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Abstract
Estimating the origin-destination travel time is a
fundamental problem in many location-based ser-
vices for vehicles, e.g., ride-hailing, vehicle dis-
patching, and route planning. Recent work has
made significant progress to accuracy but they
largely rely on GPS traces which are too coarse to
model many personalized driving events. In this
paper, we propose Customized Travel Time Esti-
mation (CTTE) that fuses GPS traces, smartphone
inertial data, and road network within a deep re-
current neural network. It constructs a link traffic
database with topology representation, speed statis-
tics, and query distribution. It also uses inertial da-
ta to estimate the arbitrary phone’s pose in car, and
detects fine-grained driving events. The multi-task
learning structure predicts both traffic speed at pub-
lic level and customized travel time at personal lev-
el. Extensive experiments on two real-world traffic
datasets from Didi Chuxing have demonstrated our
effectiveness.

1 Introduction
Thanks to the explosion of sharing economy, we can easi-
ly hail a ride at anywhere and anytime in most urban cities.
Such ride-hailing platforms, e.g., Uber, Lyft, and Didi Chux-
ing, benefit our everyday travel and ensure efficient use of
vehicles. However, the riding experience differs a lot among
drivers, and sometimes they may even adopt aggressive driv-
ing behaviors to arrive earlier. To get rid of such dangerous
events1, we are curious about how much time they can save
for their specific driving behaviors.

Origin-destination travel time estimation is pivotal to many
location-based services, including ride-hailing, vehicle dis-
patching, and route planning. Focusing on individual drivers,
the central problem is the balancing art between large-scale
crowdsourced traffic data and your own driving behavior. A
solution must consider both general traffic speed at public lev-
el and your specific driving patterns at personal level.

∗Contact Author
1According to the statistics, approximately one-third of all traffic

fatalities in the US occur due to “aggressive driving.” [BMV, 2019]

Recently, a series of efforts have been undertaken to ad-
dress this problem. The route-based solutions [Sevlian and
Rajagopal, 2010; Pan et al., 2012; Wang et al., 2016b] es-
timate the driving time on each road segment and intersec-
tion, then summarize them as the origin-destination travel
time. However, precisely modeling of dynamic transporta-
tion systems is difficult, especially via sparse and low-quality
crowdsourced traffic data. The data-driven solutions [Rah-
mani et al., 2013; Wang et al., 2016a; Wang et al., 2018a;
Zhang et al., 2018; Li et al., 2018; Wang et al., 2018b] are
mainly based on machine learning techniques, which formu-
late a multivariate time series prediction problem on spatial-
temporal traffic data. However, they always lack the consid-
erations of road map topology, general traffic condition, or
individual driving patterns.

In this paper, we propose a novel multi-source heteroge-
neous data fusion approach that can predict both general traf-
fic speed on each road link and travel time for each individ-
ual, via one multi-task learning model. Such a data fusion
approach entails a series of non-trival challenges. First, how
to extract the most important features from multiple types of
traffic data. Second, how to identify aggressive driving events
for different drivers, despite noisy inertial data from smart-
phones with arbitrary poses in car. Finally, how to balance
the general traffic speed and personalized driving behaviors.

Our solution consists of several components to deal with
the above challenges, producing accurate predictions simul-
taneously for both general traffic speed and customized travel
time. It utilizes GPS trajectories, road network, query amoun-
t, and auxiliary information (e.g., weather and holiday) to
learn general traffic features at public level, and fuses them
within a Recurrent Neural Network (RNN) to predict future
traffic speed on each road link. To analyze personalized driv-
ing behaviors, we explore a Principal Component Analysis
(PCA) algorithm to estimate arbitrary phone’s pose in car,
then harness inertial data to identify aggressive driving events
for each driver. Such general traffic features and individual
driving behaviors are further fused within a multi-task learn-
ing structure for customized travel time estimation.

Specifically, we make the following contributions:

• We produce a large-scale multi-source heterogeneous
traffic dataset collected via mobile crowdsensing, in-
cluding geographic vehicle trajectories, smartphone in-
ertial data, road network, and auxiliary information.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1689



Inertial

Driving Behavior 

Link Traffic

Traffic Data

Speed

Data Analysis Traffic Speed Prediction

GPS

Topology

Query amount

Sudden brake
Speeding

Lane shift

Customized Travel 
Time Estimation

Road 
Network

LSTM

ReLU

Attention

FC Sigmoid

ResNet

Multi
Task 

Learning

FC

LSTM

Embedding

Figure 1: CTTE takes road network, GPS trajectories, and inertial data as inputs. In data analysis stage, we produce two datasets on link
traffic and driving behavior. We further propose a multi-task learning structure to predict both traffic speed and customized travel time.

• We construct two traffic databases: 1) link traffic
database, with link topology representation, speed s-
tatistics, and query distribution; and 2) driving behavior
database, focusing on three aggressive driving events,
i.e., speeding, sudden brake, and lane shift.

• We fuse GPS traces, smartphone inertial data, and road
network within a deep recurrent neural network. We also
propose a multi-task learning structure to estimate both
traffic speed on each link and customized travel time for
each individual.

• We conduct extensive experiments on two real-world
datasets collected by DiDi platform. Results have shown
our effectiveness compared with the state-of-the-art.

2 Overview
In this section, we first present several important definitions
in our problem, and depict the overview of our method.

2.1 Definitions
Definition 1. Road Network. Given a fixed region on the
map, the road network is defined as the set of underlying road
links (i.e., road segments). Each road link includes its geo-
graphical location, length, direction, speed class, lane num-
ber, and other attributes. Note that this road network model is
different from others, which define it as a directed/undirected
graph with nodes and edges. Given a vehicle trajectory, we
observe that those nodes (mainly road intersections) some-
times cause drivers a very long queuing time, especially in
rush hours. Thus, we treat road intersections also as links.

Definition 2. Path and Trajectory. A driving path is de-
fined as a sequence of points, and each point contains the lo-
cation (e.g., latitude and longitude), time in the day, and road
link index indicating which road segment it locates on. In ad-
dition, a vehicle trajectory x(i) is defined as a tuple with three
components, i.e., x(i) = (u(i), P (i), λ(i)), where i is the tra-
jectory ID, u(i) is the driver’s ID, P (i) is the driving path, and
λ(i) is the auxiliary information for this trajectory, including
the day index in the week, holiday index, and weather index.

Definition 3. Aggressive Driving Events. We consider
three aggressive driving events as dangerous behaviors: 1)
speeding; 2) sudden brake; 3) frequent lane shift. When sens-
ing with a smartphone, such events will cause distinct signal
patterns in both GPS trajectories and inertial data.

Given the above definitions, we conceive the customized
travel time estimation problem as:

Definition 4. Problem Statement. During the training
phase, we learn: 1) how to estimate the traffic speed on each
link via the road network and GPS trajectories, and 2) how
to analyze driving behavior for each driver via inertial data.
During the test phase, given a driver ID, an origin, a destina-
tion, and a departure time, our goal is to estimate the travel
time for this specific driver, with the path generated by other
route planning techniques.

2.2 Model Architecture
Our method utilizes GPS trajectories, smartphone inertial da-
ta, and road network (assumed already available) as input-
s, and formulates customized travel time estimation with a
multi-task learning structure (Figure 1).

The data analysis stage produces two databases: the link
traffic and the driving behavior. The link traffic database con-
tains link topology representation from road network, link
speed statistics in each time segment, and query amount on
each link. We also identify three aggressive driving events,
i.e., speeding, sudden brake, and lane shift.

Next, we fuse the multi-source heterogeneous traffic data
within a deep recurrent neural network, and explore a multi-
task learning structure for both traffic speed prediction and
customized travel time estimation.

3 Data Analysis
In this section, we manage and analyze the large-scale het-
erogeneous traffic data, and produce two specific datasets.

3.1 RAW Traffic Data
Our raw data was collected from the Didi Chuxing mobile
application, including: 1) road network information; 2) ve-
hicle GPS trajectories; and 3) smartphone inertial data from
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Figure 2: Smartphone pose estimation, with (Xs, Y s, Zs) for the
phone’s coordinate system and (Xv, Y v, Zv) for the vehicle’s.

IMU (Inertial Measurement Unit) sensors, with 3-axis accel-
erations by accelerometer and 3-axis angular speed by gyro-
scope, both in the smartphone’s coordinate system.

Notice that the smartphones’ coordinate system is not al-
ways the same as the vehicle’s (shown in Figure 2), we ex-
plore a Principal Component Analysis (PCA) algorithm to
estimate the arbitrary phone’s pose in the car, i.e., estimating
the vehicle’s coordinate system in the phone’s coordinate sys-
tem. Step 1) When the car is static, the gravity direction (i.e.,
Z-axis of the vehicle) can be computed via a low-pass But-
terworth filter to remove high frequency components. Step 2)
We use the gravity direction to deduct 3-axis accelerations on-
to the horizontal plane, and the forward direction (i.e., Y-axis
of the vehicle) is caused by vehicle accelerating and deceler-
ating, which can be computed as the maximum acceleration
direction by PCA algorithm. Step 3) The rest X-axis of the
vehicle is calculated as the cross product of the other two ax-
is directions. Finally, we transform the motion data from the
phone to the vehicle.

3.2 Link Traffic
Link Topology
Road topological relations is crucial for both traffic speed
prediction and travel time estimation. Some advanced trans-
portation systems have already assigned several successive
road segments with the same traffic light lifetime, thus ve-
hicles pass them with a high speed and do not need to stop
frequently. However, representing the road topology is not
trivial. Simple numerical or one-hot encoded categorical
features can not reflect the entire road topology, especially
for complex road networks. Graph Laplacian Regulariza-
tion method [Li et al., 2018] enhances the loss with a graph
Laplacian factor, thus adjacent links are likely to be assigned
with similar representations, but its optimization step fails for
large-scale road networks.

Inspired by the unsupervised graph embedding approach in
DeepWalk [Perozzi et al., 2014], we explore a road topology
representation method for large-scale road networks. First,
instead of using the RandomWalk algorithm which generates
random node sequences to “sample” the graph, we leverage a
map-matching method [Jagadeesh et al., 2004] to attach each
GPS point onto a specific road link and merge continuous
links, thus each trajectory can produce a sequence of link IDs.

Next, we use the SkipGram language model [Mikolov
et al., 2013] which maximizes the co-occurrence probabil-
ity among words in a sentence. Given a link sequence
(l1, l2, ..., lN ), we represent each link as an N × 1 vector by
one-hot encoding, and define a neural network to compute
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Figure 3: Illustration of the SkipGram algorithm for a link sequence.
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Figure 4: Topology representation on example road network.

the probability of each other link that it is adjacent to link li
(shown in Figure 3).

In this model, the neural network has only one hidden lay-
er without the activation function, and the output layer us-
es softmax function to ensure the output vector as a proba-
bility distribution. We only keep the weight matrix in hid-
den layer as link representations. However, when represent-
ing a road network with millions of links, the large-scale
weight coefficients make the posterior distribution learning
(i.e., P (li−1|li) and P (li+1|li)) extremely difficult. To speed
up its training process, we use the Hierarchical softmax func-
tion in DeepWalk. We assign all road links as a sequence of
tree nodes, and transform the prediction problem into maxi-
mizing the probability of a specific path in the hierarchy, i.e.,

P (li−1|li) =

dlog Ne∏
k=1

P (lak
|li) (1)

where the path in tree structure from root to node li−1 is de-
noted as (la0 , la1 , ..., ladlog Ne). In this equation, P (lak

|li) can
be learned by a binary classifier:

P (lak
|li) =

1

1 + e−r(lak
)·r(li)

(2)

where r(.) is the representation vector of each link.
Finally, we use the stochastic gradient descent (SGD) al-

gorithm for optimization, with the learning rate of 2.5% and
decreasing linearly. Figure 4 shows the representation exam-
ple of a road network with 14 links.

Link Traffic Speed
Historical traffic speed statistics can reflect rush hours and
traffic conditions on each link, thus has a direct impact when
estimating the travel time. After map matching process, the
vehicle trajectory is comprised of a series of GPS points, each
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Figure 5: Illustration of the origin-destination travel time, which
consists of the path time on links and the queuing time at inlet/outlet.

with a timestamp and a road link index, thus we can easily
compute the average traffic speed on each link.

Suppose a trajectory segment with GPS points pk:k+n lo-
cates on link li, starting from time t to t+ T . The link traffic

speed for li is computed as lvi =
llength
i

T . Notice that vehi-
cles enter the main road on the first link and exit on the last
link, actual driving length on these two links are not com-
plete. Thus, we remove the GPS points on these two links.
Finally, we summarize all historical trajectories and compute
the average traffic speed on each link for each time interval (5
minutes in this paper).

Link Query Amounts
As shown in Figure 5, the origin-destination travel time con-
sists not only the path time when driving on road links, but
also the queuing time when entering/exiting the main road,
especially when we visit a POI (Point of Interest).

By Queuing Theory, the queuing time can be computed via
queuing length (amount) and driving speed. Thus, we also
analyze the historical query distribution on each link at each
time interval. For example, a trajectory starting from link lA
at time tA and ending from link lB at time tB can produce
two records of link query: qtAlA,IN and qtBlB ,OUT , where IN
and OUT denote query direction to links.

3.3 Driving Behavior
Driving behaviors differ significantly among drivers, espe-
cially for rookie and aggressive drivers. Rookie drivers may
drive relatively slow, wait longer when queuing, and make
violent brakes. Aggressive drivers may shift lanes frequently
to overtake others. Thus, driving behavior analysis for each
individual is crucial to assess driving performances and esti-
mate personalized travel time more precisely.

Measuring the driving behavior is not trivial. Although
some recent applications (e.g., Waze) have already used
drivers’ prefered routes to provide better path navigation, they
largely rely on GPS trajectories with relatively poor accuracy
and low sampling rate, e.g., ∼ 5m position errors at 1Hz for
commercial smartphones2, thus are too coarse to model many
fast driving events such as lane shifts and sudden brakes. Our
intuition comes from the inertial data which describes both
linear accelerations and rotations of a smartphone at fine-
grained level.

2https://www.gps.gov/systems/gps/performance/accuracy
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Figure 6: Gyroscope signals used for turn detection.

Lane Shifts
First, we leverage the PCA algorithm to transform the motion
information from the smartphone to the vehicle (elaborated
in Section 3.1), and obtain vehicle’s forwarding acceleration
aY and angular speed ωZ for driving behavior analysis. aY
corresponds to vehicle’s velocity and can be used to detect
speeding events and sudden brakes, while ωZ corresponds to
vehicle’s rotations and can be used to detect lane shifts. For
example, a lane shift on the left corresponds to a first left
turn (Figure 6(a)) then immediately a right turn (Figure 6(b))
within a short time.

In addition, the gyroscope readings are known to be accu-
rate within a short time, but suffer from a linear drift. We
further explore a complementary filter algorithm [Shen et al.,
2018] to fuse ωZ with the long-term vehicle orientation ob-
servations from GPS traces, thus eliminate gyroscope drifts
and adjust detection thresholds of lane shifts and turns for
each trajectory.

Speeding and Sudden Brakes
In real-world traffic dataset, we observe that there are many
GPS invisible environments near buildings, bridges, and
trees. Besides using GPS for speed measurement under open
sky, we also need to recover vehicle’s speed in case lacking
of GPS signals. Thus, we devise a highly accurate odometry
from only inertial data.

Since the accuracy of the forwarding acceleration signal
aY is always noisy and varies among smartphones, we should
calibrate raw acceleration readings first. We propose a deep
Recurrent Neural Network (RNN) model to map a sequence
of forwarding accelerations to available GPS velocity, i.e.,

fΦ : aYt:t+T 7→ ∆v̂T (3)

where T is the window length, and Φ represents the parameter
in the RNN model. Next, we approximate the actual vehicle
velocity difference ∆vT from the GPS trajectory, thus our
objective is to minimize the total prediction errors, i.e.,

Φ∗ = arg min
Φ

∑
‖∆v̂T −∆vT ‖22 (4)

During implementation, we find the standard RNN mod-
el is always hard to train, thus adopt BiLSTM [Chen et al.,
2018] network to eliminate accumulated prediction errors via
the backward information. Finally, we leverage the inferred
vehicle velocity to identify speeding and sudden brake events.
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4 Applications
In this section, we first present our link speed prediction mod-
el via link traffic database and auxiliary information, then use
it to further infer customized travel time for each individual.

4.1 Link Speed Prediction
Our link traffic database contains most useful traffic features
for links: the link topology captures adjacency relations, the
historical speed reflects busy hours, and the query amount
measures queuing time. We also implement a web crawler
to extract other auxiliary attributes such as the weather, the
holiday, and the day in week information.

With such heterogeneous data inputs from multiple
sources, we incorporate them and use the embedding
method [Gal and Ghahramani, 2016] to transform those cate-
gorical attributes into low-dimensional vectors, thus can feed
them into the neural network.

To further capture the temporal dependencies among road
links, we apply the recurrent neural network (RNN) to learn
long-term temporal patterns. RNN has been widely used in
sequential learning on natural language processing, machine
translation, and speech recognition. In our model, the input
vector for each link i is constructed as the concatenation of
all attributes, i.e.,

xi = relu(Wx ·[xtopologyi ◦xspeedi ◦xqueryi ◦xauxiliaryi ]) (5)

where xtopologyi , xspeedi , xqueryi , and xauxiliaryi denote the
embedded vector of topology, speed, query amount, and aux-
iliary information for each link, respectively. Wx is the
weight matrix.

Next, we input the concatenated vector into a LSTM [Yao
et al., 2017] structure as the RNN implementation, and obtain
the current hidden variable ht as:

ht = LSTM(xi, ht−1) (6)

We also use the soft attention mechanism [Liang et al.,
2018] to capture the weights of a sequence of LSTM’s out-
put. Finally, the output of attention is connected to an FC lay-
er, then compared with speed statistics to calculate the speed
prediction loss Lspeed.

4.2 Customized Travel Time Estimation
In addition to predicting current traffic speed, estimating
the origin-destination travel time for each individual is al-
so meaningful in many intelligent transportation systems and
applications. However, driving skills vary obviously among
different drivers, thus we should also consider their driving
behaviors for customized travel time estimation.

Given the path of a trajectory, we first build an LSTM net-
work to capture the temporal and spatial (topological) fea-
tures of travel time. The hidden state output of LSTM is
connected to a ResNet (Residual Neural Network [He et al.,
2016]) module for decoding.

To identify the aggressive driving events for each driver, we
use smartphone inertial data with pre-tuned filters to generate
different channels of driving behaviors (details elaborated in
Section 3.3). We further concatenate such driving behavior
data and process them sequentially with a ReLU function,

an FC layer, and a sigmoid function to calculate a driver-
personalized scale factor.

Next, we use the scale factor to amend the output of ResNet
by multiplication. Note that this driver-personalized scale
factor is better than simple driver ID used in other methods
[Wang et al., 2018b; Wang et al., 2018a], since it can match
similar driving behaviors among different drivers, and remain
effective even for new users with few historical data.

Finally, to train our model, we formulate a multi-task learn-
ing problem, and our objective is to minimize the combina-
tion of both the speed loss and time loss, i.e.,

Ltime + α · Lspeed (7)

where the coefficient α weights the speed loss item. During
training, we leverage the mean square error (MSE) as the loss
function for speed prediction, and use the mean absolute per-
centage error (MAPE) for travel time estimation.

5 Experiments
We evaluate our proposed method on two large-scale real-
world traffic datasets, which is collected crowdsourcingly
from DiDi platform. We also compare it with the latest exist-
ing approaches for effectiveness.

5.1 Datasets and Baseline Algorithms
Our traffic datasets are gathered in Beijing and Shanghai, the
largest two cities in China with millions of vehicles. The time
period is both three weeks, from Aug. 6th to Aug. 26th, 2018.
We have defined the same data format for each dataset, con-
sisting of heterogeneous sensory data from multiple sources.
Each dataset contains GPS trajectories, inertial data, road net-
work, and auxiliary information (weather index, holiday in-
dex, the day in the week). In addition, the GPS points on
each trace have been projected onto the road link via a Map
Matching algorithm [Jagadeesh et al., 2004]. Table 1 depicts
the details for each dataset.

In this experiment, we implement our model in Python us-
ing PyTorch toolbox, and train the model on 1080Ti with
32GB memory. A typical training process takes about 30
minutes on link typology representation, and about 17 hours
on the multi-task learning for traffic speed prediction and
travel time estimation.

We further compare with Support Vector Regression
(SVR) [Chun-Hsin Wu et al., 2004] and DeepTTE [Wang et
al., 2018a]. SVR uses SVM for regression, which has been
widely used in sequence prediction. DeepTTE is the state-of-
the-art approach for travel time estimation and it is an open
source project. We leverage the mean absolute percentage er-
ror (MAPE), the mean absolute error (MAE), and the mean
square error (MSE) to measure the accuracy.

Dataset Beijing Shanghai
Time 8.6-8.26, 2018 8.6-8.26, 2018

Traces 3.9GB (410,882) 2.6GB (270,716)
Links 513KB (12,600) 350KB (8,500)

Inertial data 2.3GB 1.22GB

Table 1: Dataset information
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Aggressive driving event Precision Recall
Speeding 91% 86%

Sudden brake 96% 92%
Lane shift 99% 95%

Table 2: Precision and recall of aggressive driving detection
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Figure 7: Phone pose estimation for four iPhones in a mould.

5.2 IMU Data Processing
Smartphone pose estimation. To measure the pose estima-
tion accuracy, we use a mould to hold four iPhones with dif-
ferent poses (shown in Figure 8(a)), and measure their ground
truth poses via a protractor. The Cumulative Distribution
Function (CDF) curve of pose estimation errors is shown in
Figure 8(b), with the 90-percentile error at 10 degrees.

Aggressive driving detection. To collect the ground truth,
we take videos to record the aggressive driving events during
driving. We evaluate the detection precision and recall in Ta-
ble 2. Both the precision and recall of three aggressive driving
events are over 86%. Sudden brakes are easily identified via
static GPS locations and extreme inertial accelerations, while
lane shifts are reliably identified by gyroscope.

5.3 Link Speed Prediction
Figure 8(a) and Figure 8(b) show the MSE and MAE results
on link speed prediction, respectively. We observe that the
road network is effective to link speed prediction accuracy,
reducing the MSE from 22.5 to 16.9, and reducing the MAE
from 2.4 to 2.3.

Effect of attention. With the road network, our attention
mechanism further reduces MSE from 16.9 to 16.2, and re-
duces MAE from 2.3 to 2.1. Figure 9 presents the weights
of each attention channel, where we divide the time period
with a 5-minutes interval, t0 presents the same time period in
last week, and t1− t12 denote 12 continuous time periods in
last hour. Since our temporal feature is fine-grained, the time
period in last 5 minutes (t12) has the largest weight.

5.4 Travel Time Estimation

Road network IMU MSE MAE MAPE
ID no 220290.5 280.4 23.9%

Topology no 179017.5 255.5 23.1%
Topology yes 177818.1 251.6 22.6%

Table 3: Travel time estimation with different inputs
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Figure 8: Link speed prediction accuracy, with/out road network.
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Figure 9: Attention weights.

MAPE w.r.t. travel time. Figure 10 shows the error bar
graph on MAPE value for each trajectory with its travel time
period. The travel time period is relatively wide, varying from
1 minute to more than 70 minutes among trajectories. As
consistent with our common sense, longer travel time always
causes worse prediction results but lower variances. An inter-
esting observation is that extreme short travel time (e.g., less
than 10 minutes) also leads to large prediction errors, due to
variety of environmental interferences besides the travel time.

Effect of network structure. We evaluate the effects of
ResNet module, road network representation, and IMU data
in our neural network.

1) ResNet. With topology embedding of road network, we
test the effect of ResNet in Figure 11. Since a neural network
with deep layers is always difficult to converge, the ResNet
module helps to converge our model much faster.

2) Road network representation. Table 3 shows the com-
parison between ID embedding and our topology embedding
on road network. The ID embedding result is based on the
initial embedding API in Pytorch. We observe that our topol-
ogy embedding method for road network helps to converge
the loss to a much lower level, e.g., reducing the MAPE with
0.8% (first two rows).

3) IMU data. In implementation, we concatenate the iner-
tial features and input them with an FC layer and a sigmoid
function to get a scale factor, then amend the output of neural
network with this scale factor (multiplication). Since the IMU
data is very sparse at current DiDi platform, it only reduces
the MAPE loss with 0.5% (details shown in Table 3). How-
ever, this experiment proves the effectiveness of IMU data,
and we will test more fine-grained IMU data in the future for
more improvements.

Effects of hyper-parameters. Figure 12(a) and Fig-
ure 12(b) show the effects on two hyper-parameters in our
model, i.e., the dropout value and hidden state size, respec-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1694



0 20 40 60 80
Travel time (min)

0

0.2

0.4

0.6

0.8
M

A
PE

Figure 10: MAPE w.r.t. time.

0 20 40 60 80
Epoch

0

20

40

60

80

100

M
A

PE

without ResNet
with ResNet

Figure 11: ResNet effect.

0.2 0.4 0.6 0.8
Dropout

21

22

23

24

25

M
A

PE

(a) Dropout

16 32
Hidden state size

21

22

23

24

25

M
A

PE

(b) Hidden state size

Figure 12: Effects of two hyper-parameters.

tively. We have set the dropout value with {0.2, 0.4, 0.6, 0.8},
and the number of LSTM hidden state size with 16 and 32.
The experiment for each hyper-parameter set is repeated by
10 times. The corresponding MAPE value is all around 23%.
Such experiment shows the robustness of our model with such
hyper-parameters.

Comparison with SVR and DeepTTE. Table 4 and Ta-
ble 5 depict the final accuracy of travel time estimation on t-
wo real-world datasets in Beijing and Shanghai, respectively.
We observe that the SVR achieves the least MSE and MAE,
but its MAPE is almost 4x than ours; the DeepTTE achieves
similar MAPE as ours, but with an extreme high MSE; our ap-
proach CTTE produces the least MAPE, and maintains both
MSE and MAE at very low level. Thus, our method is supe-
rior at all three loss metrics.

6 Related Work
Traffic speed prediction. Traffic speed prediction plays a
fundamental role in intelligent transportation system. There
are generally two kinds of methods for traffic speed pre-
diction: the parametric and the non-parametric approaches.
ARIMA [Williams and Hoel, 2003] is a classic parametric
method and models the traffic in a stationary process. How-
ever, those parametric methods are known to be not suitable
for large-scale data due to the heavy computation complexity.
Some supervised learning approaches, e.g., SVR [Chun-Hsin
Wu et al., 2004] and LR [Ristanoski et al., 2013], formu-
late the traffic speed prediction issue as a regression prob-
lem. Currently, CNN based models [Wang et al., 2016c;
Ma et al., 2015] are used for traffic flow prediction based on
large-scale historical traffic data, but they don’t consider the
link road topology information.

Travel time estimation. Travel time estimation is very
important to location-based services for vehicle navigation

MSE MAE MAPE
SVR 15081.9 100.7 83.1%

DeepTTE 939957.4 392.5 25.8%
CTTE 177818.1 251.6 22.6%

Table 4: Performance on Beijing dataset

MSE MAE MAPE
SVR 16226.0 103.1 100.6%

DeepTTE 675110.2 445.8 29.1%
CTTE 245917.4 304.7 24.3%

Table 5: Performance on Shanghai dataset

applications. The existing approaches can be classified in-
to two categories, the route-based solutions and the data-
driven solutions. The first [Sevlian and Rajagopal, 2010;
Pan et al., 2012; Wang et al., 2016b] estimates total travel
time as the time summation on each road segment and in-
tersection. The second [Rahmani et al., 2013; Wang et al.,
2016a; Wang et al., 2018a; Zhang et al., 2018; Li et al., 2018;
Wang et al., 2018b] formulates the travel time estimation as a
multivariate time series prediction problem. However, they
fail to consider general traffic conditions and personalized
driving behaviors. Some recent work [Wang et al., 2018b]
begins to use the personalized information, but it is simply
driver ID and largely relies on GPS data which are too coarse
to model many fast driving events, e.g., lane shifts.

Driving behavior analysis. Thanks to the widely used s-
martphones for driving navigation, there have been several
approaches to use the smartphone’s inertial data to monitor
the driving behaviors, e.g., dangerous driving alert [Lindqvist
and Hong, 2011], traffic accidents detection [Mohan et al.,
2008], and road landmark detection [Gao et al., 2017]. A-
mong them, driving speed is the only critical factor to dan-
gerous driving, while we also consider rotations. Besides the
three aggressive driving events in this paper, we aim to iden-
tify other pivotal events, e.g., not remaining aloof. We plan
to explore computer vision algorithms to detect the distance
to a predecessor car via a dashboard camera.

7 Conclusion
In this paper, we propose CTTE, which takes GPS traces, s-
martphone inertial data, and road network to produce cus-
tomized travel time estimation. It addresses one interest-
ing problem to the ubiquitous vehicle location-based ser-
vices: how much time your aggressive driving behavior saves.
CTTE enables public traffic speed monitoring on each road
link, and personalized travel time estimation based on unique
driving patterns. We have conducted extensive experiments in
large-scale real-world datasets at Beijing and Shanghai, and
the results demonstrate the effectiveness of our method com-
pared with the state-of-the-art.
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