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Abstract

We investigate the data complexity of answering
queries mediated by metric temporal logic ontolo-
gies under the event-based semantics assuming
that data instances are finite timed words times-
tamped with binary fractions. We identify classes
of ontology-mediated queries answering which can
be done in ACO, NC!, L, NL, P, and CONP for data
complexity, provide their rewritings to first-order
logic and its extensions with primitive recursion,
transitive closure or datalog, and establish lower
complexity bounds.

1 Introduction

We are concerned with the following problem: given a for-
mula IT of metric temporal logic MTL and an atomic propo-
sition A, is it possible to construct a query Q(z) in some
standard query language such that, for any data instance D of
atoms timestamped with binary fractions and any timestamp
t from D, we have II, D = A(t) iff Q(t) is true in D?

MTL was originally designed for modelling and reason-
ing about real-time systems [Koymans, 1990; Alur and Hen-
zinger, 1993; Bouyer et al., 2018]. Recently, combinations
of MTL with description logics have been suggested as tem-
poral ontology languages [Gutiérrez-Basulto er al., 2016b;
Baader et al., 2017]. Datalog with MTL -operators was used
by [Brandt ez al., 2018] for practical ontology-based access
to log data aiming to facilitate detection of events in asyn-
chronous systems based on sensor measurements. For exam-
ple, a Siemens turbine has a coast down if the rotor speed was
below 1500 in the previous 30 seconds, while no more than
2 minutes before that the speed was above 6600 for 30 sec-
onds. The event ‘coast down’ can be encoded by the following
MTL-formula, where ©(,. 5j0 (H(, 5)) is true at a timestamp
t if ¢ holds at some (respectively, all) ¢’ withr <t —t' < s:

B (0,305)5Peed < 1500 A ©(0,2m] F(0,30) SP€€d 6600 — cdown.

To find when a coast down occurred, a Siemens engineer can
now simply execute the query cdown(z) mediated by this for-
mula. Answering datalogMTL queries in the streaming set-
ting was considered by [Walega er al., 2019].

The underpinning idea of classical ontology-based data ac-
cess (OBDA) [Calvanese et al., 2007; Xiao et al., 2018] is a
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reduction of ontology-mediated query (OMQ) answering to
standard database query evaluation. As known from descrip-
tive complexity [Immerman, 1999], the existence of such re-
ductions, or rewritings, is closely related to the data complex-
ity of OMQ answering, which is by now well understood for
atemporal OMQs both uniformly (for all OMQs in a given
language) and non-uniformly (for individual OMQs) [Gottlob
etal.,2014; Bienvenu and Ortiz, 2015; Bienvenu et al., 2014,
Lutz and Sabellek, 2017].

Temporal ontology and query languages have attracted at-
tention of datalog and description logic communities since
the 1990s; see [Baudinet et al., 1993; Chomicki and Toman,
1998; Lutz er al., 2008; Artale et al., 2017] for surveys. In
recent years, the proliferation of temporal data from various
sources and its importance for analysing the behaviour of
complex systems and decision making in all economic sec-
tors have intensified research into formalisms that can be used
for querying temporal databases and streaming data [Soylu et
al., 2017; Beck et al., 2018; Ronca et al., 2018]. OBDA with
atemporal ontologies and query languages with linear tempo-
ral logic LTL operators has been in use since [Baader et al.,
2013; Ozcep and Moller, 2014]. Rewritability and data com-
plexity of OMQs in the description logics DL-Lite and £L
extended with LTL operators were considered in [Artale et
al., 2015; Gutiérrez-Basulto et al., 2016al.

Here, we investigate the (uniform) rewritability and data
complexity problems for basic OMQs given in metric tempo-
ral logic MTL, assuming that data instances are finite sets of
atoms timestamped by dyadic rationals and that MTL is inter-
preted under the event-based semantics where atoms refer to
events (state changes) rather than to states themselves [Ouak-
nine and Worrell, 2008]. MTL is more succinct, expressive,
and versatile compared to LTL, being able to model both syn-
chronous (discrete) and asynchronous (real-time) settings.

First, we observe that answering arbitrary MTL-OMQs is
CONP-complete for data complexity (in contrast to NC'-
completeness for LTL-OMQs). OMQs in the Horn fragment
hornMTL are P-complete and rewritable to datalog(FO),
which extends datalog with FO-formulas built from EDB
predicates; in fact, we establish P-hardness already for the
fragment coreMTIP of hornMTL with binary rules (like in
OWL2QL) and box operators only. OMQs in coreMTL®
turn out to be FO(TC)-rewritable (FO with transitive closure)
and NL-hard. We then classify MTL-OMQs by the type of
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ranges o constraining their temporal operators <, and H,:
infinite (r, 00) and [r, 00), punctual [r, r], and arbitrary non-
punctual p. We show that OMQs of the first type are FO-
rewritable and can be answered in AC®. OMQs of the second
type are FO(RPR)-rewritable (FO with relational primitive re-
cursion) and NC'-complete. For the third type, we obtain an
NL upper bound with rewritability to FO(TC) and NC* lower
bound; for hornMTL-OMQs of this type, the results are im-
proved to L with rewritability to FO(DTC) (FO with deter-
ministic closure).

The omitted proofs can be found in [Ryzhikov et al., 2019].

2 MTL Ontology-Mediated Queries

In the context of event monitoring, we consider a ‘past’ vari-
ant of MTL, which is a propositional modal logic with con-
strained operators <, ‘sometime in the past within range
¢’ and H, ‘always in the past within range p, interpreted
over finite timed words under the event-based semantics. We
assume that timestamps in timed words are given as non-
negative dyadic rational numbers (finite binary fractions), the
set of which is denoted by QQZO. The ranges ¢ in &, and H,
are non-empty intervals with end-points in Q5" U {co}.
An MTL-program, 11, is a finite set of rules of the form

191/\...A19k—)19k+1V"'\/19k+l7 (l)

where each ¥; takes the form A, ©,A4, or H, A, for an atomic
proposition A. We denote the empty A by T (truth) and empty
V by L (falsehood). Using fresh atoms, every MTL -formula
can be transformed to an equivalent (in the sense of giving the
same answers to queries) MTL -program.

An MTL-program is called a hornMTL-program if, in all
of its rules (1), I < 1 and ¥y is an atom. As usual, Y1
is called the head of the rule and 91 A --- A Uy, its body. A
hornMTL-program is a coreMTL-program if k +1 < 2. An
MTL- (hornMTL- or coreMTL-) ontology-mediated query
(OMQ) takes the form g = (II, A), where II is an MTL-
(resp., hornMTL- or coreMTL-) program and A an atom.

Intuitively, a data instance, D, can be thought of as a word
Ag(0), ..., Ap(k) with timestamps 0 < --- < k, i € Q3°,
where each A; is the set of atoms that are true at 7. Formally,
we represent D as the FO-structure

D = (A, <,0,bity,, bity, AT, ..., AD), )
with domain A = {0, ..., ¢} ordered by <, timestamps © =
{0,...,k}, 1 < k < ¢, and subsets AP C O. The ternary
predicates bit;, and bity,. are such that, for any n € © and
i € A, there are unique b;, ¢; € {0, 1} with bit;, (n, i, b;) and
bits-(n, 4, ¢;). These predicates give the value i € Q50 of ev-
ery timestampn € ©: i = by ... bg.cp . .. ¢ iff bit;, (n, 4, b;)
and bits.(n, 7, ¢;) hold for all 7 < ¢. We assume that 7 < m
if n < m. For any r € (@220, we can define an FO-formula
dist<,(z,y) thatholds in Diff z,y € O and 0 < T — g < 7,
its variants dists.,(x,y), dist—.(x,y), etc. Using these, we
can further define FO-formulas in,(z,y) for 2 — § € o,
suc(z,y) for ‘z is an immediate successor of y in D’, and
FO-expressible constants min = 0 and max = k.
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An event-based interpretation over D is a structure
I = (A,<,0,bity, bity, AT, ..., AL), AP C A7 C o,
where the Boolean connectives are interpreted as usual and
(©,A)F = {te O | cO(in,(t,t') At € AT)},
(B,A)F = {tco |V cO(in,(tt) =t c A}

An interpretation Z over D is a model of an MTL-program
IT and D if, for any rule (1) in II and any ¢t € ©, whenever
t € 9F foralli,1 < i < k, thent € ﬂfﬂ- for some j,
1 <5 < 1. We call D and II consistent if there is a model of
IT and D.

Henceforth, we write ts(D) for the set © of timestamps
in (2) and often informally identify ¢ € ts(D) with its
value ¢. We call ¢ € ts(D) (and so ?) a certain answer to
q = (I, A) over D if t € AT for every model Z of D and
II. The OMQ answering problem for q is to decide, given D
and t € ts(D), whether ¢ is a certain answer to g over D.
To illustrate, consider IT = {Bj.2) B — B’, ¢;1,11B" — A},
Dy = {B(0), B(1/2),C(3/2)} and Dy = {B(0),C(3/2)}.
Then 3/2 is a certain answer to (II, A) over Dy, but there are
no certain answers to (II, A) over Ds:

BB  BE

0

I -— Q
b

ol ==

We are interested in the data complexity of OMQ answering,
that is, regard D as the only input to the problem and assume
q to be fixed.

Let £ be a query language over FO-structures (2). An
OMQ q is said to be L-rewritable if there is an L-query Q(x),
called an L-rewriting of g, such that, for any data instance D,
a timestamp ¢ € ts(D) is a certain answer to g over D iff
D | Q(t). Our target query languages £ include:

— FO(<) and its extension FO(<, +) with the predicate
PLUS (e.g., 32 PLUS(x, x, max) says that |©] is odd);
evaluating such queries is in AC® for data complexity;

— FO(RPR), i.e., FO(<) with relational primitive recur-
sion, which is in NC! [Compton and Laflamme, 1990];

— FO(TC) and FO(DTC), i.e., FO(<) with transitive and
deterministic transitive closure, which are in NL and L,
respectively [Immerman, 1999];

— datalog(FO), i.e., datalog queries with additional FO-
formulas built from EDB predicates in their rule bodies,
which are in P [Gridel, 1991].

All of them save datalog(FO) can be implemented in SQL. £-
rewritability of an OMQ g means that answering q is in the
same data-complexity class as evaluation of L£-queries.

Given a hornMTL-program II and a data instance D, we
define a set €py p of pairs of the form (¢, ¢) that contains all
answers to OMQs with II over D. We start by setting € = D
and denote by cl(€) the result of applying exhaustively and
non-recursively the following rules to ¢:

—if Y A A9, — disin Il and (¥;,t) € €, for all ¢,
1 < ¢ < k, then we add (9, t) to €;

— if ©,B occurs in II, (B, t’) € &, and in,(¢,¢') holds for
some ¢ € ts(D), then we add (,B,t) to ¢;
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— if H,B occurs in II, ¢ € ts(D) and (B,t') € € for all
t' € ts(D) with in,(¢,¢'), then we add (H,B, t) to €.

It should be clear that there is some N < w polynomially
depending on IT and D such that cI¥ (€) = V" (¢). We
then set € p = cIN(D). We can regard €y p as a (minimal)
model of IT and D with domain ts(D) in which ¢t € B¢ iff
(B,t) € €r,p The proof of the following is standard:
Theorem 1. For a hornMTL-OMQ (11, A), (i) Il is inconsis-
tent with D iff (L, t) € € p; (ii) a timestamp t € ts(D) is a
certain answer to a hornMTL-OMQ (I1, A) over D iff either
Cn,p = A[t] or ILis inconsistent with D.

Note in passing that, as a consequence, we obtain the fol-

lowing reduction of L-rewritability of more general horn-
MTL-OMQs (I1, ) with positive FO-queries ¢ (built from
atoms, A, V, V, and J) to L-rewritability of atomic OMQs we
deal with in this paper:
Corollary 2. Let (I1, ) be a hornMTL-OMQ with a positive
FO-query . If (I, A) has an L-rewriting Q 4(x), for every
atom A in o, then the result of simultaneous replacing every
A(x) in @ with Q 4(x) is an L-rewriting of (I1, ).

3 OMQs with Arbitrary Ranges

We begin by establishing (non-)rewritability and data com-
plexity of answering OMQs in various classes where arbi-
trary ranges in temporal operators are allowed. We denote
by coreMTIZ (coreMTI®) the restriction of coreMTL to the
language with operators H,, (respectively, ©,) only.

Theorem 3. (i) Answering MTL-OMQs is CONP-complete
for data complexity; (ii) hornMTL-OMQs are datalog(FO)-
rewritable, with coreMTIE-OMQs being P-hard; (iii)
coreMTL® -OMQs are FO(TC)-rewritable and NL-hard.

Proof sketch. (i) The membership in CONP is trivial. We es-
tablish CONP-hardness by reduction of NP-complete circuit
satisfiability [Arora and Barak, 2009]. Let C be a Boolean
circuit with Ny-many (two-input) AND, OR and (one-input)
NOT gates enumerated by consecutive numbers starting from
0 so that if there is an edge from n to m, then n < m. Take the
minimal N = 2¥ > Nj and a data instance D¢ with the facts

- A(2n+1i/N),if nisa gate and 0 < i < Np;

— X(2n 4+ n/N), if n is an input gate;

- N(2n+n/N),if nis aNOT gate;

- D(2n+n/N), if n is an OR gate;

- C(2n+n/N),if n is an AND gate;

- Ip(2n 4+ m/N), if n is a NOT gate with input gate m;
I(2n+m/N) and I5(2n+k/N), if n is an OR or AND
gate with input gates m and k.

Let Il be an MTL-program with the following rules:

X —-TVF, 6[272]T—>T, 6[272]F_> F,

NA@[071](IO/\T)4)F7 N/\e[()’l](lo/\F)*)T,

DAG(LAT) =T, DAyl AT) =T,

C/\Q[071](I1/\F)—>F, C/\Q[oyl](fg/\F)%F,

DA 6[0,1](11 A F) A\ 6[071](12 N F) — F

CA 0,1 (Il A T) A Q10,1) (12 A T) —T.
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Then C is satisfiable iff the maximal number in ts(D) is not
a certain answer to (Ile, F) over De. An example of C' and
an initial part of a model of I, D¢ is shown below:

2

0
1 VAN
[x]

T TF TF1 TFTF
X I 1> D I, C
AAAAA AAAAA AAAAA AAAAA
01234 1617181920 3233343536 4849505152
888838 8 8 8 8 8 8 88 8 8 8 8 8 8 8

(74) We construct a datalog(FO) rewriting (I, G(z)) of a
hornMTL-OMQ g = (II, A). To begin with, we add to II the
rule P(z) — P’(z,x) for each P in II. The other rules in
IT’ are obtained from the rules in II by the following transfor-
mations. We replace every atom B not under the scope of a
temporal operator with B’(z, x) and every <y, ) B with

B'(w, z) A dists,(z,w) Adist<s(z, 2)

and similarly for other types of ranges o in ©,B. Intuitively,
II',D = B'(x,y) iff (B,t) € € p, for each ¢ € [x,y] from
ts(D). We replace every By, B in the body of a rule with

B'(w, z) Adist>s(z, w) Adist<,(z, z) Adists s_p) (2, w)

and similarly for other types of ranges. Finally, we add the
following rules to the resulting program:

Ay 2) Ay <z < 2) - Gla),
B'(z,y) A B'(z, 2) Asuc(y, z) — B'(z, 2).

Note that the obtained datalog program II’ contains FO-
definable EDB predicates such as dist>,.(z, w) and suc(y, z)
in rule bodies. Clearly, ¢ is a certain answer to g over any
given data instance D iff ¢ is an answer to (II', G(x)) over D.
The proof of hardness via PSA is similar to that in (¢i%).

(7i7) The upper bound can be shown by reduction to
FO(TC) via linear datalog(FO). We prove NL-hardness by
reduction of the reachability problem in acyclic digraphs. Let
G be such a digraph with N vertices enumerated by consec-
utive natural numbers starting from O so that, if there is an
edge from n to m, then n < m. Let eg, ..., er_1 be the lex-
icographical order of edges. Take the minimal N = 2¢ > N
for ¢ € N. Suppose we want to check whether a vertex ¢ is ac-
cessible from s. Let D¢ consist of the atoms A(4i+n/N), for
0 < i < kandavertex n; A(2+4i+n/N), A(2+4i+m/N),
for every edge e; = (n,m); R(4i +s/N),for0 < i < k. An
example of G and an initial part of D¢ is shown below:

.\
G: . 1 °
S:o\> _/3:t
[ ]
2
by I1: R R R
. R R
De: Aaaa A A AAAA
0123 s 10 16171819
4 4 4 4 4 4 4 4 4 4

&4
edge eg = (0,2)

Let IT be a coreMTI® program with the following rules:

6[272]R — R’, 9(071]R,—> R/: 6[2,2] R'— R, 6[474]R — R.
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Then 4k + ¢ /N is a certain answer to (II, R) over D¢ iff ¢ is
reachable from s in G. a

To obtain finer complexity results, we classify MTL-
OMQs by the type of ranges o in their operators <, and Hy:
infinite, punctual, and non-punctual. Let { be one of ( or [.

4 OMQs with Ranges (r, 00)

First, consider OMQs with &, o) and B, .y, which resem-
ble LTL -operators ‘sometime’ and ‘always in the past’. Us-
ing partially-ordered automata, [Artale et al., 2015] showed
that LTL-OMQs with these operators are FO-rewritable. Al-
though such automata are not applicable now, we establish
the same complexity by characterising the structure of mod-
els. In the constructions below, it will be convenient to regard
H, as an abbreviation for —<,— with Boolean negation — and
only consider w.l.o.g. OMQs (II, A) with A occurring in II.

Theorem 4. MTL-OMQs with temporal operators of the
form &, ooy and B . oy only are FO(<)-rewritable.

Proof sketch. Let q = (II, A) be an MTL-OMQ as specified
above. A simple literal, o, for 11 takes the form P or —P,
where P is an atom in II; a temporal literal, T, for 11 is of the
form ©,0 or =&,0 provided that &, P or H, P occurs in 11
and P is the atom in ¢. Let X7 and =7 be the sets of simple
and temporal literals for II, respectively. A type for II is any
maximal set £ C X1 U =1y consistent with II. The number of
different types is Ny = 201D,

Given a model Z of IT and some D with s € ts(D), denote
by t(s) the type of s in Z. As the ranges in II are of the form
(r, 00), the model Z has the following monotonicity property:

— ©,0 € t(s) implies ©,0 € t(s') forall s’ > sinZ;

- —6,0 € t(s) implies ~&,0 € t(s') forall s’ < s in .
We call £(s) in Z an osteo-type if there is A € t(s) such that
A ¢ t(s'), forall ' < s. Thus, if ©,0 € t(s’) inZ, there is an
osteo-type t(s) > o with iny(s’, s). All osteo-types in Z are
pairwise distinct, so the number of them does not exceed Nyj.
Non-osteo-types are called fluff-types. By monotonicity, any
fluff-type ¢(s’) has the same temporal literals as its nearest
osteo-type t(s), for s < s’. For example, in the model of the
program IT = {B,P A $,P AP — 1}, p = [1,00), shown
below, there are three fluff-types: ¢(3/4), £(9/8), and ¢(5/4).

-P P -P -P P P -P

-, P —&pmP =&, P  &,mP  &,—P &P &P
O P TSP 1O, P nQ P 26, P mo, P S P
0 1 H 1 s s 3
2 1 8 1 2

fluff-type fluff-types

We now define an FO-sentence ®r; such that any given data
instance D is consistent with II iff & holds in the FO-
structure D. Let Oy be the set of sequences £ = (tq,...,t,),
1 < n < Ni, of distinct types for 11 that satisfy the mono-
tonicity property and such that &,0 € t; implies o € t; for
some j < ¢; for minimal such j, we write wit(t;, t;, o). We
write wit(t;, t;, 0) if j < i, 70,0 € t(s;) and o € t(s;),
for some ©,0. Denote by S% the set of types t for II shar-
ing the same temporal literals with £; and such that, for every
o € t, thereis t; > o with j < 4. Finally, for any type ¢, let

d¢(x) = N\_pey 7P (z) (which is true at ¢ in D iff, for every
P inII, whenever P(t) € D then P(t) € t). Now, we set

., @n [(z1 = min) A /\ e, (23) A

1<i<n
/\ ing (x4, ;) A /\

wit(t;,t;,0) wit(ti,t;,0)

vy A (@i <y) = \ G n A —ing(y.2,))].

1<i<n tegl wit(t;,t;,0)

Sing (@, x5) A

where x; < y says that x; is the nearest predecessor of y,
which is different from 1, . . ., z,,. An FO(<)-rewriting of ¢
is the FO formula —®_ 4 (x), where ®_ 4 (z) is obtained from
17 by replacing 04 (2) with 0¢(z, ), which is §¢(z) if ~A € ¢
and 0¢(z) A (x # z) otherwise. Clearly, @ 4(z) holds in D
iff there is a model of II and D satisfying —A in x. Q

We also mention in passing one more FO-rewritability re-
sult (which does not fit our classification). Call an MTL-
program range-uniform if all of its temporal operators have
the same constraining range. Let ) be one of ) or |.

Theorem 5. Range-uniform coreMTL®-OMQs with ranges
of the form &g,y are FO(<, +)-rewritable.

The proof uses automata with metric constraints that can
be viewed as a primitive version of standard timed automata
for MTL [Alur and Dill, 1994] as they only have one clock c,
the clock reset ¢ := 0 happens at every transition, and clock
constraints are of the form ¢ € p.

5 OMQs with Punctual Ranges [r, 7]

Operators of the form &, ) resemble the LTL previous time
operator ©. To illustrate an essential difference, consider the
program Il = {&; 1P — Q, ©1.51.5/P AQ — P} and the
data instance D below. In LTL, we always derive ©P atn+1

P P PP PQ Q re

Ll Ll Ll Ll Ll Ll Ll L

0 1 37 715 3 13
4 4 8 4 8 4

if P holds at n. In our example, P at 3/4 implies ) at 7/4,
which together with P at 1/4 imply P at 7/4, and eventually
the latter P with @ at 13/4 implies P at 13/4; independently,
P at7/8 implies @ at 15/8.

Theorem 6. MTL-OMQs with temporal operators of the
Sform &y, ) and B, ;1 only are FO(RPR)-rewritable; answer-
ing such OMQs is NC*-complete for data complexity.

Proof sketch. NC*-hardness is proved by reduction of horn-
MTL-OMQs with rules of the form SP A P’ — (), answer-
ing which is NC!-complete [Artale et al., 2015].

To show FO(RPR)-rewritability of a given OMQ q =
(I1, A), we assume w.lo.g. that IT does not contain ranges
[0, 0]. Let Ry be the set of numbers occurring as endpoints of
ranges in II. We set 1 = gcd(Rp), n=1-n, forn € N,
m = max(Ry). Thus, in our example above, 1 = 1/2,
2 =1, 3 = 3/2. We define cl(II) to be the set of simple and
temporal literals with atoms from II and operators &; such
that ¢ € {1,...,n} and &, occurs in II. By a type s for II
we now mean any maximal subset of ¢l(II) consistent with
II. For types s, s’ and ¢ € {1,...,m}, we write s —; s’ if

1854
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- o € siff &0 € &, for any &;0 € cl(I);

- Gja € siff 9j+i0' S S/, for ej+i0 € CZ(H),J >1.
We say that (sg,%0), ..., (Sn,tn) is @ run from to to t,, on a
data instance D of the form (2) if ¢; € ts(D), for i < n, and

— {PEEH|t0€PD}g80;

— =0 € sq forall &0 € cl(II);

— Ei+1—t_i S {1, Ceey m} andiftiﬂ >t > t; then t_—fl g

{1,...,m}, forany ¢t € ts(D);

- S; _>(f7:+1*f7:) Sit1 and {PEEH | ti+1 S PD} - Sit1-

Call t € ts(D) initial if t — 1 ¢ {1,...,m}, for all
t' € ts(D). The next lemma follows directly from the given
definitions:
Lemma 7. (i) (II, D) is consistent iff, for every t € ts(D),
there exists a run on D from some initial t' < t to t; (ii) A
timestamp t € ts(D) is not a certain answer to q over D iff
(I1, D) is consistent and there is a run (Sg,to), .., (Sn,tn)
Sfrom initial to tot =t, on D and A € s,

We first show how to express the existence of a run from x
to y specified in (é¢) by an FO(RPR)-formula rung(z, y) over
D. First, as divisibility of binary integers by a given num-
ber is recognisable by a finite automaton, we can define an
FO(RPR)-formula divq (u, v) that is true iff 4 — o = n1, for
some n € N. We also have an FO-formula last;(u) saying
that ¢ is minimal among {1,...,m} with & — ¢ = 7, for
some v € ts(D). Let Q = {s1,..., S, } be the set of all types
for I, and let Qo C () comprise s with -&;0 € s, for all
©j0 € cl(II). We define rung(x, y) as the FO(RPR)-formula

Rs,(z,2) = O, ]

R, (2,2) =75,
where R (x, z), for s € Q, is a relation variable and the for-
mula 95(z, z, Rs, (x,2—1),..., Rs, (x,z—1)) is a disjunc-
tion of the three formulas below if s € () and a disjunction
of the last two of them if s ¢ Qo:

(x = 2) Nds(2),
=divy (2, 2) A 32/(distem (2, 2") Adive (2, 2) ) ARs (2, 2 — 1),
divi(z,z) A \/  (da(2) Alast;(2) A R (z, 2 — 1)),

ie{1,....,m}
s/%is

\/ Rs(xay> A diVl(wa)a
—A€ESEQ

where z — 1 is the immediate predecessor of z in ts(D).
To illustrate, in the context of the example above, the for-
mulas Rs = ¥, say that Rg(1/4,1/4) holds for the types

{ﬂelpv_‘%Pa _'63P7 P7Q}7 {_‘elpa_'eZP7_‘e3P7 Pa _‘Q}
Then Rg(1/4,3/4) holds for
{elpa _‘62P7ﬂe3pa P?Q}v {elpa_‘%Pa _‘63P7P7_‘Q}7
Rs(1/4,7/8) for the same s as Rs(1/4,3/4), Rs(1/4,7/4)
for s = {—1 P, 62 P, &3 P, P, (Y}, and so on.

Thus, we obtain the following FO(RPR)-rewriting of ¢

=@y V =3y (rung(y, z) A /\ —last;(y)),
ie{l,....m}

where @17 checks the consistency condition of Lemma 7 (7)
and can be constructed similarly to rung. d
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6 OMQs with Non-Punctual Ranges

Unlike the proof of Theorem 6, where the derived facts at
t were determined by the data D at ¢ and the derived facts
at the nearest t' € ts(D) with ¢ = ¢ — 4, for non-punctual
ranges the derived facts at ¢ depend on an unbounded number
of timestamps ¢’ < ¢. In the proof of Theorem 8 below, we
show that to construct derivations in this case, we can actually
keep track of a fixed number (depending only on the given
OMQ) of moments /> < t where each P was derived.

Theorem 8. (i) MTL-OMQs whose operators &, and B,
have non-punctual o are FO(TC)-rewritable; answering them
is in NL and NC"-hard; (ii) hornMTL-OMQs of this kind are
FO(DTCQC)-rewritable; answering them is in L and NC!-hard.

Proof sketch. In both cases, NC'-hardness can be established
as in the proof of Theorem 6 by encoding © with ©g 1.

(1) Let g = (II, A) be the given OMQ. For ¢ = (r, ¢) with
q # oo, let o~ = (0,q —7) and o™ = (0,q); if ¢ = o0, 0~
and o" are undefined. Let Xy be the set of all o with ©,0 in
II, for some g. For ¢ € Xy, let o, (o) be the intersection
(union) of the defined ¢~ (o) with &,0 in II; if there are no
such ©,0, o, and o} are undefined. To illustrate, consider
the hornMTL -program II with the rules

Sl = P, uaP = P, Op3.Q — Q.

Then o5 = (0,1), 0p = [0, 4], and 0 925 are undefined.

For a data instance D, a frace of length ¢ for t € ts(D)
is a sequence of intervals [ug, Sol, .. ., [ug, s¢] where either
[w;, 8i] = [*,*] (meaning that this interval is undefined) or
Ui, 8; € ts(D), up = sg, and ug < 81 < ug < 89 < -+ <
up < s¢ < t, assuming that « < wu, for any u. Thus, for the
data instance D below,

P P Q

'l 'l 'l 'l 'l 'l 'l >
LI LI LI LI LI LI LI b
1 s 5 15 5 25 10
2 4 2 4 4

(135 3], [+ %], [*. %], [3, 2], [2, 3]) is a trace for t = 5/2. Intu-
itively, such a trace stores the most recent ¢ intervals preced-
ing ¢ where a simple literal holds at some point, with [ug, So]
storing the very first point where the literal holds. A tuple

(t, (trs)sesy, t) is an extended type for t € ts(D) if
— tis atype for II (as in the proof of Theorem 4);

— tr, is a trace for ¢ of length £, = [|of|/|o, ||, where
|oF| and |g | denote the end-points of these intervals; if
one of the intervals is undefined, /, = 0;

— &,0 € tiffint,(t, u;, s;), for some [u;, ;] in tr,,

where int,(t, u, s) is true iff {{ — k | k € o} N [, 5] # 0 and
u, s # *. In our example, {p = 4, {g = 0, and the following
triples (¢;, (tr )yexy, ;) are extended types for t;:

to={P, Q. 7.4 P. ~op.2 P, ~0p.0)@} to = 3.
tr% = (3 31, b o], [ ol Tl 3 310, 20 = ([, 4]
t1 = {P,~Q, 4P on P, 93,00 Qt tr = 1,
trh = (13, 31, [, ), e, ), [, ), (3, 30,y = ([, %)
ty = {P,Q, 02,4 P, ~On2) P, 793,00)Q}, t2 = 3

trd = (5, 31, b #) b o) 3,3, 13 3D, 3= (133D
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ts = {P,Q,0024P, 2P, 793,00)Q1, ts
trp=([5,3), 13, 3, [, 2, [5,5), [2, 1), v = ([3, 3))-

2y2bl2y2b a4 404

Intuitively, an extended type records the simple and temporal
literals that hold at ¢ (the type t) and also some history of the
validity of o (the traces) justifying the presence of &40 in t.
As follows from Lemma 9 below, to make correct derivations,
this history should keep ¢, + 1 intervals. Note that this bound
does not apply if punctual intervals are present in II, which
explains the increase of complexity in Theorem 3.

25
4

Lemma 9. Let tg < --- < t,, be all the timestamps in
D. Then 11 and D are consistent iff there exists a sequence
(i, (trl)oesy, ti) of extended types for t;, 0 < i < m, sat-
isfying the following conditions for o € Y11:

- {PeXn|tie PP} Cty

—ifo ¢ to, all [uj,s;] in trl are [x,*]; if o € to, then

[uo, 0] = [ue,, se,] = [to, to] and [uj, s;] = [x, %] for
0< <ty

—ifo & t;and i > 0, then tr! = tri7';ifo € t,
tri=l = ([uo, sol, ..., [ue,, 50,]) and [u,s] = [ug, 50]
when ug # x and [u,s] = [t ;] otherwise, then
try, = ([u,s],[u, s1],.. . [ue,, ti]) if ti — 30, € 05,
else trl. = ([u, s], [ug, S2], ..., [ue,, Se, ], [ti, ti])-

We use the characterisation of Lemma 9 to construct an
FO(TC)-sentence Py that is true in D iff II and D are con-
sistent, for any data instance D. @1y contains tuples of vari-
ables ¢ = x,,,...,%,,, for {o1,...,0,} = X, where
To = Too,.--, %o, and T;o = Uis, Sic fOr intervals in
traces tr,; x’ is the same as x but with primed variables:

oy = 3w,@'(\/ firste(a) A
t type for g
[TCt et 2 &(t, @, ', &')](min, z, max, z)).

Here, firsty(x) is an FO-formula saying that ¢ holds in the
first timestamp (min) of D and x represents tr° for all o by
encoding [*, x| as the empty interval [max, min]. The formula
&(t,x,t', ") under the transitive closure TC says that there is
an extended type for ¢ with the trace given by x, that ¢’ is the
immediate successor of ¢ in ts(D), and there is an extended
type for ¢’ whose trace is given by x’. We define it as

\/ ft/(t,:c,t’,a:’),

t’ type for g

Ety, t', ') = suc(t',t) A

with & (¢, @, ¢, @) saying that if (¢, (try)scxy,t) is an
extended type for ¢ with (tr,),cx, given by x, then
(t', (tr! )yesy,t’) can be the next extended type with
(tr!])oes, givenby x':

Eu(t,z, t' x') = exty(t',x') A /\ (e =) A

ogt!

/\ [((uog > S00) = (upy =t') A (50,

) A

((UOU < 500) — (:EOU = wé)o’)) A
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A

1<i<b,—1
(e 0 =g, o) A (s
(min,-(t'se,) = N\ (
1<i<tl, —1
(U0 =) A (sh,0 =1))].
The formula ext, (¢, «) defines an extended type for ¢ in D:

exty(t,z) = ()N N\ () inte(t,uig, si0)) A

Spoet  0<i<l,

/\ ( /\ _‘intg(tauia75ig)).

S,o¢t 0<i<t,

(in,- (t';50,) = (Tie =i, ) A

/
L

o =1)) A

!
Tic = Ti_1,) N

Finally, first(x) is L if there is ©,0 € t and otherwise it is

O (min) A /\ /\ ((ujo = max) A (8o = min)) A

ogt 0<i<l,

/\( /\ (u;e = max) A (8;, = min)) A
oct 0<i<{l,
(tge = min) A (Sps = min) A
(ug, o = min) A (sp,, = min)),
saying that the intervals in the initial extended type are set
correctly. That &1y is as required follows from Lemma 9. One
can now modify @17 to obtain an FO(TC)-rewriting of g. Q1

7 Conclusion

In this paper, we made a first step towards understanding
the data complexity of answering queries mediated by on-
tologies with MTL operators and their rewritability into
standard database query languages. By imposing natural re-
strictions on the ranges o constraining the operators &,
and H,, and by distinguishing between arbitrary, Horn and
core ontologies, we identified classes of MTL-OMQs that
are rewritable to FO(<), FO(<,+), FORPR), FO(DTC),
FO(TC), and datalog(FO). Unrestricted MTL-OMQs were
shown to be CONP-hard. The rewritability results look en-
couraging, though much remains to be done to make our
rewritings practical, especially in the presence of more ex-
pressive atemporal (description logic or datalog) ontologies.

We can extend our language with constrained operators
since S,. In this case, hornMTL remains P-complete (but
coreMTL becomes P-hard) and Theorem 8 holds, too. We
believe that our hornMTL can also be extended with H, in
the rule heads (cf. [Brzoska, 1998]): Theorems 3 (i) and
8 (4) also hold in this case, but so far we have not managed
to prove Theorem 8 (47) for such rules. Extending MTL with
future-time operators is also interesting, in which case The-
orems 3 and 4 remain to hold. Finally, we are looking into
MTL-OMQs under the continuous (state-based) semantics,
where the techniques developed above do not apply directly.
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