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Abstract

We study the description logic SQ with number
restrictions applicable to transitive roles, extended
with either nominals or inverse roles. We show
tight 2EXPTIME upper bounds for unrestricted en-
tailment of regular path queries for both exten-
sions and finite entailment of positive existential
queries for nominals. For inverses, we establish
2EXPTIME-completeness for unrestricted and fi-
nite entailment of instance queries (the latter under
restriction to a single, transitive role).

1 Introduction

A prominent line of research in knowledge representation
and database theory has focused on the evaluation of queries
over incomplete data enriched by ontologies providing back-
ground knowledge. In this paradigm, ontologies are com-
monly formulated using description logics (DLs), believed to
offer a good balance between expressivity and complexity.
This is supported, for instance, by the good understanding of
‘data-tractable’ DLs [Kontchakov and Zakharyaschev, 2014;
Bienvenu and Ortiz, 2015]. Yet, for some expressive DLs the
complexity of query entailment is less understood.

In this paper, we study query entailment in extensions of
the description logic (DL) SQ allowing number restrictions
(Q) to be applied to transitive roles (S). Most previous work
on query entailment in expressive DLs, such as SHZQ or
SHOQ, forbid the interaction of number restrictions and
transitive roles [Glimm et al., 2008b; Glimm et al., 2008a;
Calvanese er al., 2014], but it is required in areas like
biomedicine, e.g., to restrict the number of certain parts
an organ has. For instance, one can express that the hu-
man heart has exactly one mitral valve, which has to be
shared by its left and right atrium [Gutiérrez-Basulto et al.,
2018]. Allowing for the interaction of S and Q is danger-
ous in the sense that even modest extensions of SQ, such
as with role inclusions or inverse roles, lead to an undecid-
able satisfiability problem [Kazakov er al., 2007]. Decid-
ability of satisfiability in SQ and in its extension with nom-
inals was shown several years ago [Kazakov et al., 2007;

Kaminski and Smolka, 2010], but only recently tight com-
putational complexity bounds were established [Gutiérrez-
Basulto er al., 2017]. Even more recently, decidability for
entailment of regular path queries over SQ knowledge bases
was established. More precisely, based on a novel free-like
model property of SQ it was possible to devise an automata-
based decision procedure yielding a tight 2EXPTIME upper
bound [Gutiérrez-Basulto et al., 2018].

The objective of this paper is to provide a more complete
picture of query entailment in DLs with number restrictions
on transitive roles. We pursue two specific goals.

First, we aim at understanding the limits of decidability of
query entailment for such DLs. To this end, we investigate
the extensions of SQ by nominals (SOQ) and controlled in-
verse roles (STQ~ ), where we allow number restrictions on
inverse non-transitive roles and only existential restrictions
on inverse transitive roles. As query language, we consider
positive existential regular path queries, thus capturing the
common languages of conjunctive and regular path queries.

Our second aim is to initiate the study of finite query en-
tailment for SZQ™ and SOQ, where one is interested in rea-
soning only over finite models. This distinction is crucial be-
cause in database applications, both database instances and
the models they represent are commonly assumed to be fi-
nite. The study of finite query entailment in SQ is interesting
since, due to the presence of transitivity, SQ lacks finite con-
trollability, and therefore unrestricted and finite entailment
do not coincide. Interestingly, most previous works on finite
query entailment consider logics lacking finite controllabil-
ity because of number restrictions and inverse roles [Rosati,
2008; Pratt-Hartmann, 2009; Ibanez-Garcia et al., 2014;
Amarilli and Benedikt, 2015]. The study of finite query
entailment in logics with transitivity (without number re-
strictions on transitive roles) started only recently [Rudolph,
2016; Gogacz et al., 2018; Danielski and Kieronski, 2018].
Here, we focus on finite entailment of positive existential
queries in SOQ and of instance queries in SZQ".

Our main contributions are as follows. In Sect. 3, we start
by showing a tree-like model property for both SOQ and
SZQ". More specifically, we carefully extend and adapt the
canonical tree decompositions that were introduced for SQ
in previous work [Gutiérrez-Basulto et al., 2018] to also in-
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corporate the presence of controlled inverses and nominals.
Next, we prove that if a query is not entailed by a knowledge
base (KB), then there is a counter-model with a canonical tree
decomposition of small width. This tree-like model property
is the basis for automata-based approaches to unrestricted and
finite query entailment in the remainder of the paper. First, in
Sect. 4, we construct tree automata to optimally decide en-
tailment of regular path queries over SOQ and S7Q~ KBs
in 2EXPTIME. We move then, in Sect. 5, to finite entailment
of positive existential queries over SOQ KBs, showing again
an optimal 2EXPTIME upper bound. To this end, we look at
more refined canonical tree decompositions, which ensure the
existence of a finite counter model. In other words, we reduce
finite query entailment to entailment over models with this
special canonical tree decomposition. Finally, in Sect. 6, we
investigate the complexity for unrestricted and finite instance
query (IQ) entailment in SZQ™. In particular, we show that
1Q entailment is 2EXPTIME-hard both in the finite and in the
unrestricted case. We found this surprising since it is rarely
the case that IQ entailment becomes more difficult when in-
verses are added to the logic. Moreover, the result provides
an orthogonal reason for 2EXPTIME-hardness for conjunc-
tive query entailment in SZQ~ [Lutz, 2008]. We complement
this lower bound with matching upper bounds in the unre-
stricted case, thus confirming the conjecture that satisfiability
in STQ™ is decidable [Kazakov et al., 2007]. In the finite
case, we show a 2EXPTIME-upper bound for KBs using a
single transitive role. Note that SZQ~ with a single transi-
tive role is a notational variant of the graded modal logic with
converse K4(O>, 7). Thus, our result entails 2EXPTIME-
completeness for global consequence in K4(0 >, ¢~), which
was only known to be decidable [Bednarczyk et al., 2019].
A long version with appendix can be found under http://
www.informatik.uni-bremen.de/tdki/research/papers.html.

2 Preliminaries

Description Logics

We consider a vocabulary consisting of countably infinite dis-
joint sets of concept names Nc¢, role names Ng, and individual
names N, and assume that Ng is partitioned into two infi-
nite sets of non-transitive role names Nﬁt and transitive role
names N}?. A role is a role name or an inverse role r~; a
transitive role is a transitive role name or the inverse of one.
STQ -concepts C, D are defined by the grammar

C,D:=A|-C|CND|3IrC|(<nsC)

where A € N¢, ris arole, n > 0 is a natural number given in
binary, and s is either a non-transitive role or a transitive role
name. SOQ-concepts C, D are defined by the grammar

C,D:=A|-C|CnD|{a}|(LnrC)

where A € N¢, 7 € N, a € N, and n is as above. We will
use (= n r C') as abbreviation for =(< n—1 r C), together
with standard abbreviations L, T, C'U D, Vr.C. Concepts of
the form (< n r C), (= n r C), and {a} are called at-most
restrictions, at-least restrictions, and nominals, respectively.
Note that in SZQ~ concepts, inverse transitive roles are not
allowed in at-most and at-least restrictions.
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A STQ ™ -TBox (respectively, SOQ-TBox) T is a finite set of
concept inclusions (CIs) C = D, where C, D are STQ -
concepts (respectively, SOQ-concepts). An ABox A is a fi-
nite non-empty set of concept and role assertions of the form
A(a), r(a,b) where A € N¢, r € Ng and {a,b} C Nj;
ind(A) is the set of individual names occurring in A. A
knowledge base (KB) is a pair K = (T, .A); nom(K) is the set
of nominals occurring in K and ind(K) = ind(A) U nom(K).

Without loss of generality, we assume throughout the paper
that all CIs are in one of the following normal forms:

|_|iAi C |_|ij, AEVTi.B, ALC E'Ti.B,
AC(<nsB), AC(>nsB),

where A, A;, B, B; are concept names or nominals, 7 € Ng,
s is a non-transitive role or a transitive role name, and empty
disjunction and conjunction are equivalent to L and T, re-
spectively. We further assume that for every at-most and at-
least restriction, 7 contains an equivalent concept name.

Interpretations

The semantics is given as usual via interpretations T =
(AT, -T) consisting of a non-empty domain AT and an in-
terpretation function - mapping concept names to subsets of
the domain and role names to binary relations over the do-
main. Further, we adopt the standard name assumption, i.e.,
al = a for all a € N,. The interpretation of complex con-
cepts C is defined in the usual way [Baader er al., 2017]. An
interpretation Z is a model of a TBox T, written Z |= T if
CT C DT forallCIs C T D € T. It is a model of an ABox
A, written Z = A, if (a,b) € 7% for all r(a,b) € A and
a € AT for all A(a) € A. Finally, Z is a model of a KB
K= (T,A),wrttenZ = K,ifZ = T,Z | A, and r* is
transitive for all € Nf occurring in /C. If /C has a model, we
say that it is satisfiable.

An interpretation Z' is a sub-interpretation of I, written
as ' C T, it AT C AZ, AT C AZ, and v C o7 for
all A € Ncand » € Ng. For ¥ C Nc UNg, Z is a X-
interpretation if AT = ()and r* = () forall A € Nc \ &
and r € Ng \ X. The restriction of T to signature ¥ is the
maximal Y-interpretation Z' with Z' C Z. The restriction of
7 to domain A is the maximal sub-interpretation of Z with
domain A. The union Z U J of Z and 7 is an interpretation
such that ATV = ATUAT  ATVT = ATUAT  and r2Y7 =
rLUr7 forall A € Nc and € Ng. The transitive closure
T* of Z is an interpretation such that AT = AZ, A" = AT
forall A € N¢, 72" = T forall r € N, and 7%~ = (r%)*
for all r € Ni.

A tree decomposition ¥ of an interpretation T is a pair
(T,3) where T is a tree and J is a function that assigns an
interpretation J(w) = (A, 7)) to each w € T such that
Z =Uyper I(w) and forevery d € A%, theset {w € T | d €
A, } is connected in T'. We often blur the distinction between
a node w of T and the associated interpretation J(w), using
the term bag for both. The width of T is sup,,er |Aw| — 1;
the outdegree of T is the outdegree of T. For each d € A7,
there is a unique bag w closest to the root € such that d € A,,.
We say that d is fresh in this bag, and write F'(w) for the set
of all elements fresh in w.
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Ontology-mediated Query Entailment

A positive existential regular path query (PRPQ) is a first-
order formula ¢ = Ix ¢)(x) with ¥)(x) constructed using A
and V over atoms of the form £(t,t') where ¢, ¢’ are variables
from x or individual names from N;, and £ is a path expres-
sion defined by the grammar

EE& u=r |17 |A?| E | EVUE | E0€E,

where 7 € Ng and A € N¢. A PEQ is a PRPQ that does
not use the operators *, U, and o in path expressions. Equiv-
alently, it is an FO formula ¢ = Jx(x) where v is con-
structed using A and V over atoms r(¢,¢') and A(¢') with ¢, ¢/
as above. An instance query (IQ) is just an expression of the
shape C/(a) for some concept C and a € Nj.

The semantics of PRPQs is defined via matches. Let us fix
a PRPQ ¢ = Ix(x) and an interpretation Z. Let ind(¢y)
be the set of individual names in ¢. A match for ¢ in L is a
function 7 : x U ind(p) — A7 such that 7(a) = a, for all
a € ind(¢), and Z, 7 = ¢(x) under the standard semantics
of first-order logic extended with a rule for atoms of the form
E(t,t'). An interpretation Z satisfies ¢, written as Z |= ¢, if
there is a match for ¢ in Z.

A PRPQ o is (finitely) entailed by a KB K, if T |= ¢ for
every (finite) model Z of K; we write K = ¢ and K 6, @,
respectively, in this case. Accordingly, we write = C(a)
and K =4, C(a) if @ € C7 in all (finite) models Z of K.

We study the corresponding decision problem—whether a
given query is (finitely) entailed by a given KB—for different
choices of knowledge base and query languages.

3 Tree-like Counter-Model Property

In this section we show a tree-like model property for SZQ~
and SOQ: we show that if a query is not entailed by a KB,
then there is a counter-model with a tree decomposition of
bounded width and outdegree. For the automata-based deci-
sion procedure to yield optimal upper bounds, it is useful to
consider canonical decompositions which we define next.

In canonical decompositions elements will be accompa-
nied by certain key neighbors. Let us fix a KB K = (7, A).
For an interpretation Z, an element d € AT and r € N&, the
r-cluster of d in T, denoted by QZ(d), is the set containing d
and each e € A7 such that both (d, e) € vZ and (e, d) € 7Z.
This is the closest environment of d wrt. . We also asso-
ciate with d a larger set relf (d) of r-successors relevant for
the at-most restrictions of K. We let relX (d) be the least set
X such that QZ(d) € X and foralle € X, f € AZ, and
AC(KnrB)inT,ifee AT, f € B, and (e, f) € ",
then QZ(f) C X. The construction of canonical decomposi-
tions relies on the following properties of relevant successors.

Lemma 1. For each r € Nk, the following hold:
1. foralld,e € A7, ife € rel%(d) then relX(e) C rel%(d);

2. if each r-cluster in T has size at most N, then for each
d e AT, |relf(d)| < N - 2re(ITD),

In a canonical tree decomposition, formalized in Defini-
tion 1 below, each non-root bag keeps track of all concepts
and a single role indicated by t. Nominals are captured
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within a finite subinterpretation M represented faithfully in
all bags; in the absence of nominals, one can take empty
M and drop (C4). Conditions (Cy)—(C3) ensure that apart
from A™, neighboring non-root bags share a single element,
sometimes accompanied by its relevant successors.

Definition 1. A tree decomposition T = (T, 7J) is canonical if
there exists v: T — Ng U { L} witht=1(L) = {e} such that

(Bo) for each w € T, J(w) is a X, -interpretation where
Y. = NcUNR and £,y = Nc U {r(w)} for w # €;

(B1) for all v,w € T, the restrictions of J(v) and JI(w) to
domain A, N Ay, and signature 3, N 3, coincide;

(Bz) foreachv € T\ {e}, d € F(v), andr € N} \ {v(v)},
a unique child w of v satisfies v(w) = r and d € A,

and there is an interpretation M withnom(K) C AM C A,
such that for each w € T \ {e} and its parent v, one has

(Co) ift(w) € N and v = ¢, then A, C Ay,;

(C1) ifv(w) € NX, then A, N A, = {d} U AM for some
de F(v);

(C2) if t(v) # t(w) € Ng and v # ¢, then Ay, N A, =
{d} U AM for some d € F(v);

(C3) ift(w) = t(v) = r € N&, then AyN A, = rel?™ (d)U
AM and rel?®)(d) = rel?™)(d) for some d such that
either d € F(v) or d € F(u) and t(u) # t(v) for the

parent u of v; and

(Cy) if t(w) = r € N&, then rel>™)(d)
de AM.

Theorem 1. Let K = (T, .A) be a KB in normal form and ¢
a PRPOwith K £ . If Kisa SOQ KB or a SIQ™ KB, then
there exists a model J of T and A such that

e 7 has a canonical tree decomposition of width and out-
degree poly(|ind(K)|) - 2P°YUTD; and

o J*EKand J* .

Proof. Let us fix a counter-model Z for L and . We
can assume that |QZ(d)| < |ind(K)| + 2P°VUTD for all
d € AT [Gutiérrez-Basulto et al., 2018]. By Lemma I,
relZ(d)| < |ind(KC)]| - 2°°%(TD for all d € AZ.

To build a canonical tree decomposition T, we unravel Z
starting from the interpretation of the ABox and then apply-
ing the extension rules (Ry)—(R3) below, corresponding to
conditions (C)—(C3): (Ry) collects relevant successors of
the individuals in the ABox, (R) performs standard unrav-
eling of non-transitive roles, (Rs) takes care of the change of
roles, and (R3) realizes further unraveling of transitive roles.

More precisely, for the root bag, we take 7 restricted to the
domain ind(,A) U A and the signature N¢ U Ng', where A is

the union of rel” (a) for all a € nom(K) and r € NE.
(Ro) For each r € Nk, we add as a child bag of
e the restriction of Z to signature N¢ U {r} and domain

Useina(a) rel” (a) U A with each e ¢ ind(A) U A replaced
by a fresh copy €’. We call e the original of €’.

= rel™(d) for all

'Recall that in a model of the ABox or the TBox, the extensions
of role names from N need not be transitive.
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Then, we use the following rules (R, )—(R3) ad infinitum,
applying each rule only once to each previously added bag v.

(Ry) For each r € N, and each d’ € F(v), letd € AT
be the original of d’ (possibly d = d’) and let W, be the set
of originals of all r-successors and r-predecessors of d’ in
J(v). Pick a minimal set W C AZ containing {d} U Wy U A
such that foreach s € {r,r"}and AC (= n s B)in T,
if d € AT, then d has at least n different s-successors in
BT NW. Foreache € W\ (W, \ A), add as a child bag
of v the restriction of Z to signature N¢ U {r} and domain
{d, e}UA with all r-edges from A\{d} to {d, e}\ A removed,
d replaced by d’ and each f € {e} \ A, by a fresh copy f’.

(Rg) Assuming v # ¢, for each r € Nk with r # t(v),
and each d’ € F(v), let d be the original of d’. Add as a
child bag of v the restriction of Z to signature N¢ U {r} and
domain relX (d) U A where d is replaced by d’ and each e €
relZ(d) \ ({d} U A), by a fresh copy ¢’

(R3) Assuming t(v) = r € Nk, for each d’ € A? fresh in
v or in the parent u of v with t(u) # r, let d be the original
of d’. Pick a minimal set W C A7 containing relX (d) U A
such that for each A C (> nr B)in T, if d € A%, then d
has at least n different r-successors in BZ N W, and for each
ALC Ir—.BinT,if d € AZ, then d has an r~-successor in
BTN W. Foreach e € W\ (relX(d) UA), add as a child bag
of v the restriction of Z to the signature N¢ U {r} and domain
relZ (e) U rel% (d) U A where each element f € rel”(d) \ A
is replaced by its copy f’ from J(v), and each element f €

relZ(e) \ (relX(d) U A) by a fresh copy f'.

Let J be the interpretation underlying the resulting decom-
position T. The function mapping each d’ € AY to its origi-
nal d € AZ gives a homomorphism from 7 to Z, and conse-
quently also from J* to Z. It follows that 7* £ . Taking
T restricted to A as M, it is routine to check that ¥ and J
satisfy the remaining postulated properties. Note that while
the construction is described for any normalized K, (R) is
correct only if C is either a SOQ KB or a SZQ  KB. Cor-
rectness of (Rg) and (Rg) follows from Lemma 1 (1). O

4 PRPQ Entailment for S7Q and SOQ

We shall now exploit canonicity of tree decompositions in an
automata-based decision procedure for query entailment in
SZQ ™ and SOQ, yielding optimal complexity upper bounds.

Let us fix a (SZQ or SOQ) KB K and a PRPQ ¢, and
denote with X, EtR7 Zﬁt the concept names, transitive role
names, and non-transitive role names used in . By Theo-
rem 1, if ¢ is not entailed by /C, there exists a counter-model
admitting a canonical tree decomposition of width and outde-
gree bounded by a constant N single exponential in |K|. We
effectively construct a non-deterministic tree automaton rec-
ognizing such decompositions of counter-models, and thus
reduce query entailment to the emptiness problem.

Let us introduce the necessary notions for tree automata.
A k-ary Q-labeled tree is a pair (T, 7) where T is a tree each
of whose nodes has at most k successors and 7 : T" — Q
assigns a letter from 2 to each node. A non-deterministic
tree automaton (NTA) over k-ary ()-labeled trees is a tu-
ple 2 = (Q,9Q,q0,A), where Q) is a finite set of states,
qo € Q is the initial state, A C [J,,(Q x Q x Q) is a
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set of transitions. A run r on a k-ary {2-labeled tree (T, 7)
is a Q-labeled tree (T, r) such that r(¢) = qo and, for ev-
ery x € T with successors x1, ..., Z,,, there is a transition
(r(z),7(x),r(z1) - 7r(xm)) € A. As usual, A recognizes
the set of all 2-labeled trees admitting a run.

Since counter-models have a potentially infinite domain,
we encode tree decompositions of width N using a domain
D of 2N elements, similar to what has been done, e.g.,
in [Gridel and Walukiewicz, 1999]. Intuitively, if w is a suc-
cessor node of v in the tree decomposition, then an element
d occurring in (the bag at) w represents a fresh domain ele-
ment iff d does not occur in v. More precisely, the alphabet 2
of the automaton is the set of all pairs (z,Z) such that either
x € Y and Z is a X¢c U {z }-interpretation with AZ C D, or
r=_landZisaXc U Egt-interpretation with AT C D.
Lemma 2. Given K, ¢, and N, one can compute in time
O(2PYN)) an NTA recognizing the set of encodings of
canonical tree decompositions of width and outdegree at most
N such that for the underlying interpretation [J it holds that
T EKand T* £ ¢ aswellas T = Aand J = T.

Proof. The desired NTA is the intersection of an NTA 2Ax
recognizing all canonical tree decompositions such that the
underlying interpretation J satisfies 7 &= A, J = T, and
J* = K and an NTA 2(_, recognizing all tree decompo-
sitions of counter-models of ¢. Since the latter is known
from [Gutiérrez-Basulto et al., 2018, Lemma 6], we concen-
trate on 2 = (Q, Q, qo, A), working over N-ary trees.

Informally, its construction relies on the following ideas:
(i) by (B2) and (Cs), in every bag there is at most one d sat-
isfying the condition ‘d € F'(u) ...” in Condition (C3); thus,
(ii) canonicity can be checked by initially guessing M and
then comparing neighboring interpretations and remember-
ing the mentioned d in the states; (iii) J |= A can be verified
by looking at labels of the root and its direct successors; (iv)
due to canonicity and the TBox normal form, J = 7T can
be verified by looking at the current label (this suffices for
at-most restrictions over transitive roles, due to canonicity)
and possibly at successor bags (at-least restrictions, and at-
most restrictions over non-transitive roles); (v) J* = T is a
consequence of J |= T, by the normal form.

Formally, the set () contains ¢ and all tuples of the shape

((z,2),F,M,B,C,e,r, f),

where (z,7) € Q, F C AT, M is a ¢ U S¢t-interpretation
with AM C D, B C A, C is a set of assertions of the shape
(= n s B)(d), (< ns B)(d),or (3s.B)(d) with d € D,
BeXc, saroleinT,n < N,ande, f € DU{e}, r € Tk.

In state ¢ = ((z,Z),F,M,B,C,e,r, f) reading symbol
a = (2/,7'), the automaton allows a transition only in case
the following conditions are satisfied:

e Conditions (B)—(B3) and (Cy)—(Cy) withZ, 7', z, 2’| F’
taking the role of J(v), J(w), v(v), v(w), F(v), respec-
tively, and ‘d € F(u)...” in(C3) replaced with ‘d = f’;

o ' # land,ifzx= L1, thenZ = B;

e cithere # ¢, e € AI/,andr =z',ore=candz = 2';

e I' = C(d) forall C(d) € C withd € AT or C of shape
(>nsB)ordr .B;
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eI’ | aforall a € T of the form [']; A; T [, B,
AC(<nrB),and ACVr—.B.

In this case, A allows all transitions (g, a,q1 - Gm), m <
N where each g; is of shape ((z',Z"), F', M, 0,C;, e;, 74, fi)
with F/ = AT\ AT and:
e for each d € I’ and each r € X \ {z'}, there is a
unique ¢ such that e; = d and r; = r; conversely, if
e; # ¢ for some 4, then e; € F' and r; # a;

e if e # ¢, then f; = e, for all ¢;

e forall A C Ir~.B € T and d € AT N F’ such that
d ¢ (3r=.B)T', we have (3r~.B)(d) € B; for some i;

o foral AC (KnrB)eT,re Yt andd € AT NF,
there is a partition n = ng + . .. + Ny, such that d € (<
no r B)E, and (< n; r B)(d) € C;, for all i;

e forall AC (>nsB)eTandd € AT N F', there is a
partition n = ng+...+n,,, suchthatd € (> ng s B)I/
and (= n; s B)(d) € C;, for all ¢ with n; > 0.

The transitions for gq are similar, but they additionally nonde-
terministically initialize M and check the non-transitive part
of the ABox in the root, see the appendix. Correctness of the
automaton is essentially a consequence of Points (i)—(v) men-
tioned above. It is routine to verify that 2« is of the required
size and can be constructed in the required time. U

Recall that emptiness of NTAs can be checked in poly-
nomial time. Thus, Lemma 2 together with the bounds on
N from Theorem 1, yields a 2EXPTIME upper bound for
PRPQ entailment in SZQ  and SOQ. A matching lower
bound is inherited from positive existential query answering
in ALC [Calvanese et al., 2014].

Theorem 2. PRPQ entailment over STQ~ and SOQ knowl-
edge bases is 2EXPTIME-complete.

5 Finite PEQ Entailment for SOQ

The goal of this section is to establish the following result.

Theorem 3. Finite PEQ entailment over SOQ knowledge
bases is 2EXPTIME-complete.

The lower bound follows directly from the result on unre-
stricted query entailment for ALCO [Ngo ef al., 2016], as
the latter logic enjoys finite controllability. For the upper
bound, we carefully adapt an approach previously used for
SOF [Gogacz et al., 2018], which relies on the following ad-
ditional condition imposed on tree-like counter-models.

Definition 2. A canonical tree decomposition is safe, if it
contains no infinite downward path such that for each node
w in this path, v(w) is the same transitive role name.

In what follows, by a counter-witness we understand a
model of the ABox and the TBox whose transitive closure
is a counter-model. The approach requires two ingredients:
(1) equivalence of the existence of a finite counter-model and
the existence of a counter-witness that admits a safe canonical
tree decomposition, and (2) effective regularity of the set of
safe canonical tree decompositions (of given width and outde-
gree) of counter-witnesses. For (2), observe that safety can be
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easily checked by an automaton with Biichi acceptance con-
dition [Gridel et al., 2002] and the number of states quadratic
in the number of transitive role names in : on each path
the automaton remembers the role names associated with two
most recently visited nodes; the state is accepting unless they
are the same transitive role name. The product of this automa-
ton and the one constructed in the previous section recognizes
the desired language. Assuming (1) is also available, the up-
per bound follows like for the unrestricted case: the algorithm
builds the automaton and tests its emptiness.

The reminder of this section provides (1). One implication
is obtained via the following observation.

Lemma 3. If 7 is a finite interpretation of a SOQ KB, then
the unravelling procedure from the proof of Theorem 1 yields
a safe tree decomposition.

To prove the converse implication we begin from a care-
fully chosen counter-witness with a safe canonical tree de-
composition. It is well known that each regular set of trees
contains a regular tree, i.e., a tree with finitely many non-
isomorphic subtrees. Hence, if there is a counter-witness with
a safe canonical tree decomposition, there is also one with a
regular safe canonical tree decomposition. Let ¥ = (T, 7J) be
such a tree decomposition of some counter-witness Z, and let
M be the interpretation guaranteed by Definition 1.

Let us restructure ¥ by iteratively merging neighboring
nodes associated to the same transitive role name: pick a node
v with a child w such that t(v) = v(w) € N, redefine J(v)
as J(v)UJ(w), remove w from T, and promote all children of
w to children of v. As a result we obtain a canonical tree de-
composition & = (5, 7) of Z. By construction, & is strongly
canonical: no neighboring nodes in & are associated with
the same transitive role name. Hence, for each node w with
parent v # ¢, A, N A, \ AM = {d,,} for some d,, € F(v).

Each regular safe tree decomposition has bounded length
of downward paths of nodes associated with the same transi-
tive role name. Consequently, the restructuring above keeps
the outdegree and the width bounded.

Lemma 4. S has bounded degree and width.

We can now easily turn Z* into a finite model of /C. Sup-
pose that on each path of G, we fix a node v and its an-
cestor u (neither € nor a child of ¢) such that t(v) = t(u),
J(v) ~ J(u), and the witnessing isomorphism h maps d,, to
d,, and is identity over A, Suppose also that for each el-
ement in A, all witnesses required by at-least restrictions
can be found among elements of A and elements that do
not occur in the subtrees of & rooted at the chosen nodes v.
Note that for each path we can find such a pair of nodes, be-
cause the sizes of the bags are bounded in &. We shall mod-
ify Z by removing parts of it and redirecting edges previously
leading to the removed parts. Pick any path such that the cor-
responding d,, has not been processed yet and has not been
removed. Remove from Z the union of A,, with w ranging
over descendents of v (including v), keeping only A and
d,. Replace each t(v)-edge leading from d,, to a removed el-
ement e € A,, with an t(v)-edge leading from d,, to h(e).
Repeat until no such path exists. The resulting interpretation
J is obviously finite. Checking correctness is routine.

Lemma5. 7* E K.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

To ensure that J* £ ¢ we need to choose the nodes v and
u more carefully. Relying on ¢ being a PEQ, not an arbitrary
PRPQ, we apply the colored blocking principle [Gogacz et
al., 2018]: to keep u and v sufficiently similar and sufficiently
far apart, we look at their neighborhoods of sufficiently large
radius and use additional coloring to distinguish elements
within each neighborhood (see Appendix for details).

6 1IQ Entailment

We also get the following results on IQ entailment.

Theorem 4. Finite and unrestricted IQ entailment is
CONEXPTIME-complete over SOQ KBs. Unrestricted 1Q
entailment over SIQ~ KBs and finite 1Q entailment over
SZQ™ KBs restricted to a single transitive role and no non-
transitive roles is 2EXPTIME-complete.

Proof. Asis well-known, (finite) IQ entailment reduces to the
complement of (finite) KB satisfiability; we focus on the lat-
ter. For SOQ, we simply use the facts that (finite) KB satisfia-
bility for SOQ is NEXPTIME-complete [Gutiérrez-Basulto et
al., 2017] and that the lower bound holds in the finite [Kaza-
kov and Pratt-Hartmann, 2009].

The 2EXPTIME upper bound for unrestricted KB satisfia-
bility follows from Theorem 2, and for finite satisfiability in
the above fragment of SZQ" follows from Theorem 2 and a
recent result by Bednarczyk et al. [2019], implying that sat-
isfiability and finite satisfiability coincide for this fragment
of STQ". This approach cannot be generalized to full SZ7Q"~
since SZQ" lacks the finite model property.

We next show that these upper bounds are tight by re-
ducing the word problem for 2™-space bounded alternating
Turing machines (ATMs), which is known to be 2EXPTIME-
hard [Chandra er al., 1981]. An ATM M = (Q,0,T, o, A)
consists of the set () of states partitioned into existential
states (Q3 and universal states ()y, the input alphabet O, the
tape alphabet I, the starting state gy € Q3, and the transi-
tion relation A. Without loss of generality, we assume that
each of M’s configurations has exactly two successor con-
figurations, universal and existential states alternate, and M
accepts a word iff there is an infinite (alternating) run.

Given M, w, we construct in polynomial time a knowledge
base I = (T, {I(ap)}) using a single transitive role name r
such that M accepts w iff IC is satisfiable. We represent con-
figurations of size 2" in the leaves of binary trees of depth n.
To this end, we use concept names Xy, ..., X, _1 (represent-
ing bits of an exponential counter) and Ly, ..., L, (for the
levels of the tree), and include the following CIs for all ¢, j
with0 <7 <mnandi < j <n:

Li E HT.(Xi [ Li+1) M E'T.(_\Xi 1 Li+1)
Li-i—l M Xi E VT(Lj — Xz)
Ly N-X; C V?".(Lj — ﬁXZ‘)
It should be clear that every model of Ly and these CIs con-
tains a full binary tree of depth n such that the leaves, that
is, the elements satisfying L,,, correspond to the numbers

0,...,2" — 1 in the natural way, via concept names X;. Let
Y =T U(Q x T) be the set of possible labels of a cell in
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M’s computation, and introduce concept names C% for ev-
ety o € X, © € {l,h,r}. Every leaf with number i is
labeled with three concepts Cf,l,cg,cg , representing the

cells7 — 1,4,7 4+ 1 of a configuration using the CI:

Lo CMoeqnry Uses (C5 MMM, 20 =C51)
We use these trees as follows. The concept name [ enforces a
skeleton structure modeling an alternating computation using
the following CIs, for i € {1,2}:
TC AL ALC Lon3r .(Ban3r.Ay)
Ay C Lo N 3r~ (BN 3r.AYL)
Thus, every model of I contains the following structure,

where every triangle represents one of the described trees,
and Ay (A%) marks universal (existential) configurations:

By AL, Lo B3 Ay, Lg

A%, Lo Bs Av,Lg

It remains to ensure that (i) the leaf labeling in every tree is
actually a configuration, (ii) neighboring trees describe suc-
cessor configurations, and (iii) the first tree is labeled with the
initial configuration. We concentrate on (ii), as (i) is similar
and (iii) is straightforward. We illustrate the idea on 7% and
T5 in the figure. In T}, we enforce in every leaf an r-successor
satisfying the label of that cell in the successor configuration
(computable from the CZ). In 75, we enforce in every leaf
an r-successor with the current label Cﬁ. Both in T3 and 75,
these additional elements satisfy a fresh concept name S and
have the same counter value as in the leaves. Observe that, by
transitivity, all 2-2™ created nodes are ‘visible’ from d satisfy-
ing B3 in the figure. By including the CI B3 C (< 2" r 5),
S-elements with the same counter value from 73 and 715 are
forced to identify, thus achieving the desired synchronization.
Having (i)—(iii) in place, it is routine to show that /C is satisfi-
able iff M accepts w. The lower bound applies to finite satis-
fiability, since /C is satisfiable iff it is finitely satisfiable. [

7 Outlook

This paper makes a step towards a complete picture of query
entailment in DLs with number restrictions on transitive
roles. There are several natural next steps involving finite en-
tailment. The first is to cover full SZQ"™. A more challenging
goal is to go beyond instance queries: an immediate obstacle
is that the natural safety condition for SZQ" does not guaran-
tee strongly canonical decompositions. Covering full PRPQs
even just for SQ seems to require generalizing the colored
blocking principle, or finding an entirely different tool.
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