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Abstract

Common knowledge, as is well known, is not at-
tainable in finite time by unreliable communica-
tion, thus hindering perfect coordination. Focus-
ing on the coordinated attack problem modeled us-
ing dynamic epistemic logic, this paper discusses
unreliable communication protocols from a topo-
logical perspective and asks “If the generals may
communicate indefinitely, will they then converge
to a state of common knowledge?” We answer by
making precise and showing the following: com-
mon knowledge is attainable if, and only if, we do
not care about common knowledge.

1 Introduction

The concept of common knowledge is ubiquitous in con-
texts of informationally driven rational agents, whether in
philosophy, economics or computer science. Though com-
mon knowledge is not a requirement for all rational interac-
tion [Aumann and Brandenburger, 2016], it is a prerequisite
for coordination in a plethora of contexts, including social life
[Lewis, 1969], game theory [Morris and Shin, 1997; Rubin-
stein, 1989] and distributed systems [Fagin e al., 1995].

However, as shown by Halpern and Moses [1990], in sys-
tems where message passing may fail, attaining common
knowledge is impossible. The trouble is exemplified by the
coordinated attack problem:

Two allied generals desire to overrun a besieged
township. Any unilateral attack will certainly fail,
but a simultaneous attack is guaranteed victorious.
The generals can only communicate by courier,
who may face peril on route, and thus fail to de-
liver its message. Can the generals ensure victory?

Already Akkoyunlu er al. [1975] show that even when the
courier is always successful, no finite number of messages
will suffice to establish an agreement to attack: If n > 1
is the least number of messages that suffice, loss of the nth
message results in non-agreement. Hence the delivery of the
nth message must be acknowledge before its sender is certain
agreement is reached. For this, an n+ 1st message is required,
contradicting the assumption. See also [Gray, 1978; Yemini
and Cohen, 1979].
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Hapern and Moses [1990] show that no correct protocol
can ensure victory through a formal representation of the
involved higher-order reasoning using interpreted systems.
! They link the coordinated attack problem and common
knowledge by showing that

Prop. 4: common knowledge to attack is a prerequisite for
coordinated attack, and

Thm. 5: when communication is unreliable, it is impossi-
ble to attain common knowledge, and hence

Cor. 6: the generals will never attack.

The content of Thm. 5 nowadays enjoys slogan-like status in
multi-agent dynamics. The result is a hallmark of epistemic
logic and the coordinated attack problem has become a stable
showcase for formal systems of epistemic dynamics.

Yet, the generals’ epistemic dynamics exhibit a tendency
towards common knowledge. Since common knowledge is
characterizable as having all levels of mutual knowledge, and
each successful message delivery yields a raise in the level of
mutual knowledge of agreement, we face the following

Question: If the generals may communicate indefinitely,
will they then converge to a state of common knowledge?

“Yes” may seem a tempting answer: keep adding 1 for long
enough and you will reach the first infinity and thus common
knowledge. This paper argues that this intuition is both cor-
rect and not.

The paper discusses unreliable communication protocols
from a topological perspective, focusing on the coordinated
attack problem. We cast the analysis in a mathematically
expressive framework where convergent sequences and limit
points are natural inhabitants, allowing us to show when and
how unreliable communication converges to a state of com-
mon knowledge. Jumping ahead, we show that common
knowledge is attainable if, and only if, we do not care about
common knowledge. This statement is made precise by the

'Common knowledge is also unattainable when messages are
delivered reliably, but with unbounded delivery time [Halpern and
Moses, 1990], under asynchronous message-passing [Fagin ef al.,
1995] and in systems with temporal imprecision (ibid.). Dim-
itri [2003], however, identifies variation in the communication struc-
ture, that allow to approximate common knowledge.
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framework of the paper, where caring about common knowl-
edge means that it is expressible in the formal logical lan-
guage. Section 2 models the coordinated attack problem us-
ing dynamic epistemic logic (DEL). Section 3 introduces a
notion of convergence and argues its intuitiveness. Section 4
contains results and Section 5 concludes.

2 Coordinated Attack Problem in DEL

A DEL model typically consists of a sequence of small mod-
els, each representing a snapshot of the factual and higher-
order information of all agents at a given moment in time. All
but the first of these is the result of updating its predecessor
with a non-guaranteed communication event. The dynamic
model may thus be seen as an evolution

e1 e2 €3 €q
L1 > Ty ——> T3> Ty >+

Each snapshot model xj is self-contained and each ey is
an operation on zj transforming it into xx4;. Each snap-
shot model zj, is a multi-agent epistemic state—a pointed
Kripke model—and each ey, is an epistemic event, modeled
e.g. using an action model, see e.g [Baltag and Renne, 2016;
van Benthem, 2011; van Ditmarsch et al., 2008]. Details fol-
low.

For generality, we do not define our model directly as an
evolution, but as a composition of two maps. The first takes
an epistemic state = as input and outputs a message to be
send; the second takes the epistemic state and the selected
message as input and outputs an updated epistemic state.
The composition of these two functions then maps epistemic
states to (updated) epistemic states. A run of the model on an
initial state is then obtained by re-applying the map to its own
output indefinitely.

To simplify, we will be concerned only with whether the
generals attain common knowledge of a given target propo-
sition (working with a single atom is for simplicity only;
see Section 5). We thus omit modeling any attacks or lack
thereof, implicitly taking such events to be synonymous with
attaining common knowledge of the target proposition.

2.1 Languages and Epistemic States

We make use of two languages to describe epistemic states,
both defined for two agents, a and b, and a single atom p,
representing the target proposition. Our main concern thus is
whether a and b can attain common knowledge that p.

Let the language L be given by

p:i=TIpl-ploAhe|Kap | Kpyp|Cp
Let £ C L¢ be the sub-language of formulas with no occur-
rences of the common knowledge operator, C.

As semantics for £ and Lo, we use a special case of
pointed Kripke models: an epistemic state for Lo is a pair
(M, s) with M = (S, ~q, ~p, V(p)) where S is a non-empty
set of states, ~; is an equivalence relation on S for i € {a, b}
and V(p) C S is the valuation of the atom p; finally, s € S is
the actual state. For an epistemic state (M, s), write M s. Let
G be (a set representation of) the class of all epistemic states.

With ~ the transitive closure of ~, U ~, the language L
is evaluated over epistemic states using standard clauses. We
only mention those for the modalities:
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S: t:
a,b C(Lb a,b

Figure 1: The generals’ initial epistemic state for coordinated attack,
g1. The model has two states, s and ¢, with the double lining indi-
cating s as actual state. In s, general a knows p, but general b does
not: g1 = Kap A ~Kpp.

MskE K;p iff forallt,s~;t implies MtF ¢
MskECyp iff forallt, s ~t implies Mt FE ¢

The epistemic state of the two generals prior to any commu-
nication is illustrated in Figure 1.

2.2 Messages and Acknowledgments

Beyond the first, messages passed between the generals ac-
knowledge receipt of the previous message. The content of
the acknowledgments can be encoded either using atomic
propositions or epistemic formulas. We choose the latter for
simplicity.

Using epistemic formulas, the messages may be given a
simple recursive build, suitable irrespective of which general
knows the target proposition p. To exemplify, let first general
a communicate knowledge of p with the message K,p. Call
it mg1, as it is send by a as first message. If the message is
received, this informs b that p. To acknowledge delivery, b re-
turns a second message mpo 1= Kpymg1 = K Kyp. As b will
know K,p only in the case m,; is delivered, mys captures
acknowledgment of receipt of m,;. In turn, a may acknowl-
edge receipt of mye by replying with my3 (= K,mpo =
K,KyK,p, etc. The messages may be given recursively
by ma1 = Kap, mp1 = Kpp and map == Kompg—1,
mpr = Kpmgr—_1. By the set of messages, we then refer
toM:={m: i € {a,b}, k € N}.

2.3 Communication Protocol

We focus on a simple alternating communication protocol
akin to that described in the cited literature. The below map
takes an epistemic state as input and returns a message. The
message returned describes the highest level of higher-order
knowledge that p, corresponding to an acknowledgment of
the previous message. When both know p or in case of a
‘higher-order tie’, i.e., when the agents have n levels of mu-
tual knowledge that p without either general knowing this,
we take the liberty of letting only general a send a mes-
sage. A protocol for all epistemic states where either general
knows p is captured by the following message selection map
pw:G—MU{T}:

Define a total lexicographic order < on M by m;;, < mz
iff Kk <k',ork=Fk andi=b,7 =a.Forall z € G let

(2) = max<{m € M:z Em} ifexists
=T else

No m € M is redundant: for each, there is an x € G such
that p(z) = m. For z F Kop A = Kpp, u(x) = Kop = maa,
while for y E Kpp A = Kup, u(y) = Kpp = mp. In general,
for z € G such that x F m,_ ; A =my i, the message picked is
w(z) = mg . Symmetrically, for y with y E my ; A =M k.
1(y) = ma.k.
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s: ] f:
a,b Céj a,b

Figure 2: The unreliable communication (z: ). General ¢ success-
fully sends the message ¢ to general j, with ¢ uncertain about the
success. The double lined success event s represents that the mes-
sage  is delivered successfully. In the failure event f, the null in-
formation message T is received by agent j: f represents that the
courier did not arrive. The recipient j can tell which event occurred.
Assuming that j knows the courier arrives within some fixed time
or not at all, this simplistically, but faithfully, represents successful
passing of unreliable messages.

(sy5): (s,f): (t,f):
<L><L>

Figure 3: The update g> := g1 ® (a: K,p) of the initial epistemic
state 1 (Figure 1) with the first courier-send message. Reflexive
loops are omitted. The update go may be divided in two: the state
(s,s) as the sole child of the success event s and ‘all the rest’: a full
copy of g1 with all states children of the failure event f. The two
parts are connected by linking the two children of the actual state of
g1 with an uncertainty relation of the message’s author: the sender
cannot tell whether b received mg1, i.e., the message that K,p, or
T. The update g» satisfies Kpymq1 and Ko Kpmai.

2.4 Unreliable Message Passing

Beyond deciding on the content of the messages, we must
also model the epistemic circumstances of delivery. In par-
ticular, the sending agent should consider it possible that the
message is not delivered. To model unreliable communica-
tion acts, we use a form of semi-private announcements, il-
lustrated in Figure 2.

Define for i, j € {a,b},i # j and ¢ € L, the unreliable
communication that  from i to j as the tuple

(i: ) = ({s, f}, =i, ~;, pre(s), pre(f))

with a ‘success event’ s and a ‘failure event’ f, relations
~; = {s,f}%, ~; = {(s,s), (f,f)} and preconditions pre(s) =
o, pre(f) =T.

To capture the effect of an unreliable communication on an
epistemic state, we use product update: The product update
of M s with (i: ) is the epistemic state M s ® (i: ¢) defined
by
M/ !/

= (5"~
t) €S x {s,f}: Mt E pre(t)}, rela-
iff t ~; t'andt ~; t', for j € {a,b},

t) € S': Mt E p}, and actual state

Ms® (i: ) : o V'8
with states " = {(¢
tions (¢,t) ~% ('t
Valuatlon V'(p) = {(¢,
s’ = (s,s).

The effect of updating the initial epistemic state x; of Fig-
ure 1 with the unreliable communication of the first message
(a: mq1) is depicted and described in Figure 3.

)

(
)
{

Remark. Semi-private announcements are special cases of
pointed action models, introduced along with product updates
by Baltag ef al. [1998]; Baltag and Moss [2004]. For intro-
ductions, see e.g. [Baltag and Renne, 2016; van Benthem,
2011; van Ditmarsch et al., 2008]. Aucher et al. [2012] also
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g2 :

g3 :

§sSS: sssf: ssff: s fff: t fff:
gs: &»&»&»L

Figure 4: Epistemic states gi—g4. Reflexive loops are omitted to-
gether with commas and parentheses in state names.

use DEL semi-private announcements to model the coordi-
nated attack problem. For alternative approaches, see e.g.
[Fagin et al., 1995; Herzig et al., 2015].

2.5 The Dynamic Model

Finally, we define the map f: G — G representing the gen-
erals’ unreliable communication. Given an epistemic state x,
the map distinguishes three cases: i) the message selected by
i at x ‘belongs’ to a, i) the message ‘belongs’ to b, or i7)
the message of x is the empty message:

x® (a:p(x)) if p(x) = mey for some k
fl@)=qx® (b:u(x)) if u(x) = myy for some k
x else

The map f is total on G, but only represents the communica-
tion protocol on the sub-domain where either agent knows p,
i.e., the set of epistemic states [K,p V Kpp].

2.6 Running for Common Knowledge

Iteratively applying the map f to the initial epistemic state g;
produces an infinite, but neatly structured, sequence of epis-
temic states g := g1, g2, ... with g,11 := f™(g1). The first
elements of g are depicted in Figure 4.

The form of the update described in Figure 3 is symp-
tomatic for all latter. The states of g,41 may be divided in
two: a single child of the actual state of g,, and event s and a
full copy of g,, courtesy of f. The only link between the two
components belongs to the general that sends the nth mes-
sage: it links the two children of g,,’s actual state.

The sequence § = g1, g2, ... adheres to a recursive con-
struction up to isomorphism: z1 = (S1,~a1,~p1, V1, 51)
with 5] = {Sl,t}, ~Ngl= {(S,S), (t,t)}, ~p1= {8,t}2, and
Vi(p) = {s}, cf. Figure 1, and z, = (Sk, ~ak, ~bk; Vi, Sk)
with

St =5SEg_1 U {Sk},

) ~ak—1 U{Sk, Sk,1}2 if k is odd,
TR {Nak_l U{(sk.s6)}  else

k-1 U{Sk, Sk_1}2 if £ is odd,
R {ka—l U{(Sk,sk)} else

Vi(p) = Vi—1(p) U {51}
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The run g mirrors the aforementioned result by Halpern
and Moses [1990]: common knowledge is not attained in fi-
nite time. For every n € N, g, contains a child of the state
t, and this child is not in V;,(p). Yet, it is reachable from the
actual state of g,, by the transitive closure of ~g, U ~yp,.
Hence

foralln € N, g, F =Cp. (1)

2.7 Approaching Common Knowledge

Though the generals at no time attain common knowledge,
they are seemingly getting closer: with each trip of the
courier, another level of higher-order knowledge that p is cre-
ated, bringing the generals one step closer to common knowl-
edge. To make things formal, define

E'o:= K,0 AN Kyp and E¥*lp .= E'EF

Then for any epistemic state z, x = Cyp iff x F E™¢ for
alln € N, cf. e.g. [Fagin et al., 1995]. For the generals’
sequence of epistemic states, g = g1, g2, ..., it then holds true
for all n € N that

Gni1 E E"p A-E"Tlp )

Hence, as n grows larger, the set of formulas that ‘support’
common-knowledge-that-p satisfied by g,, grows, while the
set of formulas contradicting common-knowledge-that-p sat-
isfied by g,, shrinks. Does this then mean that the generals
attain common knowledge as n goes to infinity?

3 Logical Convergence and its Topology

To answer this question, it is natural to turn to the mathemat-
ical notions of convergence and limits. These notions, how-
ever, are relative to structure beyond only sequences of mod-
els. For an answer to the above question to be illuminating,
also this additional structure must be natural.

The nowadays most common type of additional structure
comes in the form of a metric, or perhaps it’s more general
cousin, a topology. Roughly, a metric is a distance-measure,
specifying quantitatively how far any two points are apart.
That is, a metric on a set X is a function

d: X xX —R

that satisfies the four natural requirements
i. positivity: d(z,y) > 0,
1. identity: d(x,y) = 0iffz =y,
i4i. symmetry: d(z,y) = d(y, z), and
iv. the triangular inequality: d(z, z) < d(z,y) + d(y, 2).

A metric allows to define convergence. Formally, a sequence
T = x1,x9, -+ € X of points converges to a point x in the
metric space (X, d) iff for every real number ¢ > 0, there is a
time NV after which every point in Z is within € distance of x:

Ve € Rsg, 3N € N)Vn > N, d(x,x) < e.

The concept of convergence can also be defined in a more
abstract setting: a topology is a conceptual abstraction, qual-
itatively specifying closeness in space. A set imbued with a
metric is called a metric space, while a set with a topology is
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a topological space. Topological spaces are generalizations
of metric spaces: every metric space gives rise to a topolog-
ical space, but not vice versa. For present purposes, perhaps
think of a topological space as obtained from a metric space
by throwing away the real values on distances, remembering
only which points are closer to some point than others. For-
mally, a fopology on a set X is a collection of subsets of X,
T C P(X), satisfying three abstract requirements:

1. The full and empty setsarein 7: X € T and () € T;

2. T is closed under finite intersections: if U; € T for all
i € I and I is finite, then (),.,; U; € T

3. T is closed under arbitrary unions: if U; € 7T for all
j € J, then UjEJ U, eT.

Members of 7 C P(X) are called open sets of X, while
the complement of an open set is called closed. The notion
of convergence, finally, has a topological counterpart: a se-
quence T = x1,Z2, -+ € X of points converges to a point
x in the topological space (X, T) iff for every U € T with
x € U, there is a time NN after which every point in Z is in U:

VUeT:x€eU=31INeN,Vn>N,xz, € U.

To obtain reasonable insights on the convergence of unre-
liable communication, it does not suffice to fix just any met-
ric or topological space—the space must also capture our in-
tuitions concerning distances between models. Else conver-
gence results are without bite. Consider for example the se-
quence of reals

(Y2 )pen = Yf2,1/4,1/8, 116, . ..

It is forever decreasing yet always positive, with each incre-
mental point having a smaller difference with 0 than its pre-
decessor: in one intuitive understanding of the reals, the se-
quence converges to 0. This is also true under the Euclidean
metric d. (forall z,y € R, de(z,y) = |z — y|), but it is false
under the discrete metric dg (for all z,y € R, if x # y,
de(x,y) = 1, else 0). This illustrates the importance of
choosing a natural notion of distance for results to be of in-
terest: that 1/2,1/4,1/8, 1/16,... converges in (R, d,) reflects
a strong intuition concerning the nature of the reals, while the
conclusion concerning (R, d;) seems merely obscure.

Our results pertain to a type of topology that we find highly
intuitive. To argue its intuitiveness, we present it through an
alternative approach to convergence, namely sequential con-
vergence.

3.1 Sequential and Logical Convergence

In the most general formulation, a sequential convergence on
aset X is a subset L of X x X. When a sequence-element
pair (o, ) belongs to L, the sequence o is said to sequentially
converge to x in L. Three standard coherence axioms for a
sequential convergence are ¢) that a constant sequence con-
verges to its only value, 47) that all subsequences of a conver-
gent sequence share its limit, and 4i¢) that limits are unique.
When L satisfies suitable coherence axioms, the sequential
convergence in turn induces a topology, possibly with stan-
dard structural properties—like being Hausdorff. Fri¢ [1997]
presents the theory and a worthwhile historical review.
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We find the following approach to convergence through
sequential convergence highly intuitive: Given that one has
chosen a formal language L that represents exactly the fea-
tures of interest over some class of models, a natural sequen-
tial convergence may be defined. The intuition is that a se-
quence of models z1, 2, ... converges to the model x just in
case the models in the sequence steadily become more like
the model z. With the features of interest given by formu-
las of L, this means that the models 1, x5, ... move towards
satisfying all the same formulas as x.

The corresponding convergence notion was introduced in
[Klein and Rendsvig, 2017] under the label logical conver-
gence. A general definition may be given as follows:

Definition 1. Let L be a language binarily interpreted over
a set of models X by a satisfaction relation . A sequence
Z1,22,... = 0 € XN then L-converges to x € X iff for
every L-formula ¢ for which z F ¢, there is NV € N such that
T, Fpforalln > N.

Logical convergence for the language L induces a se-
quential convergence: define L7, to contain exactly the pairs
(o,2) € XN x X such that

VoeL:zFp=3INeNVn>N,z, F .

In the ensuing, specifically the sequential convergences of the
languages £ and L will be of interest. We refer simply to
L-convergence and Lo -convergence.

3.2 Modal Spaces

In applying a logical convergence to a set of epistemic states
X, an annoyance may surface: if the set X is not suitably fil-
tered, limits need not be unique. This runs somewhat counter
to intuitions: when a sequence o logically converges to both
x and y, this entails that x and y share all features of inter-
est—hence, for all intents and purposes, the models are the
same. Yet, x and y need not be set-theoretically identical,
making limits non-unique.

There are several ways to restore the uniqueness of lim-
its without interfering with the represented logical dynamics.
We choose what we consider the simplest: quotients by logi-
cal equivalence. In parlance, we follow [Klein and Rendsvig,
2017] in referring to modal spaces:

Definition 2. Let L be a language binarily interpreted over a
set of models X by a satisfaction relation . The modal space
X 1, is the quotient of X under L-equivalence. L.e.,

X ={zr: 2 € X} for
zp={ye X:VpeLyFE piffxF ¢}

With X, given, the truth set of ¢ € Lis [¢], = {x1 €
X :Veexn,xE p}.

As only the languages £ and Lo are used below, the sub-
scripts of @y, and [p]r are omitted. This causes no confu-
sion concerning x as X = X, for any X, nor for [¢]
as [plz = [¢lee forall ¢ € L C L and the subscript is
clearly Lo when ¢ contains common knowledge operators.
Throughout, write £ ¢ for & € [p].

As every epistemic state x € G is uniquely represented in
G =G, = G, we again refer to the elements € G as
epistemic states.
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3.3 From Logical Convergence to Topology

The study of convergence and limits is the hallmark of topol-
ogy. Though sequential convergence—through logical con-
vergence—may be useful in fixing intuitions, as analytical
framework it has long been surpassed by general topology.
If one agrees that logical convergence captures a natural
notion of convergence and further finds it reasonable to iden-
tify models under logical equivalence, then finding a topology
which respects one’s intuitions is straightforward. In fact,
there is a unique topology which respects the intuition be-
hind logical convergence—a unique topology for which logi-
cal convergence and topological convergence are equivalent:

Theorem 3 ([Klein and Rendsvig, 2018]). Ler L € {L, Lo}
and let T be a topology on X 1. The following are equivalent:

1. A sequence x1,xo, ... of points from X | converges to
x in the topological space (X, T) if, and only if,
x1,Xa, ... logically converges to x in X .

2. T is the Stone topology 7;, on X ie. the topology
whose open sets are exactly {[¢] C X : ¢ € L}.

Both logical convergence and the Stone topology are lan-
guage relative, but for each language, there is a unigue topol-
ogy capturing its logical convergence. Importantly, while
X = X, itis not the case that 7, and 7, are the same
topologies. A similar observation about topologies on type
spaces is made by Rubinstein [1989] in his seminal work on
almost common knowledge.?

4 Unreliable Communication in the Limit

a,b C

Figure 5: The epistemic state ¢, € G where the generals have com-
mon knowledge that p.

In the modal space G, there is exactly one element that sat-
isfies C'p. This is the point ¢, € G containing the epistemic
state ¢, € G of Figure 5. Given Theorem 3, whether the
generals attain common knowledge in the limit reduces to the
question of whether the sequence g converges to ¢, in the
topological space (G, Tz, ). As it happens, hope for common
knowledge in the limit is futile:

Proposition 4. In (G, T;..), the sequence g does not con-
verge.

Proof. For a contradiction, assume g to converges to x in
(G,Tz.). For every open neighborhood U of &, there must
be an N € N such that g,, € U for alln > N. Both [Cp]
and [-Cp] are open in 7. They partition G, so either x €
[Cp] or & € [~Cp]. If x is in [Cp], then [Cp| is an open

2Other topological approaches to belief and knowledge relate to
the definition of common knowledge (e.g. [Lewis, 1969], see [Van-
derschraaf and Sillari, 2014] for an overview) or to belief revision
[Baltag et al., 2019]. These use topologies on the sets of worlds
within a given model to define semantics for modal operators. In
contrast, we assume standard Kripke semantics for modal operators
and use topologies defined on a set of models to study convergence.
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neighborhood of x: but for no n € N does g, F Cp, cf.
Eq. 1, p. 4, s0 gn, is not in [Cp]. The purported limit of g can
therefore not be in [C'p]. If z is in [~Cp], then = F —=E*p for
some k € N. Le., [=E¥p] is an open neighborhood of z—but
it does not contain gj.1, as gry1 F EFp cf. Eq. 2, p. 4.
The purported limit of g can therefore not be in [~C'p] either.
Hence g does not converge in (G, Tz ).

Proposition 4 may run counter to intuitions: while the gen-
erals in finite time attain any level of mutual higher-order
knowledge that p, not even in the limit do they attain com-
mon knowledge. Topologically, the explanation is simple: the
point ¢, is isolated in G and can therefore not be gradually
approached. We return to this below.

Emphatically, this non-convergence is not a consequence
of the epistemic states gua relational structures, but of how
these are described by the formal language. Under exactly
the same dynamics but omitting the common knowledge op-
erator, all higher-order uncertainty that p is successfully elim-
inated:

Proposition 5. In (G, T;), the sequence g converges to cp.

Proof. Every ¢ from L satisfied by c,, is implied by some
formula in { EVNp: N € N}. Thus, for every open neighbor-
hood U € T of ¢p, [ENp] C U for some N € N. Now, for
alln > N +1,g, F ENp,cf. Eq. 2. Le., g, € [ENp] C U.
Hence g converges to cp. O

Proposition 5 thus shows that omitting common knowledge
syntactically lets the generals obtain it semantically.

Remark. For those who would prefer results concerning dy-
namics directly on the set of models G instead of on the modal
space G, we remark that Proposition 4 implies that g also di-
verges in (G, Tz, ). Proposition 5 only implies that if g con-
verges in (G, Tz ), then its limit is some = € cp.

4.1 Main Results

Propositions 4 and 5 apply to the specific run g. Yet, sim-
ilar conclusions may be drawn more generally for the dy-
namic model f. Our first main result generalizes the non-
convergence conclusion of Proposition 4 by showing that
common knowledge, if attainable at all, must be reached in
finite time:

Proposition 6. Ler (x,),cn be any convergent sequence
from (G, Tze). If limy, oo (xy,) F Cp, then there exists a
k € N such that ;. = Cp.

Proof. By Theorem 3, (x,)nen converges topologically iff
it converges logically. By Definition 1, lim,,_,~(x,) F Cp
then implies that there is some k£ € N such that xy, F Cp. O

Our second main result shows that the semantic attainment
of common knowledge in Proposition 5 is not an artifact, but
a robust consequence of the generals’ communication proto-
col. When either general knows p, the protocol eliminates all
uncertainty—semantically, the generals always converge to a
state of common knowledge. To show this, encode the proto-
col f on the modal space G by the map f : G — G given

1746

by f(x) = yiff f(z) € y, for all z € G. This map is well-
defined as product update preserves bisimulation and hence
modal equivalence, cf. [Baltag and Moss, 2004]. We obtain:

Proposition 7. For all * € [K,p V Kyp] C G,
lim,, 00 f"(x) = ¢p in the topology 7.
The proof uses the following fixed point theorem:

Theorem 8 ([Edelstein, 1962]). Every map F on a compact
metric space (X, d) for which d(F(x), F(y)) < d(x,y) for
all x,y € X, x # y, has a unique fixed point in X.
Corollary 9. Let F, and (X, d) as in Theorem 8. Then for
any x € X, the sequence x, F(x), F%(x) ... converges to the
unique fix point of F'.

Call a map satisfying the condition of Theorem 8 Edelstein
contractive. The property is used as follows: Lemma 10 in-
troduces a metric dg on G for which metric space (G, dg) is
compact and has as metric topology 7. Lemma 11 shows
the second-iterate f> of f Edelstein contractive in the sub-
space [K,p V K,p] C G with fixed point ¢,. By Corol-
lary 9, for any x in X, the sequences x, f%(z), f*(z)...
andf(z), f3(z), f>(x) ... converge to c,. Hence also the se-
quence x, f(x), f2(z) . .. does, establishing Proposition 7.

Lemma 10. The function dg : G X G— R given by

0 iftFEE'p < ykE Epforalln
dg(x,y) = %ﬂ if n is the least integer such that
notx E E"p s ykEE"p

is a metric on G. The metric space (G,dg) is compact and
has metric topology Ty. The same holds for the subspace
((Kap V Kypl, dp).

Proof. By results of Klein and Rendsvig [2017]. In their ter-
minology, the set D = {E*p},c is a finite representative
descriptor, and with the weight function w(E™p) := n_lH for
all n, dg is obtained as a metric of their family of general-
ized Hamming distances. Hence dg has metric topology 7,
which is compact on the modal space G as S5 is complete
w.r.t. G. The same holds for the subspace [K,p V Kpp] as it

O

is closed in 7.

Lemma 11. The second-iterate f* of f is Edelstein contrac-
tive in ([K,p V Kyp|,dg) and has fixed point cp.

Proof. Let x,y € [K,pV Kpp|,x # y. Then dg(x,y) =

ﬁ for some n. L.e., both x and y satisfy E"p, but only one

satisfies E""1p. Yet, both f2(x) and f?(y) satisfy B
Wlog, assume = = E"lpand y E =E""1p. Then f%(z) F
Entlp as f preserves satisfaction of E¥p, for all k. For
f?(y), notice that y must satisfy either 1. K, E"pA—K, E"p,
2. KyE"p A =K, E™p, or 3. ~K,E"p A ~K,E"p. In the
first case, pu(y) = K,E"p,so f(y) = y® (a : K,E™p) satis-
fies Ky K,E™p, and hence K, E"p, so also E"T1p. Hence
also f2(y) F E™"!p. The second case is symmetric. In
the third case, u(y) = K,E" 'p. Hence f(y) satisfies
KyK,E" 1p, so also KyE"p—which is u(f(y)). Then
f*(y) E K,K,E"p, and hence f?(y) F E""!p. As both
f?(x) and f2(y) satisty E"*, dp(f2(z), F*(y)) = 735 <
dg(z,y). Finally, c, is a fixed point as p(cp) = T. O
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5 Concluding Remarks

We have modeled and analyzed the coordinated attack prob-
lem as a showcase example for asymptotic behavior of long
term, asynchronous message passing with uncertain success.
The analysis provided employs dynamic epistemic logic in a
topological setting. The analysis and our main results con-
cern a highly simplified representation of unreliable commu-
nicating, with but two agents and a single atomic proposition.
Not much hinges on this choice. Similar techniques work
for more complex representations with additional agents and
atomic propositions. Generalized results on unreliable com-
munication are obtainable by working with more advanced
modal spaces, quotienting out what is not communicated
about. As dynamic epistemic logic is a very general frame-
work, the showcased techniques apply also to other instances
of long-term informational dynamics.

Our main results imply that the analysis of long-term se-
mantic updates is highly dependent on our choice of lan-
guage and the corresponding topology. For a language with-
out common knowledge operator, unreliable communication
will converge to a state of common knowledge, but the agents
are unable to express it. If, however, the language contains
a common knowledge operator, then unreliable communica-
tion does not converge. Assuming that our choice of language
exactly reflects the features we are interested in, this can be
put precisely in a slogan-like statement: common knowledge
is attainable, if, and only if, we do not care about common
knowledge.
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