
Automatic Verification of FSA Strategies via Counterexample-Guided
Local Search for Invariants

Kailun Luo and Yongmei Liu∗

Dept. of Computer Science, Sun Yat-sen University, Guangzhou 510006, China
luokl3@mail2.sysu.edu.cn, ymliu@mail.sysu.edu.cn

Abstract
Strategy representation and reasoning has received
much attention over the past years. In this paper,
we consider the representation of general strate-
gies that solve a class of (possibly infinitely many)
games with similar structures, and their automatic
verification, which is an undecidable problem. We
propose to represent a general strategy by an FSA
(Finite State Automaton) with edges labelled by
restricted Golog programs. We formalize the se-
mantics of FSA strategies in the situation calculus.
Then we propose an incomplete method for verify-
ing whether an FSA strategy is a winning strategy
by counterexample-guided local search for appro-
priate invariants. We implemented our method and
did experiments on combinatorial game and also
single-agent domains. Experimental results showed
that our system can successfully verify most of
them within a reasonable amount of time.

1 Introduction
Strategy representation and reasoning has received much at-
tention over the past years. The two most popular strategic
logics are Alternating-time Temporal Logic (ATL) [Alur et
al., 2002] and Strategy Logic (SL) [Chatterjee et al., 2010].
In ATL, strategies are treated implicitly: the formula 〈〈A〉〉φ
expresses that coalition A has a strategy to ensure φ hold.
In SL, a strategy is an explicit first-order object which is a
function from sequences of states to actions. Model-checking
for ATL is in PTIME, while model-checking for SL is non-
elementarily decidable. MCMAS [Lomuscio et al., 2009]
and MCMAS-SLK [Cermák et al., 2014] are representative
model checking tools for ATL and SL respectively.

In this paper, we are concerned about the representation
and reasoning of general strategies that solve a class of (pos-
sibly infinitely many) games with similar structures, repre-
sented by a basic action theory in the situation calculus [Re-
iter, 2001]. A related problem is generalized planning where
a single plan works for possibly infinitely many similar plan-
ning problems [Levesque, 2005; Srivastava et al., 2008]. To
illustrate our problem, consider the Chomp game. As shown

∗Corresponding author

Figure 1: The Chomp game

in Figure 1, cookies are laid out on a rectangular grid of an
arbitrary size.

The cookie in the top left position (1,1) is poisoned. Two
players take turns making moves: at each move, a player eats
a remaining cookie, together with all cookies to the right or
below it. When the grid is square, a (general) winning strategy
for player 1 is this: First, eat the cookie in position (2,2); then
when the opponent eats the cookie in position (x, y), respond
with eating the cookie in position (y, x).

To represent generalized plans that solve multiple plan-
ning instances, Hu and Levesque [2011] proposed FSA (Fi-
nite State Automaton) plans. Inspired by this work, in this
paper, we propose to represent a general strategy by an
FSA with edges labeled by restricted programs of Golog
[Levesque et al., 1997]. FSA representation of strategies has
the advantages of ease to represent nested loop structures and
amenability to algorithmic operations. We formalize the se-
mantics of FSA strategies in the situation calculus, by making
use of second-order logic.

In this paper, we explore the automatic verification of FSA
strategies, in particular, verifying if an FSA strategy is a win-
ning strategy wrt a basic action theory in the situation calcu-
lus. Since this is a (second-order) theorem-proving task, we
propose a sound but incomplete method via counterexample-
guided local search for appropriate invariants, which can be
checked with first-order theorem proving. For an FSA strat-
egy, an invariant is a labelling of each strategy state with
a formula so that if the formula is true in the state, in any
successor state, the label formula will be true. The method
of counterexample-guided refinement is widely used in the
formal methods community, e.g., CEGAR (Counter-Example
Guided Abstraction Refinement) [Clarke et al., 2000; 2003].
The idea is: first generate an initial abstraction; if it does not

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1814

serve the purpose, we get a counterexample and use it to re-
fine our abstraction, and then repeat the process.

We implemented our method and experimented on two-
player domains from the combinatorial game literature. We
also tested our method with single-agent domains from the
planning literature by adapting them to our framework. Our
system can successfully verify most of them within a reason-
able amount of time.

2 Preliminaries
In this section, we introduce the situation calculus, Golog pro-
grams, regression, and small model progression.

The situation calculus is a many-sorted first-order logical
language with limited second-order features [Reiter, 2001].
In a situation calculus language, there are three disjoint sorts:
action for actions, situation for situations and object for
everything else. The symbol S0 denotes the initial situation;
do(a, s) is a binary function representing the situation re-
sulting from performing action a in situation s; the relation
Poss(a, s) states that it is possible to perform action a in sit-
uation s. There are action functions, e.g., put(x, y). A fluent
is a special relation/function whose values vary from situa-
tion to situation and is denoted by a relation/function whose
last argument is a situation term. If a formula refers to a par-
ticular situation τ , we call it uniform in τ . A uniform formula
φ with all situation arguments removed is called a situation-
suppressed formula, and φ[s] denotes the formula obtained
from φ by restoring s as the situation arguments to all fluents.

In the situation calculus, a particular domain of application
is specified by a basic action theory (BAT) of the form:

D = Σ ∪ Dap ∪ Dss ∪ Duna ∪ DS0
,where

1. Σ is the set of the foundational axioms for situations.
2. Dap contains a single precondition axiom of the form
Poss(a, s) ≡ Π(a, s), where Π(a, s) is uniform in s.

3. Dss is a set of successor state axioms (SSAs), one for each
relational fluent, of the form

F (~x, do(a, s)) ≡ ΦF (~x, a, s),

and one for each functional fluent, of the form

f(~x, do(a, s)) = y ≡ Φf (~x, y, a, s),

where ΦF (~x, a, s) and Φf (~x, y, a, s) are uniform in s.
4. Duna is the set of unique names axioms for actions.
5. DS0 , the initial KB, is a set of sentences uniform in S0.

Golog is a high-level programming language for repre-
senting complex actions. The formal semantics of Golog
is specified by an abbreviation Do(δ, s, s′), meaning that
situation s will be updated to s′ after executing program δ.
Do(δ, s, s′) is inductively defined as follows:
1. Primitive actions: For any action term α,
Do(α, s, s′)

.
= Poss(α, s) ∧ s′ = do(α, s).

2. Test actions: For any situation-suppressed formula φ,
Do(φ?, s, s′)

.
= φ[s] ∧ s = s′.

3. Sequence:
Do(δ1; δ2, s, s

′)
.
= ∃s′′.Do(δ1, s, s′′) ∧Do(δ2, s′′, s′).

4. Nondeterministic choice of two actions:
Do(δ1|δ2, s, s′) .

= Do(δ1, s, s
′) ∨Do(δ2, s, s′).

5. Nondeterministic choice of action arguments:
Do((πx)δ(x), s, s′)

.
= (∃x)Do(δ(x), s, s′).

6. Nondeterministic iteration:
Do(δ∗, s, s′)

.
= (∀P).{(∀s1)P (s1, s1) ∧ (∀s1, s2, s3)

[P (s1, s2) ∧Do(δ, s2, s3) ⊃ P (s1, s3)]} ⊃ P (s, s′).
Regression is an important computational mechanism

for reasoning about actions. Here we present the one step
regression operator.
Definition 1 Given a BAT D, we useR[φ] to denote the for-
mula obtained from φ by the following steps:
1. For each functional fluent term f(~t, do(α, σ)), re-

place the current formula ψ with (∃y).Φf (~t, y, α, σ) ∧
ψ[f(~t, do(α, σ))/y], where ψ[t/y] denotes the result of re-
placing all occurrences of t in ψ by y.

2. Replace each fluent atom F (~t, do(α, σ)) with ΦF (~t, α, σ).
3. Replace each atom Poss(α, σ) with Π(α, σ).
4. Further simplify the result by using Duna.
Proposition 1 D |= φ ≡ R[φ].

Li and Liu [2015] extended the regression of formulas wrt
primitive actions to that wrt programs. Here we omit the case
of iteration since we do not need it in this paper.
Definition 2 Let φ(s) be a formula uniform in s. The regres-
sion of φ(s) wrt program δ, writtenR[φ(s), δ], is defined as:
• R[φ(s), α]

.
= R[Poss(α, s) ⊃ φ(do(α, s))].

• R[φ(s), ψ?]
.
= ψ[s] ⊃ φ(s).

• R[φ(s), δ1; δ2]
.
= R[R[φ(s), δ2], δ1].

• R[φ(s), δ1|δ2]
.
= R[φ(s), δ1] ∧R[φ(s), δ2].

• R[φ(s), (πx)δ(x)]
.
= (∀x)R[φ(s), δ(x)].

Based on Proposition 1, by induction, it is easy to prove:
Proposition 2 Let δ be a Golog program not involving non-
deterministic iteration. We have:

D |= ∀s.R[φ(s), δ] ≡ ∀s′.Do(δ, s, s′) ⊃ φ(s′).
A small model can be represented as a finite set of ground

atoms under the closed-world assumption. Li and Liu [2015]
presented the notion of small model progression, and use
prog[M, δ] to denote the set of small models resulting from
M by executing δ. The formal definition is as follows:
Definition 3 Given a small model M with domain D and
a program δ, the progression of M wrt δ, denoted as
prog[M, δ], results in a set of small models:
• prog[M,α] = 1. ∅ if M [s] 6|= Poss(α, s).

2. {M ′} if M [s] |= Poss(α, s), where M ′ is the model
obtained from M by applying the effects of α.
• prog[M,ψ?] = 1. ∅ if M [s] 6|= ψ[s].

2. {M} if M [s] |= ψ[s].
• prog[M, δ1; δ2] = prog[prog[M, δ1], δ2].
• prog[M, δ1|δ2] = prog[M, δ1] ∪ prog[M, δ2].
• prog[M, (πx)δ(x)] =

⋃{prog[M, δ(c)]|c ∈ D}.
WhenM is a set of small models, we define
prog[M, δ] =

⋃{prog[M, δ]|M ∈M}.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1815

¬turn(p, s) and turn(P1, S0) ^ ¬turn(P2, S0). We intro-
duce abbreviations end(s), meaning the game ends in situ-
ation s, and win(p, s), meaning player p wins in situation
s. We require that D |= 8s.8a¬Poss(a, s) � end(s). That
is, when no action is executable, the game ends. We do not
consider games have infinite playing traces, which means
D |= 8s.executable(s) � 9s0.s v s0 ^ end(s0).
As a running example, we consider the chomp game.

Cookies are laid out on a rectangular grid. The cookie in the
top left position (1,1) is poisoned. Two players take turns to
making moves: at each move, a player is required to eat a
remaining cookie, together with all cookies to the right and
below it. The loser is the player who has no choice but to eat
the poisoned cookie. We use Chomp 2⇥N to represent the
chomp game with 2⇥N grids. Formalization is as follows:

Example 1 We use a constant N and a functional fluent
row(x, s) for the number of remaining cookies in row x.

Precondition Axioms:
Poss(eat(x, y), s) ⌘ 0 < x  2 ^ 0 < y  row(x, s)
Successor State Axioms :
row(x, do(a, s)) = y ⌘

row(x, s) = y ^ a = eat(i, j) ^ x < i_
row(x, s) = y ^ a = eat(i, j) ^ x � i ^ y < j_
j � 1 = y ^ a = eat(i, j) ^ x � i ^ row(x, s) < j

Initial Situation Axiom :
(8x.0 < x  2 � row(x) = N) ^ turn(P1) ^N > 1
Additional Axiom :
win(p, s) ⌘ row(1) = 1 ^ row(2) = 0 ^ ¬turn(p)
end(s) ⌘ row(1) = 1 ^ row(2) = 0

To give a graphic representation of players’ strategies,
inspired by FSA plans (Hu and Levesque 2011), we propose
the concept of FSA strategies. We say that a Golog program
is a single-step program if its execution always results in the
execution of a single primitive action.

Definition 4 An FSA strategy is a tuple S = (Q,E, q0) s.t.

1. Q is a finite set of states, and q0 2 Q is the initial state;

2. E is a finite set of edges of the form q
⌧! q0, where q is

the staring state, q0 is the ending state, and ⌧ is the label,
which is a single-step Golog program.

We say that S is a strategy for player p if all primitive ac-
tions are actions of p. We say that S is a compositional strat-
egy if for any state q, all primitive actions ending at q are
actions of a player and all primitive actions leaving q are
actions of the other player.

A notable difference from FSA plans is that we use
single-step Golog programs as edge labels. This allows for
more compact representation of strategies.
Intuitively, a state of an FSA strategy S for a player p

represents a mental state of p for decision making. The exe-
cution of S is as follows. Initially, p is in state q0. When the
player is in state q, she can choose an edge q ⌧! q0, perform
⌧ and move to q0. Intuitively, a state of an FSA composi-
tional strategy C represents a global state of the game. The
execution of C is as follows. Initially, the game is in state

q0. When the game is in state q, a player can perform a pro-
gram starting at q and the game moves to the ending state.
For example, the FSA strategy with a single state q0 and

a single edge from q0 to q0 labeled with ⇡a.a shows the
strategy for a player where the player simply takes any exe-
cutable action. We call such a strategy the null strategy.
Strategies for both players can be composed to form a

compositional strategy.

Definition 5 Given an FSA strategy S1 = (Q1,E1, q
1
0) for

player 1 and an FSA strategy S2 = (Q2,E2, q
2
0) for player

2, we define their composition strategy S = (Q,E, q0) as
follows: Q = Q1 ⇥Q2 ⇥ {1, 2}, q0 = (q10 , q

2
0 , 1), and for

any q1 2 Q1, q2 2 Q2, (q1, q2, 1)
⌧! (q01, q2, 2) iff q1

⌧! q01
in S1, and (q1, q2, 2)

⌧! (q1, q
0
2, 1) iff q2

⌧! q02 in S2.

Example 2 The below three graphs are an FSA strategy, a
null strategy and their compositional strategy respectively.
The FSA strategy shows how player 1 play for the chomp
game. Player 1 tries to constantly perform an action depend-
ing on the labelled program ⌧ and the current situation and
stays in state Q0.

⌧ : ⇡(x, y).last(x, y)?; eat(P1, y, x)

q0

(a)

⇡a.a q0

(b)

q1
eat(P1, 2, 2)

⌧

q0

(c)

q1 q2
eat(P1, 2, 2)

⇡a.a

⌧

In the following, we formalize the semantics of FSA
strategies. Given an FSA strategy S, we first introduce a
transition relation TS(q, s, q

0, s0), meaning that from situ-
ation s, it is possible to reach situation s0 by executing a
program starting at state q and ending at state q0.

Definition 6 Given an FSA strategy S = (Q,E, Q0)
where Q ✓ Q, we use TS(q, s, q

0, s0) as abbreviation for
the following formula:

W
g

⌧!g0 g = q^g0 = q0^Do(⌧, s, s0).

For a compositional strategy S, we define the reflexive
transitive closure of TS : intuitively, T ⇤

S(q, s, q
0, s0) means

that from situation s, it is possible to reach situation s0 by
following the compositional strategy.

Definition 7 Given an FSA compositional strategy S =
(Q,E, Q0) where Q ✓ Q, we use T ⇤

S(q, s, q
0, s0) as ab-

breviation for 8R.{. . . � R(q, s, q0, s0)}, where . . . is the
conjunction of the universal closure of the following:
• R(q0, s0, q0, s0);
• R(q, s, q0, s0) ^ TS(q

0, s0, q00, s00) � R(q, s, q00, s00).

It is possible that a strategy is incomplete in the sense that
when the opponent adopts the null strategy, there might be
situations where the player is in a state q where no program
starting at q is executable.

Figure 2: An FSA strategy and its composite strategy

3 FSA Strategies
In this section, we formalize the concept of FSA strategies in
the situation calculus. We focus on combinatorial games [Fer-
guson, 2014], i.e., two-player turn-based games which always
end in a finite number of moves.

We make the following extensions of the situation calculus
and a basic action theory D: We introduce a new sort state,
a countable infinite set of state constants Q = {Q0, Q1, . . .},
and unique name axioms of the form Qi 6= Qj , for i 6= j. We
introduce a new sort player, two player constants P1 and P2,
together with the axiom ∀p.(p = P1 ∨ p = P2)∧ (P1 6= P2).
We use a relational fluent turn(p, s), meaning in situation s,
it is p’s turn to play. We add the axioms: turn(p, do(a, s)) ≡
¬turn(p, s) and turn(P1, S0) ∧ ¬turn(P2, S0). We intro-
duce abbreviations end(s), meaning the game ends in situa-
tion s, and win(p, s), meaning p wins in situation s.

We add a special action πa.a, meaning doing any exe-
cutable action. Its formal semantics is defined as follows:
Do(πa.a, s, s′)

.
= ∃a.Poss(a, s) ∧ s′ = do(a, s).

We now formalize the chomp game.

Example 1 We use two constants N and M to denote the
size of the rectangular grid. Fluent ch(x, y, s) means there is
a cookie at position (x, y). Action eat(p, x, y) means player
p eats the cookie at position (x, y) together with all cookies
to the right or below it. Fluent last(x, y, s) means the last
action is eat(p, x, y) for some player p. In addition to the
second-order axiomatization of Peano arithmetic, we have
the following axioms:

Poss(eat(p, x, y), s) ≡ turn(p, s) ∧ ch(x, y, s)
ch(x, y, do(a, s)) ≡

∃p, i, j.a = eat(p, i, j) ∧ (i > x ∨ j > y)
last(x, y, do(a, s)) ≡ ∃p.a = eat(p, x, y)
ch(x, y, S0) ≡ 0 < x ≤ N ∧ 0 < y ≤M
win(p, s)

.
= turn(p); end(s)

.
= ¬ch(1, 1, s)

We use Chomp NxN (resp. 2xN) to represent the chomp game
with square (resp. two row) grids, and add the Initial Situation
Axiom M = N (resp. M = 2).

Note that although each chomp game is finite, since there
is no bound on the size of the game, there are infinitely many
chomp games.

We say that a Golog program is single-step if its execution
always results in the execution of a single primitive action.

Definition 4 An FSA strategy is a tuple S = (Q,E, q0) s.t.
Q is a finite set of states, and q0 ∈ Q is the initial state; E

is a finite set of edges of the form q
τ→ q′, where q is the

starting state, q′ is the ending state, and τ is the label, which
is a single-step Golog program.

A notable difference from FSA plans is that we use single-
step Golog programs as edge labels. This allows for more
compact representation of strategies.

We say that S is a strategy for player p if all primitive ac-
tions are actions of p. We say that S is a compositestrategy
if for any state q, all primitive actions ending at q are actions
of a player and all primitive actions leaving q are actions of
the other player.

Intuitively, a state of an FSA strategy S for a player p rep-
resents a mental state of p for decision making. The execution
of S is as follows. Initially, p is in state q0. When the player
is in state q, she can choose an edge q τ→ q′, perform τ and
move to q′. Intuitively, a state of an FSA composite strategy
C represents mental states of both players.

Figure 2(a) shows an FSA strategy with a single state q0
and a single edge from q0 to q0 labeled with πa.a. It indicates
the strategy for a player where the player simply takes any
executable action. We call such a strategy the null strategy.
Strategies for both players can be composed to form a com-
posite strategy, as defined below:

Definition 5 Given an FSA strategy S1 = (Q1,E1, q
1
0) for

player 1 and an FSA strategy S2 = (Q2,E2, q
2
0) for player

2, we define their composition strategy S = (Q,E, q0) as
follows: Q = Q1 × Q2 × {1, 2}, q0 = (q10 , q

2
0 , 1), and for

any q1 ∈ Q1, q2 ∈ Q2, (q1, q2, 1)
τ→ (q′1, q2, 2) iff q1

τ→ q′1
in S1, and (q1, q2, 2)

τ→ (q1, q
′
2, 1) iff q2

τ→ q′2 in S2.

Example 1 cont’d Figure 1(b) shows an FSA strategy of
player 1 for the Chomp NxN game. Player 1 begins with ac-
tion eat(P1, 2, 2) and moves to state q1. In state q1, for P2’s
action eat(P2, x, y), player 1 responds with eat(P1, y, x) and
stays in state q1. Figure 1(c) is the result of composing the
above strategy with the null strategy.

In the following, we formalize the semantics of FSA strate-
gies. Given an FSA strategy S, we first introduce a transition
relation TS(q, s, q′, s′), meaning that from situation s, it is
possible to reach situation s′ by executing a program starting
at state q and ending at state q′.

Definition 6 Given an FSA strategy S = (Q,E, Q0) where
Q ⊆ Q, we use TS(q, s, q′, s′) as abbreviation for the follow-
ing formula:

∨
g

τ→g′∈E g = q ∧ g′ = q′ ∧Do(τ, s, s′).
For a composite strategy S, we define the reflexive transi-

tive closure of TS : intuitively, T ∗S(q, s, q′, s′) means that from
situation s, it is possible to reach situation s′ by following the
composite strategy.

Definition 7 Given an FSA composite strategy S =
(Q,E, Q0) where Q ⊆ Q, we use T ∗S(q, s, q′, s′) as abbrevi-
ation for ∀R.{φ ⊃ R(q, s, q′, s′)}, where φ is the conjunction
of the universal closure of
• R(q, s, q, s), and
• R(q, s, q′, s′) ∧ TS(q′, s′, q′′, s′′) ⊃ R(q, s, q′′, s′′).

It is possible that a strategy is incomplete in the sense that
when the opponent adopts the null strategy, there might be

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1816

situations where the player is in a state q where no program
starting at q is executable.
Definition 8 Given a BAT D and an FSA strategy S for
player p, we say S is complete if the composition C of S
and the null strategy satisfies D |=
∀q, s.T ∗C(Q0, S0, q, s) ∧ ¬end(s) ⊃ ∃q′, s′.TC(q, s, q′, s′).

It is easy to make an incomplete strategy complete as fol-
lows. We add a special dead state. For each state q, we add
an edge from it to the dead state labeled with the program
φq?;πa.a, where φq is the negation of the disjunction of the
executability condition of each program leaving q.

We now define the concept of winning strategies. Intu-
itively, a strategy for player p is a winning strategy if Cond1:
p always wins no matter what strategy the opponent adopts,
which is equivalent to Cond2: p always wins when the oppo-
nent adopts the null strategy. To see why, Cond1 obviously
implies Cond2, and Cond2 implies Cond1 since for any strat-
egy the opponent adopts, the set of reachable game states is a
subset of that when the opponent adopts the null strategy.
Definition 9 Given a BAT D and a complete FSA strategy S
for player p, we say S is a winning strategy if the composition
C of S and the null strategy satisfies
D |= ∀q, s.T ∗C(Q0, S0, q, s) ∧ end(s) ⊃ win(p, s).

Note that we only consider games which always ends in a
finite number of moves. Thus in the definition, we do not need
to require that the strategy must ensure the game ends.

We stress that to verify if an FSA strategy is a winning
strategy wrt a BAT D, representing a class of (possibly in-
finitely many) games, we have a theorem-proving task. Since
D includes a second-order induction axiom for situations and
T ∗C is a second-order formula, the verification of winning
strategies is a second-order reasoning task.

In fact, the winning property of strategies is an example
of safety properties, asserting that a formula φ holds in any
reachable game state if the strategy is adopted, which can be
formalized as follows: D |= ∀q, s.T ∗C(Q0, S0, q, s) ⊃ φ(s).

4 Theoretic Foundations
In this section, we introduce the theoretic foundations for our
method for automatic verification of FSA strategies.

We first define the concept of the winning condition of state
q for player p. Intuitively, it means the condition that starting
from q, whenever the game ends, p wins.
Definition 10 Let C be a composite strategy. The winning
condition of state q for player p, writtenW (p, q, s), is defined
as the formula:

∀q′, s′.T ∗C(q, s, q′, s′) ∧ end(s′) ⊃ win(p, s′).

Thus a complete strategy S is a winning strategy for player p
if D |= W (p,Q0, S0).

The concept of loop invariants plays an important role in
program verification. It can be naturally extended to FSA
strategies and employed to prove that D |= W (p,Q0, S0).

We will make use of two kinds of labeling of strategy
states. The first kind labels each state with a formula, and we
call it an F -labeling. The second kind labels each state with
a set of small models, and we call it an M -labeling.

Definition 11 Given a BAT D and an FSA composite strat-
egy C, we say an F-labeling X of C is an invariant of C, if
for any edge q τ→ q′, we have

D |= ∀s, s′.X(q)[s] ∧Do(τ, s, s′) ⊃ X(q′)[s′].

So an invariant of C is a labeling of each state of C with a
formula such that if the formula is true in the state, in any
successor state, its label formula will also be true.
Definition 12 Given a BAT D, an FSA composite strategy
C, and an invariant X of C,
1. we say X is sufficient if for any state q, we have
D |= ∀s.X(q)[s] ∧ end(s) ⊃ win(p, s);

2. we say X is necessary if DS0
|= X(Q0)[S0].

Proposition 3 Let X be a sufficient invariant of composite
strategy C. Then for any state q, we have D |= ∀s.X(q)[s] ⊃
W (p, q, s). If X is also necessary, then the strategy for p is a
winning strategy.
Proof: We prove that for any state q, we have D |=
∀s, q′, s′.X(q)[s] ∧ T ∗C(q, s, q′, s′) ∧ end(s′) ⊃ win(p, s′).
Let M be a model of D. We prove that M |= X(q)[s] ∧
T ∗C(q, s, q′, s′) ∧ end(s′) ⊃ win(p, s′) for any q, s, q′, s′.
We prove by induction on the distance d between s and s′.
Basis: d = 0 hence q′ = q and s′ = s. By the given
condition, we have M |= X(q)[s] ∧ end(s) ⊃ win(p, s).
Thus M |= win(p, s). Induction: We assume the proposition
holds when d = n, and proceed to prove that it holds when
d = n + 1. So suppose M |= X(q)[s] ∧ T ∗C(q, s, q′, s′) ∧
end(s′) and dist(s, s′) = n + 1. Then there exist q′′ and
s′′ such that M |= TC(q, s, q′′, s′′) ∧ T ∗C(q′′, s′′, q′, s′) and
dist(s′′, s′) = n. By the definition of TC , there is an edge
q

τ→ q′′ s.t. M |= Do(τ, s, s′′). Since X is an invariant,
M |= X(q′′)(s′′). Now by induction, M |= win(p, s′).

Thus D |= X(Q0)[S0] ⊃ W (p,Q0, S0). If X is also nec-
essary, DS0

|= X(Q0)[S0]. It follows D |= W (p,Q0, S0).

In the following, we first show how to verify if an F -
labeling is an invariant by using the idea of regression. Then
we will analyze properties of necessary invariants.
Definition 13 Let C be an FSA composite strategy and X
an F-labeling of C. The regression of X wrt C, written
R(X,C), is a new F-labeling X ′ defined as follows: for each
state q, X ′(q) =

∧
q

τ→q′ R(X(q′), τ).

By Proposition 2 from Preliminaries, we have
Proposition 4 Let X be an F-labeling of C. If D |= X ⊃
R(X,C), meaning D |= ∀s.X(q)[s] ⊃ R(X,C)(q)[s] for
each state q, then X is an invariant of C.

We now extend the notion of small model progression wrt
a program to that wrt a strategy.
Definition 14 Let C be an FSA composite strategy and L
an M-labeling of C. The progression of L wrt C, written
P(L,C), is a new M-labeling defined as follows: for each
state q′, L′(q′) = L(q′) ∪⋃

q
τ→q′ prog(L(q), τ).

Definition 15 Let C be an FSA composite strategy and M a
small model. We inductively define a sequence Ln, n ≥ 0, of
M-labelings as follows:

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1817

• L0(q0) = {M}, and L0(q) = ∅ for all state q 6= q0;

• Ln+1 = P(Ln, C), for n ≥ 0.

We call Ln the nth progression of M wrt C, and denote it by
Pn(M,C).

Intuitively,M ′ ∈ Pn(M,C)(q) iff starting fromM at state
q0, by following the strategy for at most n steps, M ′ is a pos-
sible model for state q.

Proposition 5 Given a BAT D, let X be a necessary invari-
ant of a composite strategy C. Let M0[S0] |= DS0

, and
Ln = Pn(M0, C), n ≥ 0. Then for any state q, for any
M ∈ Ln(q), M |= X(q).

Proof: We prove by induction on n. Basis: n = 0. Since
M0[S0] |= DS0

and DS0
|= X(Q0)[S0], M0 |= X(Q0).

Induction: Ln+1 = P(Ln, C). It suffices to prove that for
each q τ→ q′, if M |= X(q), then M ′ |= X(q′), where M ′ =
prog(M, τ). Since X is an invariant, D |= ∀s, s′.X(q)[s] ∧
Do(τ, s, s′) ⊃ X(q′)[s′]. Since M [s],M [s′] |= Do(τ, s, s′),
we get if M |= X(q), then M ′ |= X(q′).

In this paper, we consider invariants of the form (end(s) ⊃
win(p, s)) ∧ φ, where φ is a CNF formula whose free
variables are implicitly universally quantified. We use
counterexample-guided local search for sufficient and neces-
sary invariants. Below, we give the relevant definitions.

A literal is an atom or the negation of an atom. A clause
is a set of literals, understood as their disjunction. If a clause
has free variables, they are implicitly universally quantified.
For example, the clause c : ¬P (x, y) ∨ ¬P (y, z) ∨ P (x, z)
is understood as ∀x, y, z.c. The length of a clause c, written
|c|, is the number of literals in c. A CNF is the conjunction of
clauses. A CNF is considered to have a default clause >.

Definition 16 Let c be a clause, and M+ and M− sets of
models. We say that c characterizes M+ vs M− if each
model ofM+ satisfies c and each model ofM− falsifies it.

Definition 17 Let c1 and c2 be two clauses. The distance
between c1 and c2 is defined as follows: dist(c1, c2) =
max{|c1 − c2|, |c2 − c1|}, where “−” is set difference. Let
k be a positive integer. A k-neighbor of a clause c is a clause
c′ s.t. their distance is bounded by k.

5 Automatic Verification of FSA Strategies
In this section, we present our method for automatic verifica-
tion of FSA strategies.

The main idea of our method is as follows. Let S be a com-
plete FSA strategy and C its composition with the null strat-
egy. To prove that S is a winning strategy, we attempt to find a
sufficient and necessary invariant X of C. As the initial value
ofX , we label each state with end(s) ⊃ win(p, s). We check
ifX is an invariant, i.e., if |= X ⊃ R(X,C). If not, we obtain
counterexamples and use them to do a local update of X to
exclude the counterexamples. The update may fail. In case of
failure, we restart with end(s) ⊃ win(p, s). IfX is an invari-
ant, we check if it is necessary, i.e., if DS0

|= X(Q0)[S0].
If so, we return yes. Otherwise, we obtain a counterexam-
ple and we compute the nth progression of it wrt C. Now for

Algorithm 1: verify(D, S, p)
1 C := the composition of S with the null strategy
2 Θ := genPreds(D, S)
3 L−, L+ := Label[C, ∅]
4 X := Label[C, end(s) ⊃ win(p, s)]
5 while not timing-out do
6 while 2 X ⊃ R(X,C) do
7 foreach state q s.t. there is a counterexample

Mq of X(q) ⊃ R(X,C)(q) do
8 L(q) := {Mq}
9 update−(X,L,L−, L+)

10 if update− fails then reset(X,L−, L+);
11 if DS0 |= X(Q0)[S0] then return yes ;
12 else
13 M := a counterexample of DS0 ⊃ X(Q0)[S0]
14 L := Pn(M,C) for a sufficiently large n
15 update+(X,L,L−, L+)

16 return unknown

Algorithm 2: update−(X,L,L−, L+)

1 foreach state q s.t. L(q) 6= ∅ do
2 let X(q) = (end(s) ⊃ win(p, s)) ∧ c1 ∧ . . . ∧ cn
3 c′ := a maximal k-neighbor of some ci s.t. c′

characterizes L+(q) versus L−(q)(ci) ∪ L(q)
4 if such a c′ does not exist then return failure ;
5 replace ci in X(q) with c′

6 L−(c′)(q) := L−(ci)(q) ∪ L(q)

7 return success

each state q, we do a local update ofX(q) to include the small
models associated to q. Then we repeat the process.

Our verification method is presented by Algorithm 1. We
first generate from D and S the set of predicates used to
form the X labels of states. We make use of two M-labelings
of C: for each state q, L−(q) is a set of models that X(q)
should exclude, and L+(q) is a set of models that X(q)
should include. The X label of each state is in the form of
(end(s) ⊃ win(p, s)) ∧ φ, where φ is a CNF. Thus for each
state q, L−(q) is actually stored in the form of L−(q)(c) for
each clause of X(q), where L−(q)(c) is a set of models that
falsify c. As the initial values of L− and L+, we label each
state with the empty set. As the initial value of X , we label
each state ofC with end(s) ⊃ win(p, s). The update− (resp.
update+) procedure is presented by Algorithm 2 (resp. 3).

To update the X label of a state, for a clause, we choose
a maximal k-neighbour of it. We define a preference relation
over clauses so that after reset, we will make choices different
from those made earlier. The definition is through a scoring
function. Initially, the score of each literal is 0. During reset,
we decrease by one the score of each literal appearing in a
clause which is replaced since the last reset. The score of a
clause is the sum of the scores of the literals in the clause. A
clause c1 is preferred over another clause c2 if score(c1) >

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1818

Algorithm 3: update+(X,L,L−, L+)

1 foreach state q s.t. L(q) 6= ∅ do
2 let X(q) = (end(s) ⊃ win(p, s)) ∧ c1 ∧ . . . ∧ cn
3 L+(q) := L+(q) ∪ L(q)
4 foreach ci do
5 c′i := a maximal k-neighbor of ci s.t. c′i

characterizes L+(q) versus L−(q)(ci)
6 if such a c′i does not exist then
7 c′i := >; L−(q)(ci) := ∅;
8 replace ci in X(q) with c′i

score(c2) or score(c1) = score(c2) and |c1| < |c2|.
We emphasize that our algorithm is deterministic since we

do not use randomization: the reason we find different invari-
ants after restart is that when we restart, we update the score
function and hence the preference relation between clauses.

Note that in Alg. 1 (Lines 6 and 11), we use the SMT solver
Z3 [de Moura and Bjørner, 2008] for checking first-order en-
tailments. If Z3 is unable to decide within the given time, it
returns “unknown”. In such a case, we will backtrack. If the
last update ofX occurs in a call to update− (resp. update+),
for each state q, we make another choice to update X(q).

Finally, the genPreds process is defined as follows. Ex-
tract from the given BAT D and strategy S the set C of
constant symbols, set F of function symbols including both
situation-independent functions and functional fluents, and
set P of predicate symbols. Our basic idea of predicate gen-
eration is to generate predicates whose arguments are terms
such as P (x) and P (f(x)). However, to control the number
of generated predicates, we only generate elementary predi-
cates, that is, predicates of the form t = f(~t) or P (~t), where f
is a function symbol, P is a predicate symbol, and t is a con-
stant or variable. In fact, any predicate can be expressed as a
conjunction of elementary predicates, for example, P (f(x))
can be expressed as P (y) ∧ y = f(x). To further control the
number of generated predicates, we use at most m ≥ 2 dif-
ferent variables x1, . . . , xm in each generated predicate. We
use symmetry and other properties to reduce the number of
arithmetic predicates generated, e.g., we generate the predi-
cate x = y + 1 but not x = y + 0 or x = 1 + y.

Clauses are generated as follows: Each clause uses at most
n ≥ 3 variables x1, . . . , xn; Atoms are obtained from gen-
erated predicates by applying injections from variables into
variables. For example, from a generated predicate P (x, y),
we can get the clause ¬P (x, y) ∨ ¬P (y, z) ∨ P (x, z).
Example 1 cont’d We extract the following symbols:
C = {0, 1, 2, P1, P2, N,M}, and
P = {turn(p), x > y, x ≥ y, ch(x, y), last(x, y)}.

Thus examples of generated predicates are: turn(P1),
turn(p), x > 0, x > y, 2 > x,N > 2, ch(x, y), ch(1, 1).

Theorem 1 Given a BAT D and a complete strategy S for
player p, when Alg. 1 returns yes, X is a sufficient and nec-
essary invariant, hence S is a winning strategy.

In fact, Algorithm 1 can be easily generalized for verifying
safety properties: to verify that a formula φ always holds, we

replace end(s) ⊃ win(p, s) in the algorithm with φ(s).
Example 1 cont’d We now illustrate the running process of
our algorithm with the strategy shown in Figure 2. We only
show the evolution of the label of state q1:

After the first call to update−, we get:
X(q1) : [¬ch(1, 1) ⊃ turn(P1)] ∧ [¬N > x]

After several calls to update− and update+, we have:
X(q1) : [¬ch(1, 1) ⊃ turn(P1)] ∧ [¬ch(x, x) ∨N 6= x]

∧[0 ≥ x ∨ 0 ≥ y ∨ ¬ch(x, y) ∨ ch(y, x)]
Now a counterexample M is generated:
{〈ch(1, 1), ch(1, 2), ch(1, 3), ch(1, 4), ch(2, 1), ch(3, 1),
ch(4, 1), turn(P2), N = 4〉}

Calling update−, we add a new clause [N = x ∨ x 6= 2].
Now we get a sufficient invariant, but when we check if

DS0
|= X(Q0)[S0], we get a counterexample M ′:

{〈ch(1, 1), ch(1, 2), ch(1, 3), ch(2, 1), ch(2, 2), ch(2, 3),
ch(3, 1), ch(3, 2), ch(3, 3), N = 3〉}

After doing model progression, we have L(q2) :
{〈ch(1, 1), ch(1, 2), ch(1, 3), ch(2, 1), ch(3, 1), N=3〉,
〈ch(1, 1), ch(1, 2), ch(2, 1), N=3〉, 〈ch(1, 1), N=3〉}

Calling update+, we replace N = x ∨ x 6= 2 by
x ≥ N ∨ 2 ≥ x. ...

Finally, we get a sufficient and necessary invariant:
X(q1) : [¬ch(1, 1) ⊃ turn(P1)]

∧[0 ≥ x ∨ 0 ≥ y ∨ ¬ch(x, y) ∨ ch(y, x)]
∧[¬ch(x, x) ∨ 2 > x] ∧ [¬last(x, 0)]

Thus the given strategy is a winning strategy.

6 Experimental Results
We implemented our algorithm using Python and Z3. All ex-
periments were conducted on a Linux machine with 3.50GHz
CPU and 16GB RAM. We set the implementation parameters
as follows: The time-out bound for Z3 is 10 second; when
updating the X-label, we use 2-neighbors of clauses; when
generating predicates we use at most 2 variables and when
generating clauses we use at most 4 variables. We did exper-
iments on two types of domains: one from the combinatorial
game literature and the other from the generalized planning
literature, and we adapt the second type into our framework
by adding an agent who is always doing the null action.

The following are two-agent domains and strategies to
verify. The domains may look similar in that they all involve
placing or removing tokens from finite grids. However,
even board games can be very different: difference in game
rules or initial settings lead to difference between games.
For instance, the winning strategies for Chomp2xN and
ChompNxN are quite different, thus the set of reachable sates
and hence invariants are different.
PickStone123 (134): There are n stones and two players
take turns to remove 1, 2 or 3 (resp. 1, 3 or 4) stones. The one
who has no stones to remove loses the game. The strategy for
player 1 is to remove stones so that the number of remaining
stones satisfies n%4 = 0 (resp. n%7 = 2 ∨ n%7 = 0).
Chomp2xN (NxN): For Chomp2xN, the strategy for player
1 is this: first, eat the cookie in position (2, N); when player
2 eats the cookie in position (1, x) (resp. (2, x)), respond
with eating the cookie in position (2, x-1) (resp. (1, x+1)).
Clobber: On a 2xN grid, where N is even, white tokens are

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1819

Name C P U− U+ B R T(s)
PickS123 3 59 3 3 0 0 7.3
PickS134 3 65 3 3 0 0 10.6
chp 2×N 4 41 46 17 5 2 817.6
chp N×N 4 58 11 4 0 0 99.9
Clobber∗ 3 92 53 11 13 2 1198.6
Clobber 3 92 - - - - -

Colouring 3 44 38 13 0 9 188.7
1d 3 34 4 3 0 0 6.2

Arith 3 34 5 3 0 0 6.5
Find 3 50 3 4 0 0 13.8
Sort 3 59 20 10 3 0 540.9
Add 4 41 7 2 0 0 8.5

PrizeA1 5 49 61 5 1 0 1300.1

Table 1: Experimental results

placed in the first row, and black ones in the second row.
A player moves by using one of his tokens to replace an
adjacent token of the opposite colour. The one who has no
moves to take loses the game. The strategy for player 2 is: if
player 1 removes a token t in the nth column, where n is odd
(resp. even), then player 2 removes the token in the (n− 1)th
(resp. (n+ 1)th) column to replace t.
Clobber∗: The same as Clobber except that player 1 can only
remove tokens in the odd columns. The strategy for player 2
is to replace any token that has just replaced her tokens.
Coloring: Two players take turns to paint blue or red on a
1xN grid. Painting red (resp. blue) on a cell is possible if the
cell is not painted or painted with blue (resp. red). Painting
on a coloured cell turns it into green. The game ends when
all cells are colored. Player 1 wins if all cells are green. The
strategy for player 2 is: If her opponent paints red (resp. blue)
on some cell, then she paints blue (resp. red) on the same cell.

The following are programs in single-agent domains from
[Mo et al., 2016]:
1D: Visit all elements in an array from right to left.
Arith: Increase a variable from 0 to 2N .
Find: Set the ith element of an array inb to true if the ith el-
ement of an integer array ina is not 0, and to false otherwise.
Sort: Sort an array by using a single loop.
Add: Increase a variable from 0 to AxB via a nested loop.
PrizeA1: Visit all the NxN cells through a nested loop.

Experimental results are summarized in Table 1. Here C is
the number of states in the composite strategy, P is the num-
ber of generated predicates, U− and U+ denote the total times
of calling update− and update+, B and R denote the total
times of backtracking and reset, respectively, and T (in sec-
onds) is the total time for verification. Our system success-
fully verifies all the domains except Clobber. Note that we
solve PrizeA1, which cannot be solved by [Mo et al., 2016].

7 Related Works
General game playing [Genesereth et al., 2005] aims at creat-
ing a system capable of playing arbitrary games, represented
by the Game Description Language (GDL). Some works [Ra-
manujam and Simon, 2008; Zhang and Thielscher, 2015]

based on PDL (Propositional Dynamic Logic) or GDL con-
cerned about representing and reasoning about the internal
structure of strategies. Xiong and Liu [2016] extended the sit-
uation calculus for strategy representation and reasoning, and
used a simple fragment of Golog for representing structured
strategies. However, these works do not consider the repre-
sentation and automatic verification of general strategies.

There has been some progress on automated reasoning
in the situation calculus. Claßen and Lakemeyer [2008]
proposed a method to verify temporal properties of non-
terminating Golog programs. Based on it, De Giacomo et al.
[2010] devised techniques for verification of strategic prop-
erties of situation calculus game structures. However, it is
unknown whether the fixed-point computation method used
in these works can be efficiently implemented. Li and Liu
[2015] and Mo et al. [2016] explored automatic verification
of partial correctness of Golog programs via discovery of
loop invariants. The idea is to start with a sufficient condition
and iteratively strengthen it until it becomes an invariant and
then check if it is necessary. So they strengthen existing for-
mulas but do not update them when needed as we do. When a
discovered invariant is not necessary, their verification simply
fails, whereas we continue the search process. Moreover, they
do not use counterexamples to guide the discovery process.

De Giacomo et al. [2016a; 2016b] investigated bounded
action theories in the situation calculus. A bounded action
theory is one which entails that, in every situation, the num-
ber of object tuples in the extension of fluents is bounded by
a given constant. The verification of a first-order variant of
the µ-calculus and the verification of ConGolog programs are
decidable for such theories. However, in general, the action
theories we consider in this paper are not bounded. For ex-
ample, even the initial KB of our chomp action theory is not
bounded, since there is no bound on the size of the grids.

8 Conclusions
In this paper, we have proposed FSA strategies to repre-
sent structured strategies that solve a class of (possibly in-
finitely many) games with similar structures, and formalized
their semantics in the situation calculus. We have proposed a
sound but incomplete method for verifying if an FSA strat-
egy is a winning strategy by using counterexample-guided
local search for sufficient and necessary invariants. This is a
method for verifying safety properties of strategies in gen-
eral. We implemented our method and experimented with
both two-player and single-player domains, and our experi-
ments yielded encouraging results. A limitation of our work
is that we consider invariants of the form of a CNF formula
where variables are implicitly universally quantified. In the
future, we are interested in more expressive invariants which
allow existential quantification. More importantly, based on
the presented work, we will explore automatic synthesis of
FSA strategies via counterexample-guided refinement.

Acknowledgments
We acknowledge support from the Natural Science Founda-
tion of China under Grant No. 61572535.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1820

References
[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and

Orna Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672–713, 2002.

[Cermák et al., 2014] Petr Cermák, Alessio Lomuscio, Fabio
Mogavero, and Aniello Murano. MCMAS-SLK: A model
checker for the verification of strategy logic specifications.
In Computer Aided Verification - 26th International Con-
ference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Pro-
ceedings, pages 525–532, 2014.

[Chatterjee et al., 2010] Krishnendu Chatterjee, Thomas A.
Henzinger, and Nir Piterman. Strategy logic. Inf. Comput.,
208(6):677–693, 2010.

[Clarke et al., 2000] Edmund M. Clarke, Orna Grum-
berg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In
Computer Aided Verification, 12th International Confer-
ence, CAV 2000, Chicago, IL, USA, July 15-19, 2000,
Proceedings, 2000.

[Clarke et al., 2003] Edmund M. Clarke, Orna Grum-
berg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for
symbolic model checking. J. ACM, 50(5):752–794, 2003.

[Claßen and Lakemeyer, 2008] Jens Claßen and Gerhard
Lakemeyer. A logic for non-terminating golog programs.
In Principles of Knowledge Representation and Reason-
ing: Proceedings of the Eleventh International Confer-
ence, KR 2008, Sydney, Australia, September 16-19, 2008,
pages 589–599, 2008.

[De Giacomo et al., 2010] Giuseppe De Giacomo, Yves
Lespérance, and Adrian R. Pearce. Situation calculus
based programs for representing and reasoning about game
structures. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Twelfth International Con-
ference, KR 2010, Toronto, Ontario, Canada, May 9-13,
2010, 2010.

[De Giacomo et al., 2016a] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded situation calcu-
lus action theories. Artif. Intell., 237:172–203, 2016.

[De Giacomo et al., 2016b] Giuseppe De Giacomo, Yves
Lespérance, Fabio Patrizi, and Sebastian Sardiña. Verify-
ing congolog programs on bounded situation calculus the-
ories. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA., pages 950–956, 2016.

[de Moura and Bjørner, 2008] Leonardo Mendonça
de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In Proceedings of the 14th International Confer-
ence on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS-2008), pages 337–340, 2008.

[Ferguson, 2014] Thomas Ferguson. Game Theory. Mathe-
matics Department, UCLA, 2014.

[Genesereth et al., 2005] Michael R. Genesereth, Nathaniel
Love, and Barney Pell. General game playing: Overview

of the AAAI competition. AI Magazine, 26(2):62–72,
2005.

[Hu and Levesque, 2011] Yuxiao Hu and Hector J.
Levesque. A correctness result for reasoning about
one-dimensional planning problems. In IJCAI 2011,
Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, pages 2638–2643, 2011.

[Levesque et al., 1997] Hector J. Levesque, Raymond Re-
iter, Yves Lespérance, Fangzhen Lin, and Richard B.
Scherl. GOLOG: A logic programming language for dy-
namic domains. J. Log. Program., 31(1-3):59–83, 1997.

[Levesque, 2005] Hector J. Levesque. Planning with loops.
In IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, UK, July 30 - August 5, 2005, pages 509–515,
2005.

[Li and Liu, 2015] Naiqi Li and Yongmei Liu. Automatic
verification of partial correctness of golog programs. In
Proc. of IJCAI-15, pages 3113–3119, 2015.

[Lomuscio et al., 2009] Alessio Lomuscio, Hongyang Qu,
and Franco Raimondi. MCMAS: A model checker for the
verification of multi-agent systems. In Computer Aided
Verification, 21st International Conference, CAV 2009,
Grenoble, France, June 26 - July 2, 2009. Proceedings,
pages 682–688, 2009.

[Mo et al., 2016] Peiming Mo, Naiqi Li, and Yongmei Liu.
Automatic verification of golog programs via predicate ab-
straction. In Proc. of the European Conference on Artifi-
cial Intelligence (ECAI-2016), 2016.

[Ramanujam and Simon, 2008] Ramaswamy Ramanujam
and Sunil Easaw Simon. Dynamic logic on games with
structured strategies. In Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Eleventh
International Conference, KR 2008, Sydney, Australia,
September 16-19, 2008, pages 49–58, 2008.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. MIT Press, 2001.

[Srivastava et al., 2008] Siddharth Srivastava, Neil Immer-
man, and Shlomo Zilberstein. Learning generalized plans
using abstract counting. In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, AAAI
2008, pages 991–997, 2008.

[Xiong and Liu, 2016] Liping Xiong and Yongmei Liu.
Strategy representation and reasoning in the situation cal-
culus. In ECAI 2016 - 22nd European Conference on
Artificial Intelligence, 29 August-2 September 2016, The
Hague, The Netherlands - Including Prestigious Applica-
tions of Artificial Intelligence (PAIS 2016), pages 982–
990, 2016.

[Zhang and Thielscher, 2015] Dongmo Zhang and Michael
Thielscher. A logic for reasoning about game strategies.
In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., pages 1671–1677, 2015.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1821

