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Abstract
We investigate the data complexity of answering
queries mediated by metric temporal logic ontolo-
gies under the event-based semantics assuming
that data instances are finite timed words times-
tamped with binary fractions. We identify classes
of ontology-mediated queries answering which can
be done in AC0, NC1, L, NL, P, and CONP for data
complexity, provide their rewritings to first-order
logic and its extensions with primitive recursion,
transitive closure or datalog, and establish lower
complexity bounds.

1 Introduction
We are concerned with the following problem: given a for-
mula Π of metric temporal logic MTL and an atomic propo-
sition A, is it possible to construct a query Q(x) in some
standard query language such that, for any data instance D of
atoms timestamped with binary fractions and any timestamp
t from D, we have Π,D |= A(t) iff Q(t) is true in D?

MTL was originally designed for modelling and reason-
ing about real-time systems [Koymans, 1990; Alur and Hen-
zinger, 1993; Bouyer et al., 2018]. Recently, combinations
of MTL with description logics have been suggested as tem-
poral ontology languages [Gutiérrez-Basulto et al., 2016b;
Baader et al., 2017]. Datalog with MTL -operators was used
by [Brandt et al., 2018] for practical ontology-based access
to log data aiming to facilitate detection of events in asyn-
chronous systems based on sensor measurements. For exam-
ple, a Siemens turbine has a coast down if the rotor speed was
below 1500 in the previous 30 seconds, while no more than
2 minutes before that the speed was above 6600 for 30 sec-
onds. The event ‘coast down’ can be encoded by the following
MTL-formula, wherex(r,s]ϕ (�(r,s]ϕ) is true at a timestamp
t if ϕ holds at some (respectively, all) t′ with r < t− t′ ≤ s:
�(0,30s]speed<1500∧x(0,2m] �(0,30s] speed>6600 → cdown.

To find when a coast down occurred, a Siemens engineer can
now simply execute the query cdown(x) mediated by this for-
mula. Answering datalogMTL queries in the streaming set-
ting was considered by [Wałęga et al., 2019].

The underpinning idea of classical ontology-based data ac-
cess (OBDA) [Calvanese et al., 2007; Xiao et al., 2018] is a

reduction of ontology-mediated query (OMQ) answering to
standard database query evaluation. As known from descrip-
tive complexity [Immerman, 1999], the existence of such re-
ductions, or rewritings, is closely related to the data complex-
ity of OMQ answering, which is by now well understood for
atemporal OMQs both uniformly (for all OMQs in a given
language) and non-uniformly (for individual OMQs) [Gottlob
et al., 2014; Bienvenu and Ortiz, 2015; Bienvenu et al., 2014;
Lutz and Sabellek, 2017].

Temporal ontology and query languages have attracted at-
tention of datalog and description logic communities since
the 1990s; see [Baudinet et al., 1993; Chomicki and Toman,
1998; Lutz et al., 2008; Artale et al., 2017] for surveys. In
recent years, the proliferation of temporal data from various
sources and its importance for analysing the behaviour of
complex systems and decision making in all economic sec-
tors have intensified research into formalisms that can be used
for querying temporal databases and streaming data [Soylu et
al., 2017; Beck et al., 2018; Ronca et al., 2018]. OBDA with
atemporal ontologies and query languages with linear tempo-
ral logic LTL operators has been in use since [Baader et al.,
2013; Özçep and Möller, 2014]. Rewritability and data com-
plexity of OMQs in the description logics DL-Lite and EL
extended with LTL operators were considered in [Artale et
al., 2015; Gutiérrez-Basulto et al., 2016a].

Here, we investigate the (uniform) rewritability and data
complexity problems for basic OMQs given in metric tempo-
ral logic MTL, assuming that data instances are finite sets of
atoms timestamped by dyadic rationals and that MTL is inter-
preted under the event-based semantics where atoms refer to
events (state changes) rather than to states themselves [Ouak-
nine and Worrell, 2008]. MTL is more succinct, expressive,
and versatile compared to LTL, being able to model both syn-
chronous (discrete) and asynchronous (real-time) settings.

First, we observe that answering arbitrary MTL -OMQs is
CONP-complete for data complexity (in contrast to NC1-
completeness for LTL -OMQs). OMQs in the Horn fragment
hornMTL are P-complete and rewritable to datalog(FO),
which extends datalog with FO-formulas built from EDB
predicates; in fact, we establish P-hardness already for the
fragment coreMTL� of hornMTL with binary rules (like in
OWL 2 QL ) and box operators only. OMQs in coreMTLx
turn out to be FO(TC)-rewritable (FO with transitive closure)
and NL-hard. We then classify MTL -OMQs by the type of
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ranges % constraining their temporal operators x% and �%:
infinite (r,∞) and [r,∞), punctual [r, r], and arbitrary non-
punctual %. We show that OMQs of the first type are FO-
rewritable and can be answered in AC0. OMQs of the second
type are FO(RPR)-rewritable (FO with relational primitive re-
cursion) and NC1-complete. For the third type, we obtain an
NL upper bound with rewritability to FO(TC) and NC1 lower
bound; for hornMTL -OMQs of this type, the results are im-
proved to L with rewritability to FO(DTC) (FO with deter-
ministic closure).

The omitted proofs can be found in [Ryzhikov et al., 2019].

2 MTL Ontology-Mediated Queries
In the context of event monitoring, we consider a ‘past’ vari-
ant of MTL, which is a propositional modal logic with con-
strained operators x% ‘sometime in the past within range
%’ and �% ‘always in the past within range %,’ interpreted
over finite timed words under the event-based semantics. We
assume that timestamps in timed words are given as non-
negative dyadic rational numbers (finite binary fractions), the
set of which is denoted by Q≥0

2 . The ranges % in x% and �%
are non-empty intervals with end-points in Q≥0

2 ∪ {∞}.
An MTL -program, Π, is a finite set of rules of the form

ϑ1 ∧ · · · ∧ ϑk → ϑk+1 ∨ · · · ∨ ϑk+l, (1)

where each ϑi takes the form A,x%A, or �%A, for an atomic
propositionA. We denote the empty∧ by> (truth) and empty
∨ by ⊥ (falsehood). Using fresh atoms, every MTL -formula
can be transformed to an equivalent (in the sense of giving the
same answers to queries) MTL -program.

An MTL -program is called a hornMTL-program if, in all
of its rules (1), l ≤ 1 and ϑk+1 is an atom. As usual, ϑk+1

is called the head of the rule and ϑ1 ∧ · · · ∧ ϑk its body. A
hornMTL-program is a coreMTL-program if k + l ≤ 2. An
MTL- (hornMTL - or coreMTL -) ontology-mediated query
(OMQ) takes the form q = (Π, A), where Π is an MTL-
(resp., hornMTL - or coreMTL -) program and A an atom.

Intuitively, a data instance, D, can be thought of as a word
A0(0̄), . . . ,Ak(k̄) with timestamps 0̄ < · · · < k̄, ī ∈ Q≥0

2 ,
where each Ai is the set of atoms that are true at ī. Formally,
we represent D as the FO-structure

D = (∆,<,Θ, bitin , bitfr , A
D
1 , . . . , A

D
p ), (2)

with domain ∆ = {0, . . . , `} ordered by <, timestamps Θ =
{0, . . . , k}, 1 ≤ k ≤ `, and subsets ADi ⊆ Θ. The ternary
predicates bitin and bitfr are such that, for any n ∈ Θ and
i ∈ ∆, there are unique bi, ci ∈ {0, 1} with bitin(n, i, bi) and
bitfr (n, i, ci). These predicates give the value n̄ ∈ Q≥0

2 of ev-
ery timestamp n ∈ Θ: n̄ = b` . . . b0.c` . . . c0 iff bitin(n, i, bi)
and bitfr (n, i, ci) hold for all i ≤ `. We assume that n̄ < m̄

if n < m. For any r ∈ Q≥0
2 , we can define an FO-formula

dist<r(x, y) that holds in D iff x, y ∈ Θ and 0 ≤ x̄− ȳ < r,
its variants dist>r(x, y), dist=r(x, y), etc. Using these, we
can further define FO-formulas in%(x, y) for x̄ − ȳ ∈ %,
suc(x, y) for ‘x is an immediate successor of y in D’, and
FO-expressible constants min = 0 and max = k.

An event-based interpretation over D is a structure

I = (∆,<,Θ, bitin , bitfr , A
I
1 , . . . , A

I
p ), ADi ⊆ AIi ⊆ Θ,

where the Boolean connectives are interpreted as usual and

(x%A)I = {t ∈ Θ | ∃t′ ∈ Θ (in%(t, t
′) ∧ t′ ∈ AI)},

(�%A)I = {t ∈ Θ | ∀t′ ∈ Θ (in%(t, t
′)→ t′ ∈ AI)}.

An interpretation I over D is a model of an MTL-program
Π and D if, for any rule (1) in Π and any t ∈ Θ, whenever
t ∈ ϑIi for all i, 1 ≤ i ≤ k, then t ∈ ϑIk+j for some j,
1 ≤ j ≤ l. We call D and Π consistent if there is a model of
Π and D.

Henceforth, we write ts(D) for the set Θ of timestamps
in (2) and often informally identify t ∈ ts(D) with its
value t̄. We call t ∈ ts(D) (and so t̄) a certain answer to
q = (Π, A) over D if t ∈ AI for every model I of D and
Π. The OMQ answering problem for q is to decide, given D
and t ∈ ts(D), whether t is a certain answer to q over D.
To illustrate, consider Π = {�[0,2)B → B′, x[1,1]B

′ → A},
D1 = {B(0), B(1/2), C(3/2)} and D2 = {B(0), C(3/2)}.
Then 3/2 is a certain answer to (Π, A) over D1, but there are
no certain answers to (Π, A) over D2:

B B′

0

B B′

1
2

C A

3
2

We are interested in the data complexity of OMQ answering,
that is, regard D as the only input to the problem and assume
q to be fixed.

Let L be a query language over FO-structures (2). An
OMQ q is said to beL-rewritable if there is anL-query Q(x),
called an L-rewriting of q, such that, for any data instanceD,
a timestamp t ∈ ts(D) is a certain answer to q over D iff
D |= Q(t). Our target query languages L include:

– FO(<) and its extension FO(<,+) with the predicate
PLUS (e.g., ∃x PLUS(x, x,max) says that |Θ| is odd);
evaluating such queries is in AC0 for data complexity;

– FO(RPR), i.e., FO(<) with relational primitive recur-
sion, which is in NC1 [Compton and Laflamme, 1990];

– FO(TC) and FO(DTC), i.e., FO(<) with transitive and
deterministic transitive closure, which are in NL and L,
respectively [Immerman, 1999];

– datalog(FO), i.e., datalog queries with additional FO-
formulas built from EDB predicates in their rule bodies,
which are in P [Grädel, 1991].

All of them save datalog(FO) can be implemented in SQL. L-
rewritability of an OMQ q means that answering q is in the
same data-complexity class as evaluation of L-queries.

Given a hornMTL-program Π and a data instance D, we
define a set CΠ,D of pairs of the form (ϑ, t) that contains all
answers to OMQs with Π over D. We start by setting C = D
and denote by cl(C) the result of applying exhaustively and
non-recursively the following rules to C:

– if ϑ1 ∧ · · · ∧ ϑk → ϑ is in Π and (ϑi, t) ∈ C, for all i,
1 ≤ i ≤ k, then we add (ϑ, t) to C;

– if x%B occurs in Π, (B, t′) ∈ C, and in%(t, t
′) holds for

some t ∈ ts(D), then we add (x%B, t) to C;
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– if �%B occurs in Π, t ∈ ts(D) and (B, t′) ∈ C for all
t′ ∈ ts(D) with in%(t, t

′), then we add (�%B, t) to C.
It should be clear that there is some N < ω polynomially
depending on Π and D such that clN (C) = clN+1(C). We
then set CΠ,D = clN (D). We can regard CΠ,D as a (minimal)
model of Π and D with domain ts(D) in which t ∈ BCΠ,D iff
(B, t) ∈ CΠ,D The proof of the following is standard:
Theorem 1. For a hornMTL-OMQ (Π, A), (i) Π is inconsis-
tent with D iff (⊥, t) ∈ CΠ,D; (ii) a timestamp t ∈ ts(D) is a
certain answer to a hornMTL-OMQ (Π, A) over D iff either
CΠ,D |= A[t] or Π is inconsistent with D.

Note in passing that, as a consequence, we obtain the fol-
lowing reduction of L-rewritability of more general horn-
MTL -OMQs (Π, ϕ) with positive FO-queries ϕ (built from
atoms, ∧, ∨, ∀, and ∃) to L-rewritability of atomic OMQs we
deal with in this paper:
Corollary 2. Let (Π, ϕ) be a hornMTL-OMQ with a positive
FO-query ϕ. If (Π, A) has an L-rewriting QA(x), for every
atom A in ϕ, then the result of simultaneous replacing every
A(x) in ϕ with QA(x) is an L-rewriting of (Π, ϕ).

3 OMQs with Arbitrary Ranges
We begin by establishing (non-)rewritability and data com-
plexity of answering OMQs in various classes where arbi-
trary ranges in temporal operators are allowed. We denote
by coreMTL� (coreMTLx) the restriction of coreMTL to the
language with operators �% (respectively,x%) only.
Theorem 3. (i) Answering MTL-OMQs is CONP-complete
for data complexity; (ii) hornMTL-OMQs are datalog(FO)-
rewritable, with coreMTL�-OMQs being P-hard; (iii)
coreMTLx-OMQs are FO(TC)-rewritable and NL-hard.
Proof sketch. (i) The membership in CONP is trivial. We es-
tablish CONP-hardness by reduction of NP-complete circuit
satisfiability [Arora and Barak, 2009]. Let C be a Boolean
circuit with N0-many (two-input) AND, OR and (one-input)
NOT gates enumerated by consecutive numbers starting from
0 so that if there is an edge from n tom, then n < m. Take the
minimalN = 2k ≥ N0 and a data instanceDC with the facts

– A(2n+ i/N), if n is a gate and 0 ≤ i < N0;
– X(2n+ n/N), if n is an input gate;
– N(2n+ n/N), if n is a NOT gate;
– D(2n+ n/N), if n is an OR gate;
– C(2n+ n/N), if n is an AND gate;
– I0(2n+m/N), if n is a NOT gate with input gate m;
– I1(2n+m/N) and I2(2n+k/N), if n is an OR or AND

gate with input gates m and k.
Let ΠC be an MTL-program with the following rules:

X → T ∨ F, x[2,2]T → T, x[2,2]F → F,

N ∧x[0,1](I0 ∧ T )→ F, N ∧x[0,1](I0 ∧ F )→ T,

D ∧x[0,1](I1 ∧ T )→ T, D ∧x[0,1](I2 ∧ T )→ T,

C ∧x[0,1](I1 ∧ F )→ F, C ∧x[0,1](I2 ∧ F )→ F,

D ∧x[0,1](I1 ∧ F ) ∧x[0,1](I2 ∧ F )→ F,

C ∧x[0,1](I1 ∧ T ) ∧x[0,1](I2 ∧ T )→ T.

Then C is satisfiable iff the maximal number in ts(D) is not
a certain answer to (ΠC , F ) over DC . An example of C and
an initial part of a model of ΠC , DC is shown below:

∨
2

∧
3

¬
4

X
1

X
0

AAAAA AAAAA AAAAA AAAAA

0
8

1
8

2
8

3
8

4
8

16
8

17
8

18
8

19
8

20
8

32
8

33
8

34
8

35
8

36
8

48
8

49
8

50
8

51
8

52
8

X X I1I2D I1I2 C
T T F T F T T F T F

(ii) We construct a datalog(FO) rewriting (Π′, G(x)) of a
hornMTL -OMQ q = (Π, A). To begin with, we add to Π the
rule P (x) → P ′(x, x) for each P in Π. The other rules in
Π′ are obtained from the rules in Π by the following transfor-
mations. We replace every atom B not under the scope of a
temporal operator with B′(x, x) and everyx[r,s]B with

B′(w, z) ∧ dist≥r(x,w) ∧ dist≤s(x, z)

and similarly for other types of ranges % in x%B. Intuitively,
Π′,D |= B′(x, y) iff (B, t) ∈ CΠ,D, for each t ∈ [x, y] from
ts(D). We replace every �[r,s]B in the body of a rule with

B′(w, z) ∧ dist≥s(x,w) ∧ dist≤r(x, z) ∧ dist≥(s−r)(z, w)

and similarly for other types of ranges. Finally, we add the
following rules to the resulting program:

A′(y, z) ∧ (y ≤ x ≤ z)→ G(x),

B′(x, y) ∧B′(z, z) ∧ suc(y, z)→ B′(x, z).

Note that the obtained datalog program Π′ contains FO-
definable EDB predicates such as dist≥r(x,w) and suc(y, z)
in rule bodies. Clearly, t is a certain answer to q over any
given data instanceD iff t is an answer to (Π′, G(x)) over D.
The proof of hardness via PSA is similar to that in (iii).

(iii) The upper bound can be shown by reduction to
FO(TC) via linear datalog(FO). We prove NL-hardness by
reduction of the reachability problem in acyclic digraphs. Let
G be such a digraph with N0 vertices enumerated by consec-
utive natural numbers starting from 0 so that, if there is an
edge from n to m, then n < m. Let e0, . . . , ek−1 be the lex-
icographical order of edges. Take the minimal N = 2i ≥ N0

for i ∈ N. Suppose we want to check whether a vertex t is ac-
cessible from s. LetDG consist of the atomsA(4i+n/N), for
0 ≤ i ≤ k and a vertex n;A(2+4i+n/N),A(2+4i+m/N),
for every edge ei = (n,m); R(4i+ s/N), for 0 ≤ i ≤ k. An
example of G and an initial part of DG is shown below:

•
s = 0

•
1

•
2

•
3 = t

AAAA AAAAA A

0
4

1
4

2
4

3
4

8
4

10
4

16
4

17
4

18
4

19
4

R R
R′ R′′ R

G:

by Π:

DG :

edge e0 = (0, 2)

Let Π be a coreMTLx program with the following rules:

x[2,2]R→ R′, x(0,1]R
′→ R′′, x[2,2]R

′′→ R, x[4,4]R→ R.
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Then 4k + t/N is a certain answer to (Π, R) over DG iff t is
reachable from s in G. q

To obtain finer complexity results, we classify MTL -
OMQs by the type of ranges % in their operators x% and �%:
infinite, punctual, and non-punctual. Let 〈 be one of ( or [.

4 OMQs with Ranges 〈r,∞)
First, consider OMQs withx〈r,∞) and �〈r,∞), which resem-
ble LTL -operators ‘sometime’ and ‘always in the past’. Us-
ing partially-ordered automata, [Artale et al., 2015] showed
that LTL -OMQs with these operators are FO-rewritable. Al-
though such automata are not applicable now, we establish
the same complexity by characterising the structure of mod-
els. In the constructions below, it will be convenient to regard
�% as an abbreviation for ¬x%¬with Boolean negation ¬ and
only consider w.l.o.g. OMQs (Π, A) with A occurring in Π.
Theorem 4. MTL-OMQs with temporal operators of the
formx〈r,∞) and �〈r,∞) only are FO(<)-rewritable.

Proof sketch. Let q = (Π, A) be an MTL -OMQ as specified
above. A simple literal, σ, for Π takes the form P or ¬P ,
where P is an atom in Π; a temporal literal, τ , for Π is of the
form x%σ or ¬x%σ provided that x%P or �%P occurs in Π
and P is the atom in σ. Let ΣΠ and ΞΠ be the sets of simple
and temporal literals for Π, respectively. A type for Π is any
maximal set t ⊆ ΣΠ ∪ΞΠ consistent with Π. The number of
different types is NΠ = 2O(|Π|).

Given a model I of Π and some D with s ∈ ts(D), denote
by t(s) the type of s in I. As the ranges in Π are of the form
〈r,∞), the model I has the following monotonicity property:

– x%σ ∈ t(s) impliesx%σ ∈ t(s′) for all s′ > s in I;
– ¬x%σ ∈ t(s) implies ¬x%σ ∈ t(s′) for all s′ < s in I.

We call t(s) in I an osteo-type if there is λ ∈ t(s) such that
λ /∈ t(s′), for all s′ < s. Thus, ifx%σ ∈ t(s′) in I, there is an
osteo-type t(s) 3 σ with in%(s

′, s). All osteo-types in I are
pairwise distinct, so the number of them does not exceedNΠ.
Non-osteo-types are called fluff-types. By monotonicity, any
fluff-type t(s′) has the same temporal literals as its nearest
osteo-type t(s), for s < s′. For example, in the model of the
program Π = {�%P ∧x%P ∧ P → ⊥}, % = [1,∞), shown
below, there are three fluff-types: t(3/4), t(9/8), and t(5/4).

0

¬x%P
¬x%¬P
¬P

1
2

¬x%P
¬x%¬P
P

3
4

¬x%P
¬x%¬P
¬P

1

¬x%P
x%¬P
¬P

9
8

¬x%P
x%¬P
P

5
4

¬x%P
x%¬P
P

3
2

x%P

x%¬P
¬P

fluff-typesfluff-type

We now define an FO-sentence ΦΠ such that any given data
instance D is consistent with Π iff ΦΠ holds in the FO-
structureD. Let OΠ be the set of sequences t̄ = (t1, . . . , tn),
1 ≤ n ≤ NΠ, of distinct types for Π that satisfy the mono-
tonicity property and such that x%σ ∈ ti implies σ ∈ tj for
some j ≤ i; for minimal such j, we write wit(ti, tj , %). We
write wit(ti, tj , %) if j ≤ i, ¬x%σ ∈ t(si) and σ ∈ t(sj),
for some x%σ. Denote by Fit̄ the set of types t for Π shar-
ing the same temporal literals with ti and such that, for every
σ ∈ t, there is tj 3 σ with j ≤ i. Finally, for any type t, let

δt(x) =
∧
¬P∈t ¬P (x) (which is true at t in D iff, for every

P in Π, whenever P (t) ∈ D then P (t) ∈ t). Now, we set

ΦΠ =
∨

t̄∈OΠ

∃x1, . . . , xn
[
(x1 = min) ∧

∧
1≤i≤n

δti(xi) ∧∧
wit(ti,tj ,%)

in%(xi, xj) ∧
∧

wit(ti,tj ,%)

¬in%(xi, xj) ∧

∀y
∧

1≤i≤n

(
(xi ≺ y)→

∨
t∈Fi

t̄

(δt(y) ∧
∧

wit(ti,tj ,%)

¬in%(y, xj))
)]
,

where xi ≺ y says that xi is the nearest predecessor of y,
which is different from x1, . . . , xn. An FO(<)-rewriting of q
is the FO formula ¬Φ¬A(x), where Φ¬A(x) is obtained from
ΦΠ by replacing δt(z) with δt(z, x), which is δt(z) if ¬A ∈ t
and δt(z) ∧ (x 6= z) otherwise. Clearly, Φ¬A(x) holds in D
iff there is a model of Π and D satisfying ¬A in x. q

We also mention in passing one more FO-rewritability re-
sult (which does not fit our classification). Call an MTL -
program range-uniform if all of its temporal operators have
the same constraining range. Let 〉 be one of ) or ].
Theorem 5. Range-uniform coreMTLx-OMQs with ranges
of the formx〈0,r〉 are FO(<,+)-rewritable.

The proof uses automata with metric constraints that can
be viewed as a primitive version of standard timed automata
for MTL [Alur and Dill, 1994] as they only have one clock c,
the clock reset c := 0 happens at every transition, and clock
constraints are of the form c ∈ %.

5 OMQs with Punctual Ranges [r, r]
Operators of the formx[r,r] resemble the LTL previous time
operator 	. To illustrate an essential difference, consider the
program Π = {x[1,1]P → Q, x[1.5,1.5]P ∧Q→ P} and the
data instanceD below. In LTL, we always derive	P at n+1

P

0

P

1
4

P

3
4

P

7
8

P Q

7
4

Q

15
8

3

P Q

13
4

if P holds at n. In our example, P at 3/4 implies Q at 7/4,
which together with P at 1/4 imply P at 7/4, and eventually
the latter P withQ at 13/4 implies P at 13/4; independently,
P at 7/8 implies Q at 15/8.
Theorem 6. MTL-OMQs with temporal operators of the
formx[r,r] and �[r,r] only are FO(RPR)-rewritable; answer-
ing such OMQs is NC1-complete for data complexity.
Proof sketch. NC1-hardness is proved by reduction of horn-
MTL -OMQs with rules of the form 	P ∧ P ′ → Q, answer-
ing which is NC1-complete [Artale et al., 2015].

To show FO(RPR)-rewritability of a given OMQ q =
(Π, A), we assume w.l.o.g. that Π does not contain ranges
[0, 0]. LetRΠ be the set of numbers occurring as endpoints of
ranges in Π. We set 1 = gcd(RΠ), n = 1 · n, for n ∈ N,
m = max(RΠ). Thus, in our example above, 1 = 1/2,
2 = 1, 3 = 3/2. We define cl(Π) to be the set of simple and
temporal literals with atoms from Π and operators xi such
that i ∈ {1, . . . ,n} and xn occurs in Π. By a type s for Π
we now mean any maximal subset of cl(Π) consistent with
Π. For types s, s′ and i ∈ {1, . . . ,m}, we write s→i s

′ if
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– σ ∈ s iffxiσ ∈ s′, for anyxiσ ∈ cl(Π);
– xjσ ∈ s iffxj+iσ ∈ s′, forxj+iσ ∈ cl(Π), j ≥ 1.

We say that (s0, t0), . . . , (sn, tn) is a run from t0 to tn on a
data instance D of the form (2) if ti ∈ ts(D), for i ≤ n, and

– {P ∈ ΣΠ | t0 ∈ PD} ⊆ s0;
– ¬xjσ ∈ s0 for allxjσ ∈ cl(Π);
– t̄i+1−t̄i ∈ {1, . . . ,m} and if ti+1 > t > ti then t̄−t̄i 6∈
{1, . . . ,m}, for any t ∈ ts(D);

– si →(t̄i+1−t̄i) si+1 and {P ∈ΣΠ | ti+1 ∈ PD} ⊆ si+1.
Call t ∈ ts(D) initial if t̄ − t̄′ 6∈ {1, . . . ,m}, for all
t′ ∈ ts(D). The next lemma follows directly from the given
definitions:
Lemma 7. (i) (Π,D) is consistent iff, for every t ∈ ts(D),
there exists a run on D from some initial t′ ≤ t to t; (ii) A
timestamp t ∈ ts(D) is not a certain answer to q over D iff
(Π,D) is consistent and there is a run (s0, t0), . . . , (sn, tn)
from initial t0 to t = tn on D and ¬A ∈ sn.

We first show how to express the existence of a run from x
to y specified in (ii) by an FO(RPR)-formula runq(x, y) over
D. First, as divisibility of binary integers by a given num-
ber is recognisable by a finite automaton, we can define an
FO(RPR)-formula div1(u, v) that is true iff ū − v̄ = n1, for
some n ∈ N. We also have an FO-formula lasti(u) saying
that i is minimal among {1, . . . ,m} with ū − i = v̄, for
some v ∈ ts(D). LetQ = {s1, . . . , sn} be the set of all types
for Π, and let Q0 ⊆ Q comprise s with ¬xjσ ∈ s, for all
xjσ ∈ cl(Π). We define runq(x, y) as the FO(RPR)-formula[

Rs1
(x, z) ≡ ϑs1

. . .
Rsn(x, z) ≡ ϑsn

] ∨
¬A∈s∈Q

Rs(x, y) ∧ div1(y, x),

where Rs(x, z), for s ∈ Q, is a relation variable and the for-
mula ϑs(x, z,Rs1

(x, z− 1), . . . , Rsn(x, z− 1)) is a disjunc-
tion of the three formulas below if s ∈ Q0 and a disjunction
of the last two of them if s /∈ Q0:
(x = z) ∧ δs(z),

¬div1(z, x)∧ ∃z′(dist<m(z, z′)∧div1(z′, x))∧Rs(x, z − 1),

div1(z, x) ∧
∨

i∈{1,...,m}
s′→is

(δs(z) ∧ lasti(z) ∧Rs′(x, z − 1)),

where z − 1 is the immediate predecessor of z in ts(D).
To illustrate, in the context of the example above, the for-

mulas Rs ≡ ϑs say that Rs(1/4, 1/4) holds for the types
{¬x1P,¬x2P,¬x3P, P,Q}, {¬x1P,¬x2P,¬x3P, P,¬Q}.
Then Rs(1/4, 3/4) holds for
{x1P,¬x2P,¬x3P, P,Q}, {x1P,¬x2P,¬x3P, P,¬Q},
Rs(1/4, 7/8) for the same s as Rs(1/4, 3/4), Rs(1/4, 7/4)
for s = {¬x1P,x2P,x3P, P,Q}, and so on.

Thus, we obtain the following FO(RPR)-rewriting of q

¬ΦΠ ∨ ¬∃y
(
runq(y, x) ∧

∧
i∈{1,...,m}

¬lasti(y)
)
,

where ΦΠ checks the consistency condition of Lemma 7 (i)
and can be constructed similarly to runq . q

6 OMQs with Non-Punctual Ranges
Unlike the proof of Theorem 6, where the derived facts at
t were determined by the data D at t and the derived facts
at the nearest t′ ∈ ts(D) with t̄′ = t̄ − i, for non-punctual
ranges the derived facts at t depend on an unbounded number
of timestamps t′ < t. In the proof of Theorem 8 below, we
show that to construct derivations in this case, we can actually
keep track of a fixed number (depending only on the given
OMQ) of moments t′P < t where each P was derived.
Theorem 8. (i) MTL-OMQs whose operators x% and �%
have non-punctual % are FO(TC)-rewritable; answering them
is in NL and NC1-hard; (ii) hornMTL-OMQs of this kind are
FO(DTC)-rewritable; answering them is in L and NC1-hard.
Proof sketch. In both cases, NC1-hardness can be established
as in the proof of Theorem 6 by encoding 	 withx(0,1].

(i) Let q = (Π, A) be the given OMQ. For % = 〈r, q〉 with
q 6= ∞, let %− = 〈0, q − r〉 and %+ = 〈0, q〉; if q = ∞, %−
and %+ are undefined. Let ΣΠ be the set of all σ with x%σ in
Π, for some %. For σ ∈ ΣΠ, let %−σ (%+

σ ) be the intersection
(union) of the defined %− (%+) withx%σ in Π; if there are no
such x%σ, %−σ and %+

σ are undefined. To illustrate, consider
the hornMTL -program Π with the rules

x(2,4]P → P, x[1,2)P → P, x[3,∞]Q→ Q.

Then %−P = (0, 1), %+
P = [0, 4], and %−Q, %+

Q are undefined.
For a data instance D, a trace of length ` for t ∈ ts(D)

is a sequence of intervals [u0, s0], . . . , [u`, s`] where either
[ui, si] = [∗, ∗] (meaning that this interval is undefined) or
ui, si ∈ ts(D), u0 = s0, and u1 ≤ s1 < u2 ≤ s2 < · · · <
u` ≤ s` ≤ t, assuming that ∗ < u, for any u. Thus, for the
data instance D below,

P

1
2

P

5
4

Q

5
2

15
4

5 25
4

10

([ 1
2 ,

1
2 ], [∗, ∗], [∗, ∗], [ 1

2 ,
5
4 ], [ 5

2 ,
5
2 ]) is a trace for t = 5/2. Intu-

itively, such a trace stores the most recent ` intervals preced-
ing t where a simple literal holds at some point, with [u0, s0]
storing the very first point where the literal holds. A tuple
(t, (trσ)σ∈ΣΠ

, t) is an extended type for t ∈ ts(D) if
– t is a type for Π (as in the proof of Theorem 4);
– trσ is a trace for t of length `σ = d|%+

σ |/|%−σ |e, where
|%+
σ | and |%−σ | denote the end-points of these intervals; if

one of the intervals is undefined, `σ = 0;
– x%σ ∈ t iff int%(t, ui, si), for some [ui, si] in trσ ,

where int%(t, u, s) is true iff {t̄− k | k ∈ %} ∩ [ū, s̄] 6= ∅ and
u, s 6= ∗. In our example, `P = 4, `Q = 0, and the following
triples (ti, (tr

i
σ)σ∈ΣΠ

, ti) are extended types for ti:

t0 ={P,¬Q,¬x(2,4]P,¬x[1,2)P,¬x[3,∞)Q}, t0 = 1
2 ,

tr0
P = ([ 1

2 ,
1
2 ], [∗, ∗], [∗, ∗], [∗, ∗], [ 1

2 ,
1
2 ]), tr0

Q = ([∗, ∗]);
t1 = {P,¬Q,¬x(2,4]P,x[1,2)P,¬x[3,∞)Q}, t1 = 5

4 ,

tr1
P = ([ 1

2 ,
1
2 ], [∗, ∗], [∗, ∗], [∗, ∗], [ 1

2 ,
5
4 ]), tr1

Q = ([∗, ∗]);
t2 = {P,Q,x(2,4]P,¬x[1,2)P,¬x[3,∞)Q}, t2 = 5

2 ,

tr2
P = ([ 1

2 ,
1
2 ], [∗, ∗], [∗, ∗], [ 1

2 ,
5
4 ], [ 5

2 ,
5
2 ]), tr2

Q=([ 5
2 ,

5
2 ]); . . .
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t5 = {P,Q,x(2,4]P,x[1,2)P,¬x[3,∞)Q}, t5 = 25
4 ,

tr5
P =([ 1

2 ,
1
2 ], [ 5

2 ,
5
2 ], [ 15

4 ,
15
4 ], [5, 5], [ 25

4 ,
25
4 ]), tr5

Q=([ 5
2 ,

5
2 ]).

Intuitively, an extended type records the simple and temporal
literals that hold at t (the type t) and also some history of the
validity of σ (the traces) justifying the presence of x%σ in t.
As follows from Lemma 9 below, to make correct derivations,
this history should keep `σ + 1 intervals. Note that this bound
does not apply if punctual intervals are present in Π, which
explains the increase of complexity in Theorem 3.

Lemma 9. Let t0 < · · · < tm be all the timestamps in
D. Then Π and D are consistent iff there exists a sequence
(ti, (tr

i
σ)σ∈ΣΠ

, ti) of extended types for ti, 0 ≤ i ≤ m, sat-
isfying the following conditions for σ ∈ ΣΠ:

– {P ∈ ΣΠ | ti ∈ PD} ⊆ ti;

– if σ /∈ t0, all [uj , sj ] in tr0
σ are [∗, ∗]; if σ ∈ t0, then

[u0, s0] = [u`σ , s`σ ] = [t0, t0] and [uj , sj ] = [∗, ∗] for
0 < j < `σ;

– if σ 6∈ ti and i > 0, then triσ = tri−1
σ ; if σ ∈ ti,

tri−1
σ = ([u0, s0], . . . , [u`σ , s`σ ]) and [u, s] = [u0, s0]

when u0 6= ∗ and [u, s] = [ti, ti] otherwise, then
triσ = ([u, s], [u1, s1], . . . , [u`σ , ti]) if t̄i − s̄`σ ∈ %−σ ,
else triσ = ([u, s], [u2, s2], . . . , [u`σ , s`σ ], [ti, ti]).

We use the characterisation of Lemma 9 to construct an
FO(TC)-sentence ΦΠ that is true in D iff Π and D are con-
sistent, for any data instance D. ΦΠ contains tuples of vari-
ables x = xσ1 , . . . ,xσn , for {σ1, . . . , σn} = ΣΠ, where
xσ = x0σ, . . . ,x`σσ and xiσ = uiσ, siσ for intervals in
traces trσ; x′ is the same as x but with primed variables:

ΦΠ = ∃x,x′ (
∨

t type for q

firstt(x) ∧

[TCt,x,t′,x′ξ(t,x, t′,x′)](min,x,max,x′)).

Here, firstt(x) is an FO-formula saying that t holds in the
first timestamp (min) of D and x represents tr0

σ for all σ by
encoding [∗, ∗] as the empty interval [max,min]. The formula
ξ(t,x, t′,x′) under the transitive closure TC says that there is
an extended type for t with the trace given by x, that t′ is the
immediate successor of t in ts(D), and there is an extended
type for t′ whose trace is given by x′. We define it as

ξ(t,x, t′,x′) = suc(t′, t) ∧
∨

t′ type for q

ξt′(t,x, t
′,x′),

with ξt′(t,x, t
′,x′) saying that if (t, (trσ)σ∈ΣΠ , t) is an

extended type for t with (trσ)σ∈ΣΠ
given by x, then

(t′, (tr′σ)σ∈ΣΠ
, t′) can be the next extended type with

(tr′σ)σ∈ΣΠ
given by x′:

ξt′(t,x, t
′,x′) = extt′(t

′,x′) ∧
∧
σ 6∈t′

(xσ = x′σ) ∧

∧
σ∈t′

[(
(u0σ > s0σ)→ (u′0σ = t′) ∧ (s′0σ = t′)

)
∧

((u0σ ≤ s0σ)→ (x0σ = x′0σ)) ∧

(
in%−σ (t′, s`σ )→

∧
1≤i<`σ−1

(xiσ = x′iσ) ∧

(u`σσ = u′`σσ) ∧ (s′`σσ = t′)
)
∧(

¬in%−σ (t′, s`σ )→
∧

1<i≤`σ−1

(xiσ = x′i−1σ) ∧

(u′`σσ = t′) ∧ (s′`σσ = t′)
)]
.

The formula extt(t,x) defines an extended type for t in D:

extt(t,x) = δt(t) ∧
∧
x%σ∈t

( ∨
0≤i≤`σ

int%(t, uiσ, siσ)
)
∧

∧
x%σ/∈t

( ∧
0≤i≤`σ

¬int%(t, uiσ, siσ)
)
.

Finally, firstt(x) is ⊥ if there isx%σ ∈ t and otherwise it is

δt(min)∧
∧
σ 6∈t

∧
0≤i≤`σ

((uiσ = max) ∧ (siσ = min)) ∧

∧
σ∈t

(
∧

0<i<`σ

(uiσ = max) ∧ (siσ = min)) ∧

(u0σ = min) ∧ (s0σ = min) ∧
(u`σσ = min) ∧ (s`σσ = min)),

saying that the intervals in the initial extended type are set
correctly. That ΦΠ is as required follows from Lemma 9. One
can now modify ΦΠ to obtain an FO(TC)-rewriting of q. q

7 Conclusion
In this paper, we made a first step towards understanding
the data complexity of answering queries mediated by on-
tologies with MTL operators and their rewritability into
standard database query languages. By imposing natural re-
strictions on the ranges % constraining the operators x%
and �%, and by distinguishing between arbitrary, Horn and
core ontologies, we identified classes of MTL -OMQs that
are rewritable to FO(<), FO(<,+), FO(RPR), FO(DTC),
FO(TC), and datalog(FO). Unrestricted MTL -OMQs were
shown to be CONP-hard. The rewritability results look en-
couraging, though much remains to be done to make our
rewritings practical, especially in the presence of more ex-
pressive atemporal (description logic or datalog) ontologies.

We can extend our language with constrained operators
since S%. In this case, hornMTL remains P-complete (but
coreMTL becomes P-hard) and Theorem 8 holds, too. We
believe that our hornMTL can also be extended with �% in
the rule heads (cf. [Brzoska, 1998]): Theorems 3 (ii) and
8 (i) also hold in this case, but so far we have not managed
to prove Theorem 8 (ii) for such rules. Extending MTL with
future-time operators is also interesting, in which case The-
orems 3 and 4 remain to hold. Finally, we are looking into
MTL -OMQs under the continuous (state-based) semantics,
where the techniques developed above do not apply directly.
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