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Abstract

Monitoring industrial infrastructures are undergo-
ing a critical transformation with industry 4.0.
Monitoring solutions must follow the system be-
havior in real time and must adapt to its contin-
uous change. We propose in this paper an au-
toencoder model-based approach for tracking ab-
normalities in industrial application. A set of sen-
sors collects data from turbo-compressors and an
original two-level machine learning LSTM autoen-
coder architecture defines a continuous nominal vi-
bration model. Normalized thresholds (ISO 20816)
between the model and the system generates a pos-
sible abnormal situation to diagnose. Experimental
results, including hyper-parameter optimization on
large real data and domain expert analysis, show
that our proposed solution gives promising results.

1 Introduction

Condition monitoring of large industrial equipment is critical
and becomes more complex because of the integration of new
technological artifacts as part of the industry 4.0 transforma-
tions [Lee er al., 2015]. Different approaches are used for
monitoring these kinds of industrial equipment and can be
categorized into model-based, data-driven, and experience-
based approaches [Tobon-Mejia et al., 2012]: (1) Model-
based approaches rely on analytical and physical models in
order to represent the behavior of the system [Lees et al.,
20091, (2) Data-driven approaches exploit signal processing-
based techniques in order to extract discriminative features
from sensor signals which, then, are used to build statistical
models [Tobon-Mejia et al., 2012] and (3) Experience-based,
for their part, are used when no physical model nor suffi-
cient data is available. Typically, these approaches make use
of failure history (data loggers) of the industrial equipment
on which statistical distribution is fitted in order to establish
maintenance schedules.

The applicability of these approaches is usually assessed
based on three criteria including cost, precision, and com-
plexity. Data-driven approaches are suitable for large-scale
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and complex systems. However, performances of the behav-
ior models degrade as the underlying data distribution (used
during training phase) shifts from its original form through
time. Model-based approaches require an explicit mathemat-
ical model. These approaches are more precise than data-
driven ones as far as an accurate mathematical model is avail-
able which tends to become more difficult and costly given
the fact that industrial systems become more complex [Tidriri
et al.,2016].

Vibration control of rotating machinery is a complex do-
main especially for large equipment and their continuous con-
trol is considered highly strategic. Two main methods exist to
monitor these kinds of machines: The first one is a selective
approach based on the periodic monitoring of the vibration
levels by the use of data loggers. The processing of these
data is done offline. Signals are measured between two con-
trol periods and any anomaly is obtained by a drift spectrum
analysis. The control is carried out point by point according
to a previously defined topography. The mathematical tools
used are limited to the signal processing applied to the col-
lected signal. The second method is a continuous control of
the so-called strategic equipment. In fact, the point collec-
tors of the data are replaced by complex monitoring systems
associated with mathematical models for diagnosis.

Several works deal with the condition monitoring problem
in particular on rotating machinery [Rahmoune et al., 2017,
Ali et al., 2015; Qi et al., 2017]. Some of these works use
neural network models as [Li ef al., 2000], where the prob-
lem is to detect motor rolling bearing faults by using a set
of frequency-domain features. More recently, [Ali et al.,
2015] exploit capabilities of neural networks and a set of
time-frequency domain features in order to characterize and
classify various bearing classes. [Rahmoune et al., 2017]
for their part generate residues from a gas turbine vibra-
tion signals which are then classified using a neural network
model. In recent years, the expansion of deep learning ap-
proaches has also reached this area. As the success on var-
ious real applications of hybrid neural network architectures
to learn trends in time series proposed in [Lin er al., 2017,
Osmani and Hamidi, 2018; Osmani et al., 2017] and to detect
anomalies in high-performance computing systems [Borgh-
esi ef al., 2018]. More specifically, the autoencoder solution
for fault-diagnosis of rotating machinery proposed in [Qi er
al., 2017] where rather than encoding the raw sensor signals,
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authors in this work apply ensemble empirical mode decom-
position and compute autoregressive parameters that are then
fed into an autoencoder to learn interesting structures about
the input signals.

Figure 1 shows our real application of monitoring of an in-
dustrial turbo-compressor system. We notice that there are
four major causes for rotor vibrations in gas turbines [Djaidir
et al., 2017]: unbalance of the rotor, rapid braking of the
shaft, mechanical failure (such as a broken blade), and perma-
nent deformation of the rotor. These vibrations, in turn, cause
bearings’ rapid deterioration. The analysis of magnitude and
harmonics spectrum of signals resulting from measured vi-
brations are fundamental to detect turbines failures. The
objective is to continuously monitor the turbo-compressor
torque movement where an optimum operating period is usu-
ally selected by experts to take the reference values expressed
by a noise level.

In this work, we are interested in developing a moni-
toring model based on data analysis and machine learning
approach to monitor continuously system vibration and to
take into account normal evolution in the system by adding
a continuous learning level able to follow the evolution of
the monitored system. Our original two-level architecture
is organized as follow: an autoencoder model [Hinton and
Salakhutdinov, 2006] based on long short-term memory units
(LSTM) [Hochreiter and Schmidhuber, 1997] tracks in a con-
tinuous fashion a set of vibration signals generated by sensors
associated to the turbo-compressor operating in real industrial
conditions. the second level regularly produces a new genera-
tion of autoencoders integrating more data and better adapted
to the evolution of the system. It uses the current autoencoder
and new non-faulty monitored data to improve the quality of
the current autoencoder.

One of the basic limitations of model-based diagnostics is
to get a nominal model which faithfully reproduces the be-
havior of the system. We propose in this paper, a nominal
vibration model of the turbo-compressor application by us-
ing an autoencoder enabled with automatic cropping capa-
bilities. Experimental results show that this promising ap-
proach allows automatic modeling of the system by adapting
to changes without the usual efforts required to build a model.

This paper is organized as follow: Section 2 describes the
main architecture of the operational application concerned
with this study. Section 3 gives details about our approach in-
cluding using LSTM models, continuous learning and hyper-
parameters optimization. The encouraging obtained results
are summarized in Section 4. Section 5 concludes the paper
and gives some perspectives.

2 Application Description

The considered monitoring system is composed of a set of
sensors placed around the turbo-compressor according to a
manufacturer predefined topology (see Figure 1). The com-
plete system is connected to a real time Bentley Nevada data
acquisition platform. The turbine is linked to the compres-
sor via a rigid coupling. In fact, the turbine ensures the
rotational drive of the compressor to convey a process gas.
The installed sensors essentially measure axial and radial dis-
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Figure 1: Dashboard extracted from the monitoring system showing
the sensors deployment topology on the 102J turbo-compressor.

placements for stability monitoring. It is important to notice
that there could be operating conditions in the overall turbo-
compressor torque integration process affecting the stability
of the installation. Continuous control is needed. The control
of the stability of the system is ensured by 11 sensors mea-
suring the dynamics of the movement. The measurement of
each of sensor must remain inside the boundaries defined by
the standard ISO 20816 which defines the maximum thresh-
old expressed in (mm/S RMS). Within the defined limits,
each sensor delivers a vibration level independent from oth-
ers, it depends on the direction of movement of the system
and also the noise level of the sensor. Measurement associ-
ated with the various sensors have been separately identified
for the turbine and for the compressor.

Turbine sensors are: the axial displacement measurement
of the turbine (AX 1AD-1), the upper level axial horizon-
tal displacement measurement of the turbine (VIB 1HD),
the upper level vertical axial displacement measurement of
the turbine (VIB 1BD), the lower level axial horizontal dis-
placement measurement of the turbine (VIB 2HD), the lower
level axial horizontal displacement measurement of the tur-
bine (VIB 2HD) and the lower level turbine vertical axial
displacement measurement (VIB 2VD). The compressor sen-
sors are: the axial displacement measurement of the compres-
sor (AX 4AD-1), the upper level compressor horizontal axial
displacement measurement (VIB 3HD), the upper level verti-
cal axial displacement measurement of the compressor (VIB
3VD), the lower level horizontal axial displacement measure-
ment of the compressor (VIB 4HD), and the lower level ver-
tical axial displacement measurement of the compressor. We
use also a common measurement of the rotation speed of the
turbine-compressor (102J).

The measurements delivered by the acquisition system
are expressed in mm, the thresholds in mm/S RMS and
the sampling period is 1s. According to the ISO 20816
standard, the turbo-compressor system belongs to group 4:
so the limits (v0) are (1) Not allowed red limit (up to
18mm/S RMS), (2) Threshold Limit defined between 7.1
and 18mm/S RM S, (3) Average Threshold are between 2.8
and 7mm/S RM S and finally (4) Good threshold for vibra-
tions less than 2.8mm/S RMS.
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3 Proposed Approach

We are interested in predicting abnormal vibratory phenom-
ena in gas turbines that are susceptible to accelerate the dete-
rioration of the system’s components. Specifically, we model
the vibration phenomena using a neural network-based au-
toencoder which is presented first along with the continuous
monitoring solution that we provide. This is followed then,
by the Bayesian optimization of the hyper-parameters used to
tune various parts of the proposed approach.

3.1 Setting

The set of M sensors (also called data generators), denoted

{ma,...,mpr}, are used to capture the behavior of turbo-
compressor. Each sensor m; generates a sequence X; =
(2%, %, ...) of vibration observations. Each data generator

m; ie{1..0m} is modelled using an LSTM-based autoencoder
AEF; that is trained via batch gradient descent to minimize a
reconstruction error term between an original signal and its
reconstruction [Hinton and Salakhutdinov, 2006].

AEs are a non-linear generalization of the principal com-
ponent analysis. They both belong to the unsupervised rep-
resentation learning category which “try to characterize the
data-generating distribution through the discovery of a set of
features or latent variables whose variations capture most of
the structure of the data-generating distribution” [Alain and
Bengio, 2014]. These latent variables represent what is called
the “’information bottleneck™ in reference to its reduced size
which literally forces the model to learn key features from the
original signal. This is done through two steps: encoding and
decoding which are both based on LSTM unit.

LSTM units are a powerful type of recurrent neural net-
works that circumvent the long-term dependency problem
when it comes to memorizing pieces of information through
long periods [Greff et al., 2017]. The main component of
these units is the cell state that is designed to the matter of
retaining information through long periods of time. Infor-
mation are added to and removed from this cell state at each
time-step ¢ using different gates: the forget gate f; determines
the extent to which information is retained from the previous
time-step, the input gate i; controls the flow of information
from the current input x4, and the output gate o; allows the
model to read from the cell.

More formally, given an input sequence X = (x¢,, ..., Tt,)
between two predefined time periods ¢; and t5, regardless of
the data generator, at each time-step, the current cell state ¢,
as well as the current hidden state h, are computed using the
previous cell state ¢;_; and the current input sample, as:

iy = o(Wixy + bis + Wiihe—1 + bp)
fi =0(Wigay +big + Wpphi_1 + bny)
g = tanh(Wgxy + big + Wighy—1 + bpg)
ot = 0(WioTt + bio + Whohi—1 + bro) )]
et = frer—1 + itge
ht = ostanh(ct)
where the matrices W represent the weights of the network

and b the biases. The subscripts correspond to their respective
gate; for example W,; is the hidden-input gate matrix, W, is
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the input-output gate matrix, etc. These are learned through
gradient descent while o and tanh are the sigmoid and the
hyperbolic tangent functions respectively and are used to in-
troduce non-linearities into the model.

3.2 Encoder

The first component encodes an input sequence or a batch
of sequences using LSTM units and updates its hidden state
according to equations 1. We denote this operation h; =
LSTM(h;—1,x¢). The last hidden state encapsulates suffi-
cient information about the structure of the whole input se-
quence that is being processed, to subsequently recover the
original sequence via decoding. Each generator is processed
separately and yield an encoding c,,, at the last time-step ¢
using the before last hidden state hy, _;:

Cmy = LSTM (hy, 1, 24,) @

In order to diagnose the behavior of the generator m; by
adding a set of correlated ones {m;|j € J};cqi,.. vy, an
encoding c,,, is learned using the remaining concatenated
signals and the hidden state is thus updated as follows

Cm, = LSTM(hy, 1, [2]]5e7) (3)

These encodings are also called context vectors especially in
the field of machine translation as they capture in some way
the meaning or context of a given sequence of words.

3.3 Decoder

The reconstruction of the original signal is monitored by these
encodings which represent their condensed representation.
For a given sequence, at each time-step, the decoder takes
as inputs the encoding c,,, (or c,,,) and either the ground-
truth sample or the previously reconstructed sample, which
is usually designated as feacher-forcing mode in contrast to
the free-running mode [Bengio et al., 2015]. Similarly to the
encoder, the hidden state h; is updated:

ht = LSTM(ht_l, Yt—1, Cmi)

Let us consider y; = (vi,,...,¥i,) to be the autoen-
coder’s output corresponding to the input sequence x; =
(zi,...,},) of the data generator m; obtained via a lin-
ear projection of the hidden state, we define the overall cost
function J with respect to x; and its reconstruction y; to be
the mean square error

to

1 i i\2
IZ _ 1 (4)
ty —t1 tzzt:l( t yt)

MSE(Xi7Yi) =

Forward and backward propagation of the reconstruction
error between encoder and decoder components allow the
model to minimize the discrepancy between the original sig-
nal and its reconstruction and besides that, ends-up with a
latent space (the encoding) that captures key features of the
data distribution.
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3.4 Regularization

The way for the autoencoder to learn generalizable encod-
ing and decoding is to ensure that the number of hidden units
is sufficiently restricted. Variants of the original AE models
that make use of sparsity, denoising, or contraction were pro-
posed [Rifai ef al., 2011] and are a way to free them from the
information bottleneck and use encodings that are not neces-
sarily smaller than the input dimensions. We need our autoen-
coder to be sensitive enough to recreate the original observa-
tion but insensitive enough to the training data such that the
model learns a generalizable encoding and decoding. In order
to explore various latent space representations that are more
suitable to our particular context, we impose regularization
via the sparsity constraint [Ng, 2011]. It imposes that the ac-
tivation level of the hidden units remains low most of the time.
For this, the average activation level p; of a given hidden unit
7 is computed over all training sequences. The goal is to en-
force p; to be as close as possible to a target sparsity proba-
bility p (the sparsity parameter which is defined to be close to
0). This is done via the minimization of the Kullback-Leibler
(KL) divergence between these two probability distributions

Nhu MNhu

. p —p
> " KL(pjllp) =) _ plog — + (1 —p)log ——— (5
=1 = P L=

where np,, is the number of hidden units in the LSTM layers.
To achieve this, we will add an extra penalty term to our op-
timization objective controlled by a parameter A, which im-
poses the sparsity constraint. The whole model is then trained
to minimize both the discrepancy between the original signal
and its reconstruction and the divergence between p and p;:

Nhu

Jsparse =J+ AZKL(/}]H/)) (6)

Jj=1

3.5 Monitoring Process

A fault is defined as an unpermitted deviation of at least one
characteristic property of a variable from an acceptable be-
havior [Isermann, 2005]. Previous steps generate a model of
the system from data. During this current process, we con-
trol average limits between generated signal from the model
and the real system using the 6 ISO 20816 fixed parameter
presented before, i.e. at each step ¢, we ensure that:

1xi(t) —yi(t)| < 0 +e(t) @)

Where x;(t) (resp. y;(t)) is a signal generated by the sensor
m; of the real monitored system (resp. our model) at step ¢
and €(¢) is an additional error marge.

To reduce the impact of abrupt change between the system
and model outputs without connection to the breakdown sit-
uations, the regulation function €(¢) is computed as follow:
e(t) = a|x;(t) + x;(t — 2) — 2x;(t — 1)|.

Additionally, in practice, industrial systems are under con-
tinuous physical degradation and adaptation caused by vari-
ous environmental as well as operational effects. The learned
model evolves over time. We propose the following continu-
ous learning model to follow the normal system evolution.

1839

Algorithm 1 Continuous learning model

Inputs: x;(t)icq1..03- ¢ 1

x;(t): signals generated by sensor 1m; jc(1..a}
(: size of the nominal training period

7: size of the nominal control period

Let M, be the learning model

Let M. be the controller model

Let S, be the set of validated examples

Sn — segmentation(xi (t), <) { Sy accumulates generated windows }

Rl

Ml.f it (Sn) {encode with either Eq. 2 or 3}

M. + copy(M;)

fort < (+1toT do
Y (t) — Mc.predict(xi (t)) { multi-step-ahead prediction }
if |x;(t) — yi(t)| < 0+ €(t) then

10: Sy U{x; ()}

11:  else

12: trigger an alarm

13: increase #discrepancies

14:  end if

15:  if n samples visited or max. #discrepancies reached

then
16: M, £it(S,)
17: M. + copy(M;)

©°

18: S, +—
19:  end if
20: end for

3.6 Continuous Learning Model

The physical system evolves and adapts to the environment
(turbocharger support that settles, normal wear of seals, etc.).
To solve this problem (summarized in Algorithm 1), we
propose a two-level model: the current learned model M,
trained initially on a nominal period is used to monitor the
real system, and at the same time all data (signals) validated
by this model are considered as training examples for the next
generation of the controller model M;. algorithm inputs are
the signals x;() ;c{1..ay. the size of the initial nominal train-
ing period (, and the size of the nominal control period 7.
M learns the nominal behavior of the system via the LSTM-
based autoencoder architecture proposed above and starts to
make multi-step-ahead predictions based on the incoming se-
quences. At each time-step, these predictions are compared
to the real outputs of the system. Whenever the discrepancy
between M ’s predicted output and the real system at time-
step t is within the desired region of acceptable behavior, M;
is updated with the value of the current discrepancy.
Predicted outputs lying outside of the region of acceptable
behavior are discarded and thus do not participate in updat-
ing M;. In our experiments, we evaluated two strategies to
learn the next monitoring model: the one based on a prefixed
period of time 1 and the other based on the evolution of the
parameter |x;(¢) — y;(¢)|. Indeed, the underlying hypothe-
sis is updated only when necessary. This contrasts with ap-
proaches that make use for example of alternating learners, a
stable learner that learns stable concepts and a reactive one
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that learns transient concepts from recent windows, in order
to implement an explicit forgetting mechanism, e.g. [Bach
and Maloof, 2008].

At each step of our proposed approach, setting the right
hyper-parameters is a critical aspect. Recent advances in neu-
ral architecture search demonstrated noticeable successes in
many fields leading in certain cases to state-of-the-art archi-
tectures using Bayesian optimization in particular [Elsken et
al., 2018]. We tune hyper-parameters via a Bayesian opti-
mization procedure based on Gaussian process as a surrogate
model in which the generalization performance of a given
learning algorithm is modeled as a sample from a Gaussian
process [Snoek et al., 2012].

3.7 Bayesian Optimization of the
Hyperparameters

The recognition performance of a given configuration is con-
sidered as a function f(x) on some bounded set X (the hyper-
parameters search space), where x is an instantiation of each
hyper-parameter of the neural architecture. In other words,
the Bayesian optimization procedure constructs a probabilis-
tic model for the function f(x), for which we seek the mini-
mum, and based on that model, samples the next point of the
hyper-parameters search space. Sampling from this model
can be done more quickly than from the original function.

Expected improvement E1(x) = —E[f(x) — f(x + )] is
used as an acquisition function in order to direct sampling, at
time step ¢, of areas of the hyper-parameter space where an
improvement of the performances is likely to happen. The
Gaussian process from which hyper-parameter instances are
sampled is updated at each time step with the recognition per-
formance achieved by the induced neural architecture in the
considered turbo-compressor monitoring problem.

The size of the hidden states of both the encoder and
decoder are optimized. Table 2 summarizes the hyper-
parameters that are assessed through the Bayesian optimiza-
tion procedure in the considered application.

4 Experiments

In this section, we evaluate our approach on a real industrial
application dataset and demonstrate how it can reliably de-
tect abnormal behavior of such industrial equipment. Hyper-
parameters of both the reconstruction model and continu-
ous learning algorithm are tuned through a Bayesian opti-
mization procedure using the scikit-optimize library [Head et
al., 2018]. Code to reproduce experiments is publicly avail-
able . All of our experiments were implemented using py-
Torch framework [Paszke et al., 2017] and the following de-
scribes the details of experiments and results.

Dataset description. Data were collected from a set of 10
sensors that continuously monitor a 102J turbo-compressor
operating in a real application. Figure 1 shows a schematic
representation of the sensors deployment topology on the in-
dustrial setting. It exhibits, in particular, the location of the 8,
vertical and horizontal, vibration sensors as well as the 2 ax-
ial displacement sensors relative to the different components

"https://www.github.com/hamidimassinissa/vibration-sae
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Figure 2: Reconstruction results showing (a) training loss between
the real system and our model, (b) projection of the high dimensional
latent representations of the best model obtained within Bayesian
optimization to a colored two-dimensional space using t-SNE. Same
colors correspond to the sequential order of the hidden representa-
tions generated during contiguous periods of time.

of the equipment which allow us to assess defects that can
appear in any of the three Cartesian directions. Acquisition
of vibration data was carried for each sensor at a sampling
rate of 1 Hz which is sensitive enough for capturing vibration
trends that may indicate defects. For frame-by-frame analy-
sis, signals are segmented into short-term overlapping win-
dows of various lengths w and overlapping is controlled with
a hyper-parameter, the step-size, referred to as s.

Training procedure. The weights of the reconstruction
model are updated via stochastic gradient descent on mini-
batches of size bs and we use Adam algorithm [Kingma and
Ba, 2014] for controlling the descent. Either for smooth-
ing the optimization landscape yielding stable behavior of the
gradients [Santurkar et al., 2018] or for reducing the internal
covariate shift [Toffe and Szegedy, 2015], batch normalization
enables faster and more stable training of neural networks. In
our experiments, in addition to applying batch normalization
to input-to-hidden transformation of the LSTM units, hidden-
to-hidden transitions are also batch-normalized [Cooijmans er
al., 2016]. This is especially important as we also account for
shifts of distributions of the latent representation over time
that are caused by the various degradations described earlier.
In addition to the size of the mini-batches bs, both learning-
rate [r and weight-decay d are optimized using the Bayesian
optimization procedure. We apply gradient clipping at 0.25
to avoid exploding gradients and dropout is applied also ac-
cording to the variational RNN technique presented in [Gal
and Ghahramani, 2016] in order to prevent the model from
overfitting.
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Experiment@(  MSE MAE  #alarms #replacements
AE@200 0.1887 0.4259 6 4
AE@500 0.0715  0.2006 8 5
AE@1000 0.1657 0.3792 9 5
AE@1500 0.1829 0.4146 8 4
AE@2000 0.0375 0.1498 6 5

Table 1: Summary of the monitoring performances on vib3_h signal for various nominal training periods ¢. It exhibits, in particular, the
number of alarms that are triggered as well as the number of times the controller model is updated.

4.1 Reconstruction and Monitoring Evaluation

Figure 2a shows the evolution of the training loss over the
nominal training period and the rapid convergence of the
model (around 300 iterations) towards a negligible value for
the reconstruction error. Figure 2b shows the latent represen-
tations in a two-dimensional space obtained via the t-SNE al-
gorithm [Maaten and Hinton, 2008]. The time-sequential or-
der of the windows is depicted as the gradual variation of the
color space where for example purple corresponds to more re-
cent windows in the monitoring process. Two distinct regions
characterize the resulting latent representation space and cor-
respond to a shift of the data distribution. It shows that con-
tiguous signal sequences are projected to a continuous region
in the latent space. This is the sign that our model’s outputs
evolves and adapts to the nominal evolution of the monitored
system.

We also evaluate the ability of the continuous learning
model to maintain a given regime and that the reconstruction
model does not drift on its own over time because of an in-
sufficient nominal training period. Indeed, it is expected that
for shorter nominal training periods, the reconstruction model
will not be able to consolidate enough its reconstruction ca-
pabilities and thus is susceptible to degenerate rapidly in a
free-running configuration (where we do not have a mecha-
nism for validating examples) and drift over time which will
potentially result in substantial amount of alarms and model
replacements. In order to verify capabilities of the continuous
learning model, we measure the number of time the controller
model is replaced in the case of adaptive control period in dif-
ferent learning configurations. Proposed monitoring model is
evaluated using different values for the nominal training pe-
riod ¢ € {200, 500, 1000, 1500,2000} and Table 1 summa-
rizes obtained results. We notice that regardless of the size of
the nominal training period, the reconstruction model is able
to maintain a negligible discrepancy over time, measured by
the mean square and absolute errors. The same observation
can be made regarding the number of alarms triggered by the
controller model and the number of time it is replaced.

4.2 Reactivity Assessment

As for the stability of the proposed approach, the reactivity
is another important aspect which is evaluated via its ability
to be consistent with Equation 7 and to particularly follow
abrupt changes of the real system. Figure 3 shows both the
system’s and our model’s outputs within a monitoring win-
dow. The analysis shows that the controller model performs
well and is able to follow closely the evolution of the system
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Figure 3: Monitoring results extracted from a batch of 10 axial dis-
placement signal windows at epoch 1. Some hyper-parameters of
the model are a follows: window size = 50 samples, learning rate =
le-1, hidden units = 100, teacher forcing temperature = 0.448.

during the considered short windows and in general, its re-
activity remains around two time-steps. Even if the obtained
results are satisfactory in our case (the residuals in Figure 3a
remain within reasonable bounds even during abrupt regime
changes), better tuning approach of the a parameter, pre-
sented in Equation 7 , can be done to reduce the latency and
the discrepancy between the system and our model’s outputs.

4.3 Impact of Hyperparameters Optimization

We evaluated more than 600 different architectures which
are then analyzed via the functional ANalysis Of VAriance
(FANOVA) framework [Hoos and Leyton-Brown, 2014] to
assess hyper-parameters relevance and their low-level inter-
actions. Table 2 summarizes the hyper-parameters being op-
timized along with their corresponding ranges of possible val-
ues. Results show that few hyper-parameters have an impact
on the performances of the proposed approach. The most in-
fluential ones are the number of hidden units, teacher-forcing
temperature and the sparsity parameter given by their quan-
tified marginal importance with 0.20185, 0.05866, 0.05954
respectively.
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Hyper-param. (sym) low  high prior marginal importance
Learning rate (Ir) 0.001 0.1 log 0.03677
Weight decay (d) 0.001 0.01 log 0.00686
Window size (w) 10 60 - 0.02108
Step size (s) 0.5 0.6 log 0.00504
Batch size (bs) 10 50 - 0.0194
Number of hidden units (14,) 64 384 - 0.20185
Temperature (temp) 0.2 0.5 log 0.05866
Sparsity parameter (p) 0.05 0.1 log 0.05954
Sparsity penalty weight () 0.5 1 log 0.01418
Inputs dropout probability (p;,,) 0.5 1 log 0.01621
Outputs dropout probability (p,,) 0.5 1 log 0.01475
States dropout probability (ps;) 0.5 1 log 0.00553

Table 2: Summary of the different hyper-parameters assessed during Bay
pairwise marginal importance.
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Figure 4: fANOVA analysis of low-level interactions between
hyper-parameters and their marginalized impact on the models’ re-
construction performances.

Figure 4 shows the importance of the number of hidden
units in the LSTM layers and teacher-forcing temperature on
the overall reconstruction performances of the model. As the
temperature defines the probability to feed the model with the
ground-truth inputs, we expect that the quality of the recon-
structions will increase with higher temperature values. Sur-
prisingly, experimental results show that quality remains sta-
ble even when the temperature increases. This contrasts with
the number of hidden units which has obviously a substan-
tial influence on the reconstruction performances. It shows in
particular that larger hidden states, allowed by means of the
sparsity criterion that we added, yield better reconstructions.
The relatively low importance of most of the hyperparameters
compared to the number of hidden units could reflect signs of
overfitting. This could stem from the model reconstructing
exactly the training data given that we allowed the number of
hidden units to exceed inputs dimension. For that matter, the
analysis conducted on out-of-sample data using walk-forward
validation allows us to check that actually, the model, using
the largest number of hidden units, does not suffer from over-
fitting and is able to reconstruct the validation inputs properly.

5 Conclusion

This paper proposes a two-level LSTM-based autoencoder ar-
chitecture for monitoring industrial application and reliably
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esian optimization procedure along with their respective bounds and

account for their evolution over time. We demonstrated sig-
nificant gains in both reconstruction as well as monitoring
performances through Bayesian optimization of the architec-
ture’s hyper-parameters. The experimental results on an in-
dustrial application prove the effectiveness of the proposed
continuous learning model. The success of the proposed ap-
proach motivates future work on coupling it with diagnostics
capabilities that will open up perspectives for better predic-
tive maintenance.
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