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Abstract
Spatio-temporal prediction is a key type of tasks in
urban computing, e.g., traffic flow and air quality.
Adequate data is usually a prerequisite, especially
when deep learning is adopted. However, the de-
velopment levels of different cities are unbalanced,
and still many cities suffer from data scarcity. To
address the problem, we propose a novel cross-city
transfer learning method for deep spatio-temporal
prediction tasks, called RegionTrans. Region-
Trans aims to effectively transfer knowledge from
a data-rich source city to a data-scarce target city.
More specifically, we first learn an inter-city region
matching function to match each target city region
to a similar source city region. A neural network
is designed to effectively extract region-level rep-
resentation for spatio-temporal prediction. Finally,
an optimization algorithm is proposed to transfer
learned features from the source city to the tar-
get city with the region matching function. Using
crowd flow prediction as a demonstration experi-
ment, we verify the effectiveness of RegionTrans.

1 Introduction
Spatio-temporal prediction covers a broad scope of applica-
tions in urban computing [Zheng et al., 2014], such as traf-
fic and air quality prediction. Recently, with the develop-
ment of big data techniques, deep learning becomes popular
in spatio-temporal prediction, e.g. crowd flow, taxi demand,
precipitation predictions, and achieves state-of-the-art perfor-
mance [Ke et al., 2017; Shi et al., 2015; Zhang et al., 2017;
Zhang et al., 2016]. However, the city development levels
are quite unbalanced, so that many cities cannot benefit from
such achievements due to data scarcity. Hence, how to help
data-scarce cities also obtain benefits from the recent tech-
nique breakthroughs like deep leaning, becomes an important
research issue, while it is still under-investigated up to date.

To tackle this problem, in this paper, we propose a new
cross-city transfer learning method for deep spatio-temporal
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prediction tasks, called RegionTrans. The objective of Re-
gionTrans is to predict a certain type of service data (e.g.,
crowd flow) in a data-scarce city (target city) by transferring
knowledge learned from a data-rich city (source city). The
principal idea of RegionTrans is to find inter-city region pairs
that share similar patterns and then use such region pairs as
proxies to efficiently transfer knowledge from the source city
to the target.

In literature, existing deep learning approaches are often
designed to predict citywide phenomenon as a whole [Zhang
et al., 2017; Zhang et al., 2016], and thus it is hard to en-
able region-level knowledge transfer. To this end, rather
than adopting the existing deep neural networks for citywide
spatio-temporal prediction, e.g. ST-ResNet [Zhang et al.,
2017], we propose a novel deep transfer learning method.
First, we design a region matching function to link each tar-
get city region to a similar source region based on the short
period of service data or correlated auxiliary data if applica-
ble. Then, in our proposed network structure, to catch the
spatio-temporal patterns hidden in the service data, ConvL-
STM layers [Shi et al., 2015] are firstly stacked. Afterward, to
encode region representation, we newly add a Conv2D layer
with 1×1 filter, which is the key and fundamental component
of our network to make region-level transfer feasible. Finally,
the discrepancy between region representations of the inter-
city similar regions is minimized during the network param-
eter learning for the target city, so as to enable region-level
cross-city knowledge transfer. With crowd flow prediction as
a showcase [Zhang et al., 2017], we verify the feasibility and
effectiveness of RegionTrans.

Briefly, this paper has the following contributions.
(i) To the best of our knowledge, this is the first work to fa-

cilitate deep spatio-temporal prediction in a data-scarce target
city by transferring knowledge from a data-rich source city.

(ii) We propose a novel deep transfer learning method
RegionTrans for spatio-temporal prediction tasks by region-
level cross-city transfer. RegionTrans first computes inter-city
region similarities, and then stacks ConvLSTM and Conv2D
(1× 1 filter) layers to extract region-level representations re-
flecting spatio-temporal patterns. Finally, the discrepancy of
the representations of inter-city similar regions is minimized
so as to facilitate region-level cross-city knowledge transfer.

(iii) With crowd flow prediction as a showcase, our experi-
ment shows that RegionTrans can reduce up to 10.7% predic-
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tion error compared to fine-tuned state-of-the-art deep spatio-
temporal prediction methods.

2 Related Work
Spatio-Temporal Prediction is a fundamental problem in ur-
ban computing [Zheng et al., 2014]. Recently, deep learning
is adopted in spatio-temporal prediction tasks and becomes
the state-of-the-art solution when there exists a rich history of
data. Various deep models have been used, e.g., CNN [Zhang
et al., 2016], ResNet [Zhang et al., 2017], and ConvLSTM
[Ke et al., 2017; Shi et al., 2015; Yao et al., 2018]. Compared
to these works, the difference of our work lies in both objec-
tive and method. We aim to apply deep learning to a target
city with a short period of service data, and thus propose Re-
gionTrans to effectively transfer knowledge from a data-rich
source city to the target city.

Transfer Learning addresses the machine learning problem
when labeled training data is scarce [Pan and Yang, 2010].
In urban computing, data scarcity problem often exists when
the targeted service or infrastructure is new. There are gen-
erally two strategies to deal with urban data scarcity. The
first is using auxiliary data of the target city to help build the
targeted application. Examples include using temperature to
infer humidity and vice versa [Wang et al., 2017], and lever-
aging the taxi GPS traces to detect ridesharing cars [Wang
et al., 2019]. The second is to find a source city with ade-
quate data to transfer knowledge. Guo et al. design a cross-
city transfer learning framework with collaborative filtering
and AutoEncoder to conduct chain store site recommenda-
tion [Guo et al., 2018]. As our problem is prediction rather
than recommendation, the method in [Guo et al., 2018] can-
not be applied. Another relevant work is [Wei et al., 2016],
which proposes a cross-city transfer learning algorithm FLO-
RAL to predict air quality category. There are two difficul-
ties to apply FLORAL to our task: (1) many spatio-temporal
prediction tasks are regression but FLORAL is designed for
classification; (2) FLORAL is not designed for deep learning.
As far as we know, RegionTrans is the first cross-city transfer
learning framework for deep spatio-temporal prediction.

3 Problem Formulation
Definition 1. Region. [Zhang et al., 2016] A city D is par-
titioned into WD ×HD equal-size grids (e.g., 1km × 1km).
Each grid is called a region, denoted as r. We use r[i,j] to
represent a city region whose coordinate is [i, j]. The whole
set of regions in a city D is denoted as CD.
Definition 2. Urban Image Time Series. We denote the
set of data time-stamps of a city D as:

TD = [tc − TD + 1, tc] (1)
where TD is the number of time-stamps and tc is the
current/last time-stamp. For brevity, we consider equal-
length time-stamp (e.g., one-hour) as in the previous research
[Zhang et al., 2017; Zhang et al., 2016]. For a specific time-
stamp t, we have an urban image It,D with WD ×HD pixels
where each pixel represents certain data of a corresponding
region (Def. 1),

It,D = {ir,t|r ∈ CD} ∈ RWD×HD (2)

Then, we define an urban image time series ID as follows:

ID = {It,D|t ∈ TD} ∈ RTD×WD×HD (3)

In reality, a variety of urban data can be modeled as the above
urban image time series, such as crowd flow, weather condi-
tion, air quality, etc.

Definition 3. Service Spatio-temporal Data. Service data
is the targeted type of data to predict. We define the service
spatio-temporal data as the urban image time series SD stor-
ing the service data :

SD = {St,D|t ∈ TD}
= {sr,t|r ∈ CD, t ∈ TD} ∈ RTD×WD×HD

(4)

where sr,t is the service data of region r at time-stamp t.
In this paper, the target cityD suffers from the service data

scarcity, while the source city D′ has rich service data, i.e.,
|TD| � |TD′ |. With this in mind, we formulate the problem.
Problem of Cross-City Spatio-temporal Prediction.
Given the little service data in target city D and rich service
data in source city D′, we aim to learn a function f to predict
the citywide service data in the target city D at the next
time-stamp tc + 1:

min
f

error(S̃tc+1,D,Stc+1,D) (5)

where S̃tc+1,D = f(SD, SD′), |TD| � |TD′ | (6)

error metric may be mean absolute error, root mean squared
error, etc., according to the real application requirement.

Example. Crowd Flow Prediction. We use crowd flow pre-
diction [Zhang et al., 2017; Zhang et al., 2016] as an example
to illustrate the above problem concretely. The service data
SD is thus crowd inflow or outflow. The source city crowd
flow records may last for several years (TD′ ), but the target
city may have only a few days (TD) as the service is just
started. It is worth noting that external context factors, such as
weather and workday/weekend, are also important in crowd
flow prediction [Zhang et al., 2017]. Later we will show that
our proposed method is easy to add the external features ex-
tracted from context factors.

4 RegionTrans
4.1 Overview
Fig. 1 gives an overview of the RegionTrans framework. In
brief, RegionTrans consists of three novel components.

1. Inter-city similar-region matching. We propose two
ways to match region pairs between source and target
cities. The first one is directly using the short period of
service data in the target city to find the similar region
in the source city. However, sometimes directly calcu-
lating the similarity between a source region and a target
region using the short service data may not yield robust
results. Suppose that the service data is crowd flow, the
target city only has one day of crowd flow history and
it happened to be a rainy day, but it rarely rains in the
source city. Apparently, using such crowd flow data of
the source and target city to compute inter-city region
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Figure 1: Overview of RegionTrans.
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Figure 2: Check-in/crowd flow similarities.

similarity is inadequate. Hence, we propose a second
method to rely on auxiliary data (if applicable) to find
more robust inter-city similar region pairs. For exam-
ple, widely-existing social check-ins may be the auxil-
iary data to indicate the crowd flow dynamics and thus
help region matching.

2. Deep spatio-temporal neural network with region
representations. Existing literature has proposed a few
deep models for predicting citywide crowd flow [Zhang
et al., 2016; Zhang et al., 2017]. However, these mod-
els usually predict citywide crowd flow as a whole, and
thus are hard to incorporate region similarity informa-
tion for transfer learning. Therefore, we propose a new
deep spatio-temporal neural network structure, in which
a ‘region-representation’ layer is dedicatedly designed
to preserve region-level features. Based on this neural
network, we then learn a source city spatio-temporal pre-
diction model from its long historical record of service
data and corresponding contexts (e.g., weather). This
source city model will be later used in transfer learning
for building the target city model.

3. Region-based cross-city network parameter opti-
mization. Based on the deep model with region rep-
resentations, we propose a cross-city network parameter
optimization algorithm to learn the crowd flow predic-
tion model for the target city, considering the source city
model, the inter-city similar-region pairs, and the short
period of crowd flow data of the target city.

4.2 Inter-city Similar-region Matching
The first step of RegionTrans is to find a matching function
M : CD → CD′ to map each region of the target city D to a
certain region of the source city D′. The objective is to find
the source region having the similar spatio-temporal pattern
with the target region. We propose two strategies to findM.

Matching with a Short Period of Service Data
While the target city has only a little service data, this could
still provide hints to build M. We focus on the time span
when both source and target cities have service data (i.e., TD),

then calculate the correlations (e.g., Pearson coefficient) be-
tween each target region and source region with the corre-
sponding service data. Finally, for each target region, we
choose the source region with the largest correlation value.
Formally,

M(r) = r∗, r ∈ CD, r∗ ∈ CD′
ρr,r∗ ≥ ρr,r′ , ∀r′ ∈ CD′
ρr,r∗ = corr({sr,t}, {sr∗,t}), r ∈ CD, r∗ ∈ CD′ , t ∈ TD
Matching with a Long Period of Auxiliary Data
As there is little service data in the target city, the above
service-data-based correlation similarity between a source re-
gion and a target region may not be very reliable. In reality,
sometimes we can find another openly-accessible auxiliary
data that correlates with the service data, which may help
calculate the inter-city region similarity more robustly. For
example, to predict crowd flow, social media check-ins can
be a useful proxy according to literature [Yang et al., 2016].
That is, instead of the short period of crowd flow data, we use
the long period of openly available check-in data to build the
correlation between two regions.

ρr,r∗ = corr({ar,t}, {ar∗,t}), r ∈ CD, r∗ ∈ CD′ , t ∈ TA
where a is the auxiliary data (e.g., check-in number) lasting
for a long period TA(|TA| � |TD|).

Example: Check-in as Auxiliary for Crowd Flow
For a certain region r ∈ C in a city, we can model

the check-in representation according to its hourly check-in
counts in workday and weekend/holiday as follows:

chr = 〈ch0, ch1, · · · , ch23, ch′0, ch′1, · · · , ch′23〉, r ∈ C

where chi is the average check-in counts in r at ith hour in
workday of the whole check-in historical record; ch′i is the
hourly average check-in counts in weekend/holiday.

To verify whether the similarity between check-in repre-
sentations can actually reflect the similarity of crowd flow
dynamics, we conduct an analysis with bikesharing data in
Washington D.C. and Chicago during 2015-2016. Here, we
measure the crowd flow similarity between two regions by
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Figure 3: Proposed network structure.

first counting the hourly bike inflow/outflow counts and then
use the Pearson correlation coefficient. Given a randomly se-
lected Chicago region r∗, Fig. 2 plots both the check-in simi-
larity (y axis) and crowd flow similarity (x axis) of every D.C.
region and the selected Chicago region r∗. As expected, the
D.C. regions with higher check-in similarities tend to hold
higher crowd flow similarities.

4.3 Deep Spatio-Temporal Neural Network with
Region Representations

Existing deep spatio-temporal models often take the whole
city data for end-to-end prediction, e.g., ST-ResNet [Zhang
et al., 2017], which cannot be used for region-level transfer.
Therefore, we design a network for spatio-temporal predic-
tion with region representations, as shown in Fig. 3 (a).

First we illustrate the input and output of the network1:

k ∈ N+ : the length of the input time series

Xt = {St′ |t′ ∈ [t− k + 1, t]} ∈ Rk×W×H : input

Yt = St+1 ∈ RW×H : ground-truth result at time t+ 1

fθ : Rk×W×H → RW×H : neural network with parameter θ

Ỹt = fθ(Xt) ∈ RW×H : prediction result at time t+ 1

Our network objective is to minimize the squared error be-

1For clarity, we omit the subscript D in notations as all the nota-
tions mentioned in this section is in city D.

tween predicted Ỹt and real Yt:

min
θ

∑
t∈T
||Ỹt − Yt||2F (7)

Then, our spatio-temporal network can be formulated as:

ConvLSTM: fθ1 : Rk×W×H → RW×H×Lr (8)

Region representation: Xrep
t = fθ1(Xt) (9)

Merge: fm : (RW×H×Lr ,RW×H×Le)→ RW×H×(Lr+Le)

(10)

Conv2D1×1: fθ2 : RW×H×(Lr+Le) → RW×H (11)

Prediction : Ỹt = fθ2(fm(Xrep
t ,Xext

t )) (12)

= fθ2(fm(fθ1(Xt),X
ext
t )) (13)

ConvLSTM layers are the basic components for our network
to learn spatio-temporal patterns [Shi et al., 2015]. We first
use a set of stacked ConvLSTM layers to construct region-
level hidden representation Xrep

t ∈ RW×H×Lr (we will
elaborate why this can be seen as region-level representa-
tion soon). After getting Xrep

t , we incorporate the external
context factors into the network structure. External context
factors are defined as Xext

t ∈ RW×H×Le , which is a fea-
ture vector of length Le on each region (e.g., weather, tem-
perature, weekday/holiday one-hot encoding [Zhang et al.,
2017]). By concatenating Xrep

t and Xext
t to form a repre-

sentation ∈ RW×H×(Lr+Le), we employ several convolution
2D layers with 1× 1 filters (Conv2D1×1 [Lin et al., 2014]) to
predict the next-time-stamp service data Ỹt ∈ RW×H .

As visualized by Fig. 3 (b), Conv2D1×1 will pro-
duce spatio-invariant results, which means hidden vector
Xrep
t [w, h, :] and prediction Ỹt[w, h] represent the spatio-

temporal representation and prediction result of region r[w,h],
respectively. Compared with existing end-to-end citywide
deep spatio-temporal prediction models [Zhang et al., 2017;
Zhang et al., 2016] without such region-level hidden repre-
sentations, our network design has the following advantages
for transfer learning:

1. Fine-grained region-level transfer. With existing meth-
ods which consider the data of a city as a whole for
prediction, we can only transfer the knowledge from
the whole source city to the target (e.g., through fine-
tuning). If two cities are not similar in general, the trans-
fer performance may be poor. As our network incor-
porates region representation, we can make fine-grained
knowledge transfer based on region similarity (the de-
tailed algorithm in the next sub-section). As long as we
can find similar region pairs between cities, the effective
transfer may be conducted.

2. Transfer between cities with different sizes. Since our
neural network structure can be seen from region view
(Fig. 3 (b)), even if two cities have different sizes (i.e.
W,H), it is possible to train a model on a source city
and then transfer the learned network parameters to the
target city at the region level. However, with end-to-
end network structures [Zhang et al., 2017; Zhang et al.,
2016], if we want to transfer a learned model from the
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source city to the target by fine-tuning, the two cities
must be the same size.

4.4 Region-based Cross-city Network Parameter
Optimization

With the proposed network structure, we train a deep model in
the source city D′ with its rich spatio-temporal service data.
We denote θD′ as the network parameters learned from the
source city. Then, with θD′ as the pre-trained network pa-
rameters, we propose a region-based cross-city optimization
algorithm to refine the network parameters on the target city
D, considering a short period TD of the service data in the
target city D and the inter-city region matching functionM.

When refining the network parameter for the target city D,
the first objective is to minimize prediction error on D:

min
θD

∑
t∈TD

||Ỹt − Yt||2F

Given the matching function M, the second objective is to
minimize representation divergence between matched region
pairs. More specifically, for each time-stamp t ∈ TD, we try
to minimize the squared error between the network hidden
representations of the target region and its matched source
region. Formally, the second objective is as follows:

min
θD

∑
r∈CD

∑
t∈TD

ρr,r∗ · ||xrepr,t − xrepr∗,t||2, where r∗ =M(r)

where xrepr,t is the hidden representation of the target region
r when the last input time-stamp is t; xrepr∗,t is the representa-
tion of the matched source region r∗; ρr,r∗ is the correlation
value calculated between region pairs (Sec. 4.2), so that more
similar pair will be assigned with larger weights in the op-
timization. Then, combining the two objectives leads to the
following optimization process:

min
θD

(1− w)
∑
t∈TD

||Ỹt − Yt||2F

+ w
∑
r∈CD

∑
t∈TD

ρr,r∗ · ||xrepr,t − xrepr∗,t||2
(14)

where w is the weight to trade off between minimizing the
representation discrepancy or minimizing the prediction er-
ror. Then, we can use state-of-the-art network parameter
learning algorithms, such as SGD and ADAM, to obtain the
network parameter θD for the target city D according to
Eq. 14 (the network parameter θD′ learned in the source city
D′ is used as the initialization values). The detailed pseudo-
code of the optimization process is summarized in Alg. 1.

5 Experiment: Crowd Flow Prediction
We use crowd flow prediction as a case of spatio-temporal
prediction tasks to evaluate RegionTrans.

5.1 Settings
Datasets. Following previous studies on crowd flow
[Hoang et al., 2016; Zhang et al., 2017; Zhang et al., 2016],
we use bike flow data for evaluation. Three bike flow datasets

Algorithm 1 Region-based cross-city network parameter op-
timization
Input:
θD′ : Pre-trained network parameters on source city with a

long period of service data
TRD: target city training data
TRD′ : source city training data
M: inter-city similar-region matching function

Output:
θD: network parameters for the target city

1: Initialize network parameters: θ ← θD′
2: epoch← 0
3: while epoch ≤MAX EPOCH do
4: for t ∈ TD do
5: Get {Xt,Yt} ∈ TRD
6: Get corresponding {X′t,Y ′t} ∈ TRD′
7: for r ∈ CD do
8: r∗ ←M(r) (note that r∗ ∈ CD′ )
9: xrepr∗,t ← region representation with input X′t

for source r∗
10: xrepr,t ← region representation with input Xt

for target r
11: end for
12: end for
13:

θ ← argmin
θ

(1− w)
∑
t∈TD

||Ỹt − Yt||2F

+w
∑
r∈CD

∑
t∈TD

ρr,r∗ · ||xrepr,t − xrepr∗,t||2

14: epoch ++
15: end while
16: θD ← θ
17: return θD

collected from Washington D.C., Chicago, and New York City
are used. Each dataset covers a two-year period (2015-2016).
In all the cities, the center area of 20km × 20km are se-
lected. The area is split to 20 × 20 regions (each region is
1km × 1km). For each evaluation scenario, we choose one
city as the source city and another as the target. We assume
that the source city has all its historical crowd flow data, but
only limited crowd flow data exists in the target city (e.g., one
day). The last two-month data is chosen for testing.

Metric. The evaluation metric is root mean square error
(RMSE). Same as [Zhang et al., 2017], the reported RMSE is
the average RMSE of inflow and outflow.

Network Implementation. Our network structure imple-
mented in the experiment has two layers of ConvLSTM with
5 × 5 filters and 32 hidden states, to generate Xrep

t ∈
R20×20×32. With Xrep

t as the input, there is one layer
of Conv2D1×1 with 32 hidden states, followed by another
layer of Conv2D1×1 linking to the output crowd flow predic-
tion. For the external context factors, e.g., temperature, wind
speed, weather, and day type, we use the same feature extrac-
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D.C.→Chicago Chicago→D.C. D.C.→NYC NYC→D.C.

1-day 3-day 1-day 3-day 1-day 3-day 1-day 3-day

Target Only
ARIMA 0.740 0.694 0.707 0.661 0.360 0.341 0.707 0.661
DeepST 0.771 0.711 1.075 0.767 0.350 0.359 1.075 0.767
ST-ResNet 0.914 0.703 0.869 0.738 0.376 0.349 0.869 0.738

Source & Target
DeepST (FT) 0.652 0.611 0.672 0.619 0.363 0.369 0.713 0.711
ST-ResNet (FT) 0.667 0.615 0.695 0.623 0.385 0.349 0.696 0.691
RegionTrans (S-Match) 0.605 0.594 0.631 0.602 0.328 0.305 0.665 0.593
RegionTrans (A-Match) 0.587 0.576 0.600 0.581 / / / /

Table 1: Evaluation results. The target city holds 1 or 3-day crowd flow historical
data. RegionTrans (A-Match) is available for D.C. 
 Chicago as we have collected
check-in data for Chicago and D.C.

0.54
0.56
0.58
0.6
0.62
0.64

1-day 3-day

R
M
SE

w=0 w=1/2
w=2/3 w=3/4

Figure 4: Tunning w (A-Match,
D.C. → Chicago).

tion method as [Zhang et al., 2017] and obtain an external
feature vector with a length of 28. We also need to set w in
Eq. 14 to balance the optimization trade-off between repre-
sentation difference and prediction error. We set w to 0.75
as the default value. ADAM is used as the optimization algo-
rithm [Kingma and Ba, 2015].

5.2 Methods
For RegionTrans, we implement two variants:

• RegionTrans (S-Match): learning the inter-city region
matching function M only by the short period of the
target city Service data, i.e., crowd flow.
• RegionTrans (A-Match): learning the inter-city region

matching functionM by the long period of the Auxiliary
data, i.e., Foursquare check-in data. We use one-year
check-in data as the auxiliary data since it is a useful in-
dication of crowd flow [Yang et al., 2016]. Note that we
have collected check-in data from D.C. and Chicago, so
RegionTrans (A-Match) is available for the knowledge
transfer between them.

We compare RegionTrans with two types of baselines. The
first type only uses the short crowd data history of target city:

• ARIMA: a widely-used time series prediction method in
statistics [Hyndman and Athanasopoulos, 2014].
• DeepST [Zhang et al., 2016]: a deep spatio-temporal

neural network based on convolutional network. The
complete DeepST model has three components: close-
ness, period, and trend. But the period and trend com-
ponents can only be activated if the training data last for
more than one day and seven days, respectively. There-
fore, if the target city does not have enough data, we
have to deactivate the corresponding components.
• ST-ResNet [Zhang et al., 2017]: a deep spatio-temporal

network based on residual network [He et al., 2016].

The second type trains a deep model on the source city
data, and fine-tune it with the target city data:

• DeepST (FT): fine-tuned DeepST.
• ST-ResNet (FT): fine-tuned ST-ResNet.

As mentioned in Sec. 4.3, DeepST and ST-ResNet predict
the city crowd flow as a whole, and thus we cannot fine tune

their models between two cities of different sizes. Therefore,
to make the comparison possible, our experiment selects the
same area size for two cities. Note that RegionTrans is able to
transfer knowledge between two cities of different sizes, and
thus is more flexible.

5.3 Results
Table 1 shows our results for D.C. 
 Chicago and D.C. 

NYC. RegionTrans can consistently outperform the best base-
line, where the largest improvement is reducing RMSE by up
to 10.7%. In particular, when the service data of the target city
is smaller, the improvement of RegionTrans is usually more
significant. This indicates that the inter-city similar-region
pairs are valuable for transfer learning especially when tar-
get data is extremely scarce. Between two RegionTrans vari-
ants, RegionTrans (A-Match) is better, as shown in D.C. 

Chicago. This implies that if an appropriate type of auxil-
iary data exists, it is possible to build a better inter-city region
matching than only using the short period of the service data.
If the auxiliary data is unavailable, using the limited period
of service data for region matching can still lead to the com-
petitive variant RegionTrans (S-Match), which beats all the
baselines significantly.

We also train DeepST with the full training data in Chicago
and D.C., respectively, leading to RMSE of 0.521 and 0.526,
which could be seen as the performance upper bound of our
experiment cases. Compared to RegionTrans (DC→Chicago,
A-Match, 3-day) result of 0.576, the full Chicago model
reduces 9.6% of RMSE; the full DC model is better than
RegionTrans (Chicago→DC, A-Match, 3-day) by reducing
9.5% of RMSE. In comparison, the best baseline DeepST
(FT, 3-day) is worse than the full model by 14.7% and 15.0%
in Chicago and DC, respectively. Hence, RegionTrans can re-
duce the gap between the best baseline and the upper bound
full model by ∼ 1/3, which is a significant improvement.

Another important observation is that RegionTrans is more
robust when transferring knowledge between two dissimilar
cities than baselines. Between the three cities in the experi-
ment, D.C. and Chicago are similar in population, while NYC
has a much larger population. This indicates that the knowl-
edge transfer between D.C. 
 Chicago may be easier, while
D.C. 
 NYC could be harder. Our results also verify this as
DeepST and ST-ResNet get large improvement by fine-tuning
in D.C. 
 Chicago; but in D.C. → NYC, negative trans-
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fer appears for the fine-tuned DeepST and ST-ResNet, lead-
ing to even worse performance than ARIMA, indicating that
directly transferring the whole city knowledge from D.C. to
NYC is ineffective. In comparison, RegionTrans consistently
achieves lower error than all the baselines, verifying that the
knowledge from D.C. can still be effectively transferred to
NYC. The primary reason that RegionTrans can avoid nega-
tive transfer is that although D.C. and NYC are dissimilar in
general, we can still find inter-city region pairs with similar
spatio-temporal patterns (e.g., central business district).

Tuning w. We tune w in Eq. 14 to see how it will affect
the performance. The larger w is, the higher weight is put
on minimizing the similar-region representation difference.
Fig. 4 shows the results. If we set w = 0 (i.e., direct fine
tuning without region matching), the performance is signifi-
cantly worse than when w > 0, by incurring up to 5% higher
error. This highlights the effectiveness of our proposed inter-
city similar-region matching scheme in cross-city knowledge
transfer. For other settings of w > 0, the performance differ-
ence is minor. A larger w performs slightly better for a very
short period of target city crowd flow data, e.g., one day.

Computation time. We use a server with Intel Xeon CPU
E5-2650L, 128 GB RAM, and Nvidia Tesla M60 GPU. We
implement RegionTrans with TensorFlow (CentOS). Training
the source city model on two-year data needs ∼20 minutes,
and the transfer learning for the target city model costs ∼50
and ∼100 minutes for 1 and 3-day data, respectively. This
running time efficiency is acceptable in real-life deployments.

6 Conclusion
To address the data scarcity issue in urban spatio-temporal
prediction tasks, this paper proposes a novel cross-city deep
transfer learning method, called RegionTrans. Note that while
this paper focuses on cross-city transfer, the key idea of Re-
gionTrans can be flexibly leveraged with other spatial gran-
ularities, e.g., district-level or country-level transfer. In the
future, we will study how effective transfer can be done on
other recent spatio-temporal models such as graph convolu-
tional networks [Geng et al., 2019; Li et al., 2018].
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