which is also reflected
in most VLog reasoning times. We observed that our rules
for simulating sets made only small contributions to these
times, although they dominate theoretical worst-case com-
plexity. Most time instead was taken up by the computation
of a small number of particularly slow joins — used to find
rule matches in VLog —, especially for rule (R3).

While our results show practicality, optimised DL rea-
soners are significantly faster: the DL reasoner Konclude
[Steigmiller et al., 2014] needed between 2sec (00533) and
14sec (00786) for the tasks. This is not surprising, since Kon-
clude is the leading implementation after decades of research
on how to optimise this very computation, whereas VLog has
never before been applied for such a task. Indeed, our ap-

3https://www.cs.ox.ac.uk/isg/ontologies/
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proach leads to rules that are very different from the ones
used in benchmarking rule engines today, and can therefore
guide further optimisations of existing implementations.

For experiment (B) we extend R ¢; with the following rules:

CA(a,c) ANSU(a, E,H) A
empty(E) AN SC(H,b) — CA(b,c)
RA(r,c,d) A azac(a,r,b) A CA(a,d) — CA(b,c) (34)
RA(r,c,d) A azcy(a,r,b) A CA(a,c) — CA(b,d) (35)

Predicates CA and RA encode assertions: CA(A, ¢) encodes
A(c); and RA(R,a,b) encodes R(a,b). We used several
benchmark datasets that Zhou et al. [2015] created by sam-
pling data for two large ontologies: the real-world knowledge
base Reactome, and the synthetic benchmark UOBM.

Figure 4 shows the total times (precomputing and reason-
ing) for VLog and Konclude. No times are shown in cases
where Konclude exceeded a one-hour timeout. We observe
that our approach leads to competitive performance in (B),
which might have been expected since rule engines optimise
for large datasets. In particular, VLog might benefit from its
compact in-memory presentation of large predicates, which
also helps to find rule matches more quickly if many facts
can be processed together [Urbani er al., 2016].

(33)

8 Conclusions

We introduced Datalog(S) as a convenient high-level lan-
guage for encoding complex reasoning algorithms, which can
be “compiled” into existential rules that can be successfully
executed on rule engines available today. This outlines an ap-
pealing new method for prototyping reasoning algorithms in
an elegant and declarative way, potentially even resulting in
highly scalable systems. It also indicates a promising new re-
search direction for the development of modern rule engines.
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