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Abstract

The fuzzy modality probably is interpreted over
probabilistic type spaces by taking expected truth
values. The arising probabilistic fuzzy descrip-
tion logic is invariant under probabilistic bisimi-
larity; more informatively, it is non-expansive wrt.
a suitable notion of behavioural distance. In the
present paper, we provide a characterization of the
expressive power of this logic based on this obser-
vation: We prove a probabilistic analogue of the
classical van Benthem theorem, which states that
modal logic is precisely the bisimulation-invariant
fragment of first-order logic. Specifically, we show
that every formula in probabilistic fuzzy first-order
logic that is non-expansive wrt. behavioural dis-
tance can be approximated by concepts of bounded
rank in probabilistic fuzzy description logic.

1 Introduction
In the representation of uncertain knowledge, one will of-
ten wish to avoid mention of exact numerical probabili-
ties, e.g. when these are not precisely known or not rele-
vant to the representation task at hand – as a typical ex-
ample, a medical practitioner will rarely name a numerical
threshold for the likelihood of a diagnosis, and instead qual-
ify the diagnosis as, say, ‘suspected’ or ‘probable’. This
has led to efforts aimed at formalizing a modality probably,
used alternatively to modalities ‘with probability at least p’
[Larsen and Skou, 1991; Heifetz and Mongin, 2001]. Such
a formalization may be approached in a two-valued setting
via qualitative axiomatizations of likelihood [Burgess, 1969;
Halpern and Rabin, 1987] or via threshold probabilities
[Hamblin, 1959; Herzig, 2003]. In a fuzzy setting, ‘proba-
bly’ leads a natural life as a fuzzy modality P, whose truth
value just increases as its argument becomes more probable
(this modality thus connects the otherwise well-distinguished
worlds of fuzziness and probability [Lukasiewicz and Strac-
cia, 2008]). The semantics of this operator, first defined
by Zadeh [1968], interprets Pφ as the expected truth value
of φ. It appears in various fuzzy propositional [Hájek, 2007;
Flaminio and Godo, 2007], modal [Desharnais et al., 2004;
van Breugel and Worrell, 2005], fixpoint [Kozen, 1985; Huth

and Kwiatkowska, 1997], and description logics [Schröder
and Pattinson, 2011].

In the present paper, we pin down the exact expressive-
ness of the basic description logic of probably, which we
briefly refer to as probabilistic fuzzyALC orALC(P), within
a natural ambient probabilistic fuzzy first-order logic FO(P),
by providing a modal characterization theorem. The proto-
type of such characterization theorems is van Benthem’s the-
orem [1976], which states that (classical) modal logic is pre-
cisely the bisimulation-invariant fragment of first-order logic.
It has been noted that in systems with numerical values, be-
havioural pseudometrics offer a more fine-grained measure
of equivalence than two-valued bisimilarity [Giacalone et al.,
1990; Desharnais et al., 2004; van Breugel and Worrell, 2005;
Desharnais et al., 2008; Baldan et al., 2014]. When propo-
sitional connectives are equipped with Zadeh semantics,
ALC(P) is non-expansive wrt. behavioural distance; we con-
tinue to refer to this property as bisimulation invariance. In
previous work [Wild et al., 2018] we have shown that rela-
tional fuzzy modal logic is the bisimulation-invariant frag-
ment of fuzzy FOL, more precisely that every bisimulation-
invariant fuzzy FO formula can be approximated by fuzzy
modal formulae of bounded rank. The bound on the rank is
key; without it, the statement turns into a form of the (much
simpler) Hennessy-Milner theorem [Hennessy and Milner,
1985] (which classically states that non-bisimilar states in
finitely branching systems can be distinguished by modal for-
mulae), and indeed does not need to assume FO definability
of the given bisimulation-invariant property [van Breugel and
Worrell, 2005]. Here, we establish a corresponding result for
the rather more involved probabilistic setting: We show that
every bisimulation-invariant formula in probabilistic fuzzy
FOL can be approximated in bounded rank in probabilistic
fuzzy ALC. This means not only that, up to approximation,
ALC(P) is as powerful as FO(P) on bisimulation-invariant
properties, but also thatALC(P) provides effective syntax for
bisimulation-invariant FO(P), which FO(P) itself does not.

A full version is available at http://arxiv.org/abs/1906.
00784.

Related Work There is widespread interest in modal char-
acterization theorems in many areas, including concur-
rency [Janin and Walukiewicz, 1995] as well as AI and
database theory [Sturm and Wolter, 2001; Figueira et al.,
2015; Wild and Schröder, 2017; Wild et al., 2018]. The
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overall structure of our proof builds partly on that of our
modal characterization theorem for relational fuzzy modal
logic [Wild et al., 2018] (in turn based ultimately on a strat-
egy due to Otto [2004]) but deals with a much more involved
logic, which instead of just the lattice structure of the unit
interval involves its full arithmetic structure, via the use of
probabilities and expected values, necessitating, e.g., the use
of Kantorovich-Rubinstein duality. Notable contributions of
our proof include new forms of probabilistic bisimulation
games up-to-ε (different from games introduced by Deshar-
nais et al. [2008], which characterize a different metric) and
Ehrenfeucht-Fraı̈ssé games, related to two-valued games con-
sidered in the context of topological FOL [Makowsky and
Ziegler, 1980]. (For lack of space, we omit discussion of
quantitative Hennessy-Milner type results beyond the men-
tioned result by van Breugel and Worrell [2005].)
FO(P) may be seen as a fuzzy variant of Halpern’s [1990]

type-1 (i.e. statistical) two-valued probabilistic FOL, and uses
a syntax related to coalgebraic predicate logic [Litak et al.,
2018]. Van-Benthem style theorems for two-valued coalge-
braic modal logic [Schröder et al., 2017] instantiate to two-
valued probabilistic modal logic, then establishing express-
ibility of bisimulation-invariant probabilistic FO formulae by
probabilistic modal formulae with infinite conjunction but of
bounded rank, in an apparent analogy to bounded-rank ap-
proximation in the fuzzy setting.

2 Fuzzy Probabilistic Logics
We proceed to introduce the logics featuring in our main
result. We fix (w.l.o.g., finite) sets NC of atomic concepts
and NR of roles; concepts C,D of quantitative probabilistic
ALC (ALC(P)) are defined by the grammar

C,D ::= q | A | C 	 q | ¬C | C uD | P r. C

where q ∈ Q ∩ [0, 1], A ∈ NC and r ∈ NR. The intended
reading of P is ‘probably’; we give examples below. Slightly
deviating from standard practice, we define the rank rk(C) of
a conceptC as the maximal nesting depth of the P and atomic
concepts in C; e.g. rk((P r.P s.A)u(P r.B)) = 3. We de-
note the set of all concepts of rank at most n by ALC(P)n.

Concepts are interpreted over probabilistic structures to
which we neutrally refer as interpretations or, briefly, mod-
els. We allow infinite models but restrict to discrete probabil-
ity distributions over successors at each state. A model

I = (∆I , (AI)A∈NC
, (rI)r∈NR

)

consists of a domain ∆I of states or individuals, and interpre-
tations AI : ∆I → [0, 1], rI : ∆I × ∆I → [0, 1] of atomic
concepts A and roles r such that for each a ∈ ∆I , the map

ra : ∆I → [0, 1], ra(a′) = rI(a, a′)

is either zero or a probability mass function on ∆I , i.e.∑
a′∈∆I ra(a′) ∈ {0, 1}

(implying that the support {a′ ∈ ∆I | ra(a′) > 0}
of ra is at most countable). We call a state a r-blocking if∑
a′∈∆I ra(a′) = 0. At non-blocking states a, ra thus acts

as a probabilistic accessibility relation; we abuse ra to denote
also the probability measure defined by ra.

The interpretation CI : ∆I → [0, 1] of concepts is defined
recursively, extending that of atomic concepts, by

qI(a) = q

(C 	 q)I(a) = max(CI(a)− q, 0)

(¬C)I(a) = 1− CI(a)

(C uD)I(a) = min(CI(a), DI(a))

(P r. C)I(a) = Era(CI) =
∑
a′∈∆I ra(a′) · CI(a′)

At non-blocking a, (P r. C)I(a) is thus the expected truth
value of C for a random r-successor of a. We define disjunc-
tion t as the dual of u as usual, so t takes maxima. We use
Zadeh semantics for the propositional operators, which will
later ensure non-expansiveness wrt. behavioural distance; see
additional comments in Section 7.

Up to minor variations, our models correspond to
Markov chains or, in an epistemic reading, type spaces
(e.g. [Heifetz and Mongin, 2001]). The logic ALC(P) was
considered (with Łukasiewicz semantics) by Schröder and
Pattinson [2011], and resembles van Breugel and Worrell’s
quantitative probabilistic modal logic [2005]. E.g., in a read-
ing of ∆I as consisting of real-world individuals, the concept

LouduP hasSource. (LargeuP hasMood.Angry)

describes noises you hear in your tent at night as being
loud and probably coming from the large and probably an-
gry animal whose shadow just crossed the tent roof. (In this
view, P can be usefully combined with crisp or fuzzy rela-
tional modalities, using off-the-shelf compositionality mech-
anisms [Schröder and Pattinson, 2011].) In an epistemic read-
ing where the elements of ∆I are possible worlds, and the
roles are understood as epistemic agents, the concept

¬GoodHandu P player.P opponent.GoodHand

denotes the degree to which player believes she is success-
fully bluffing by letting opponent overestimate player’s hand.

For readability, we will restrict the technical treatment to
a single role r, omitted in the syntax, from now on, not-
ing that covering multiple roles amounts to no more than
additional indexing. As the first-order correspondence lan-
guage of quantitative probabilistic ALC we introduce quan-
titative probabilistic first-order logic (FO(P)), with formulae
φ, ψ, . . . defined by the grammar

φ, ψ ::= q | A(x) | x = y | φ	 q | ¬φ | φuψ | ∃x. φ
| xPdy : φe (q ∈ Q ∩ [0, 1], A ∈ NC)

where x and y range over a fixed countably infinite reser-
voir of variables. The reading of xPdy : φe is the expected
truth value of φ at a random successor y of x. (In particu-
lar, when φ is crisp, then xPdy : φe is just the probability
of y satisfying φ, similar to the weights wy(φ) in Halpern’s
type-1 probabilistic FOL [1990].) We have the expected no-
tions of free and bound variables, under the additional proviso
that y (but not x!) is bound in xPdy : φe. The (quantifier)
rank qr(φ) of a formula φ is the maximal nesting depth of the
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variable-binding operators ∃ and P and propositional atomsA
in φ; e.g. ∃x. xPdy : A(y)e has rank 3.

Given a model I = (∆I , (AI)A∈NC
, rI) and a vector

ā = (a1, . . . , an) ∈ (∆I)n of values, the semantics of
the logic assigns a truth value φ(ā) ∈ [0, 1] to a formula
φ(x1, . . . , xn) with free variables at most x1, . . . , xn. We
define φ(ā) recursively by essentially the same clauses as in
ALC(P) for the propositional constructs, and

A(xi)(ā) = AI(ai)

(∃x0. φ(x0, x1, . . . , xn))(ā) =
∨
a0∈∆I φ(a0, a1, . . . , an)

(xiPdy : φ(y, x1, . . . , xn)e)(ā) = Erai
(φ( · , a1, . . . , an))

where
∨

takes suprema. Moreover, equality is two-valued,
i.e. (xi = xj)(ā) is 1 if ai = aj , and 0 otherwise.

E.g. the formula xPdz : z = ye (‘the successor of x
is probably y’) denotes the access probability from x to y,
xPdz : zPdw : w = yee the probability of reaching y from x
in two independently distributed steps, and ∃y. xPdz : z =
ye the probability of the most probable successor of x.

We have a standard translation STx from ALC(P) into
FO(P), indexed over a variable x naming the current state.
Following Litak et al. [2018], we define STx recursively by

STx(A) = A(x)

STx(PC) = xPdy : STy(C)e,
and by commutation with all other constructs.
Lemma 2.1. For every ALC(P)-concept C and state a,
C(a) = STx(C)(a).
ST thus identifies ALC(P) as a fragment of FO(P).

3 Behavioural Distances and Games
We next discuss several notions of behavioural distance
between states: via fixed point iteration à la Wasser-
stein/Kantorovich, via games and via the logic. We focus
mostly on depth-n distances. Only for one version, we define
also the unbounded distance, which will feature in the modal
characterization result. We show in Section 4 that at finite
depth, all these distances coincide. It has been shown in pre-
vious work [Desharnais et al., 2004; van Breugel and Worrell,
2005] that the unbounded-depth distances defined via Kan-
torovich fixed point iteration and via the logic, respectively,
coincide in very similar settings; such results can be seen as
probabilistic variants of the Hennessy-Milner theorem.

We recall standard notions on pseudometric spaces:
Definition 3.1 (Pseudometric spaces, non-expansive maps).
A (bounded) pseudometric on a set X is a function d : X ×
X → [0, 1] such that for x, y, z ∈ X , the following axioms
hold: d(x, x) = 0 (reflexivity), d(x, y) = d(y, x) (symme-
try), d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality). If
additionally d(x, y) = 0 implies x = y, then d is a met-
ric. A (pseudo)metric space (X, d) consists of a set X and a
(pseudo)metric d on X .

A map f : X → [0, 1] is non-expansive wrt. a pseudo-
metric d if |f(x) − f(y)| ≤ d(x, y) for all x, y ∈ X . The
space of these non-expansive functions, denoted Pred(X, d),
is equipped with the supremum (pseudo)metric d∞,

d∞(f, g) = ‖f − g‖∞ =
∨
x∈X |f(x)− g(x)|.

We denote by Bε(x) = {y ∈ X | d(x, y) ≤ ε} the ball of ra-
dius ε around x in (X, d). The space (X, d) is totally bounded
if for every ε > 0 there exists a finite ε-cover, i.e. finitely
many elements x1, . . . , xn ∈ X such that X =

⋃n
i=1Bε(xi).

Recall that a metric space is compact iff it is complete and
totally bounded.

We next introduce the Wasserstein and Kantorovich dis-
tances, which coincide according to Kantorovich-Rubinstein
duality. To this end, we first need the notion of a coupling of
two probability distributions, from which the original distri-
butions are factored out as marginals.

Definition 3.2. Let π1 and π2 be discrete probability mea-
sures on A and B, respectively. We denote by Cpl(π1, π2)
the set of couplings of π1 and π2, i.e. probability measures µ
on A×B such that π1 and π2 are marginals of µ:

• for all a ∈ A,
∑
b∈B µ(a, b) = π1(a);

• for all b ∈ B,
∑
a∈A µ(a, b) = π2(b).

Definition 3.3 (Wasserstein and Kantorovich distances). Let
(X, d) be a pseudometric space. We generally write

DX

for the set of discrete probability distributions on X . We de-
fine two pseudometrics on DX , the Kantorovich distance d↑
and the Wasserstein distance d↓:

d↑(π1, π2) =
∨
{|Eπ1

(f)− Eπ2
(f)| | f ∈ Pred(X, d)}

d↓(π1, π2) =
∧
{Eµ(d) | µ ∈ Cpl(π1, π2)}

where
∧

takes meets (and
∨

suprema). We extend these
distances without further mention to zero functions (like the
functions ra at blocking states a) by decreeing that the zero
function has distance 1 from all probability distributions.

The notation d↑, d↓ is meant as a mnemonic for the fact
that these distances are obtained via suprema respectively via
infima. If (X, d) is separable (contains a countable dense
subset), these pseudometrics coincide, a fact known as the
Kantorovich-Rubinstein duality (e.g. [Dudley, 2002]):

Lemma 3.4 (Kantorovich-Rubinstein duality). Let (X, d) be
a separable pseudometric space. Then for all π1, π2 ∈ DX ,

d↑(π1, π2) = d↓(π1, π2).

The above notions of lifting a distance on X to a distance on
distributions overX can be used to give fixed point equations
for behavioural distances on models.

Definition 3.5 (Fixed point iteration à la Wasser-
stein/Kantorovich). Given a model I, we define the
chains (dKn ), (dWn ) of depth-n Kantorovich and Wasserstein
distances, respectively, via fixed point iteration:

dW0 (a, b) = dK0 (a, b) = 0

dWn+1(a, b) =
∨
A∈NC

|AI(a)−AI(b)| ∨ (dWn )↓(πa, πb)

dKn+1(a, b) =
∨
A∈NC

|AI(a)−AI(b)| ∨ (dKn )↑(πa, πb)

where ∨ is binary join. We extend this to states a, b in differ-
ent models I, J by taking the disjoint union of I, J .
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In both cases, we start with the zero pseudometric, and in
the next iteration lift the pseudometric dn from the previous
step via Wasserstein/Kantorovich. This lifted metric is then
applied to the probability distributions πa, πb associated with
a, b. In addition we take the maximum with the supremum
over the distances for all atomic A ∈ NC.

We now introduce a key tool for our technical develop-
ment, a new up-to-ε bisimulation game inspired by the def-
inition of the Wasserstein distance.
Definition 3.6 (Bisimulation game). Given models I,J ,
a0 ∈ ∆I , b0 ∈ ∆J , and ε0 ∈ [0, 1], the ε0-bisimulation
game for a0 and b0 is played by Spoiler (S) and Duplicator
(D), with rules as follows:
• Configurations: triples (a, b, ε), with states a ∈ ∆I ,
b ∈ ∆J and maximal allowed deviation ε ∈ [0, 1]. The
initial configuration is (a0, b0, ε0).
• Moves: In each round, D first picks a probability mea-

sure µ ∈ Cpl(πa, πb). Then, D distributes the devia-
tion ε over all pairs (a′, b′) of successors, i.e. picks a
function ε′ : ∆I × ∆J → [0, 1] such that Eµ(ε′) ≤ ε.
Finally, S picks a pair (a′, b′) with µ(a′, b′) > 0; the
new configuration is then (a′, b′, ε′(a′, b′)).
• D wins if both states are blocking or ε = 1.
• S wins if exactly one state is blocking and ε < 1.
• Winning condition: |AI(a)−AJ (b)| ≤ ε for allA ∈ NC.

The game comes in two variants, the (unbounded) bisimula-
tion game and the n-round bisimulation game, where n ≥ 0.
Player D wins if the winning condition holds before every
round, otherwise S wins. More precisely, D wins the un-
bounded game if she can force an infinite play and the n-
round game once n rounds have been played (the winning
condition is not checked after the last round, so in particular,
any 0-round game is an immediate win for D).
Remark 3.7. The above bisimulation game differs from
bisimulation games in the literature (e.g. [Desharnais et al.,
2008]) in a number of salient features. A particularly strik-
ing aspect is that D’s moves are not similar to those of S,
and moreover D in fact moves before S. Intuitively, D is re-
quired to commit beforehand to a strategy that she will use
to respond to S’s next move. Note also that the precision ε
changes as the game is being played, a complication forced
by the arithmetic nature of models.
This leads to notions of game distance:
Definition 3.8. depth-n game distance dGn and (unbounded-
depth) game distance dG are defined as

dGn (a, b) =
∧
{ε | D wins Gn(a, b, ε)}

dG(a, b) =
∧
{ε | D wins G(a, b, ε)}.

where G(a, b, ε) and Gn(a, b, ε) denote the the bisimulation
game and the n-round bisimulation game on (a, b, ε), respec-
tively.
Finally we define the depth-n logical distance via ALC(P),
restricting to concepts of rank at most n:
Definition 3.9. The depth-n logical distance dLn(a, b) of
states a, b in models I, J is defined as

dLn(a, b) =
∨
{|CI(a)− CJ (b)| | rk(C) ≤ n}.

The equivalence of the four bounded-depth behavioural dis-
tances introduced above will be shown in Theorem 4.3.

Behavioural distance forms the yardstick for our notion of
bisimulation invariance; for definiteness:
Definition 3.10. A quantitative, i.e. [0, 1]-valued, property Q
of states, or a formula or concept defining such a property, is
bisimulation-invariant if Q is non-expansive wrt. game dis-
tance, i.e. for states a, b in models I,J , respectively,

|Q(a)−Q(b)| ≤ dG(a, b).

Similarly, Q is depth-n bisimulation invariant, or finite-depth
bisimulation invariant if mention of n is omitted, if Q is non-
expansive wrt. dGn in the same sense.
It is easy to see that ALC(P)-concepts are bisimulation-
invariant. More precisely, ALC(P)-concepts of rank at
most n are depth-n bisimulation invariant (a stronger invari-
ance since clearly dGn ≤ dG), as shown by routine induction.
In contrast, many other properties of states are expressible in
FO(P) but not in ALC(P), as they fail to be bisimulation-
invariant. Examples include xPdy : x = ye (probability of
a self-transition) and ∃z. xPdy : y = ze (highest transition
probability to a successor).

We are now ready to formally state our main theorem (a
proof will be given in Section 6):
Theorem 3.11 (Modal characterization). Every bisimulation-
invariant FO(P)-formula of rank at most n can be approxi-
mated (uniformly across all models) by ALC(P)-concepts of
rank at most 3n.
(The exponential bound on the rank features also in the full
statement of van Benthem’s theorem.)

4 Modal Approximation at Finite Depth
We now establish the most important stepping stone on the
way to the eventual proof of the modal characterization the-
orem: We show that every depth-n bisimulation-invariant
property of states can be approximated by ALC(P)-concepts
of rank at most n. We prove this simultaneously with coinci-
dence of the various finite-depth behavioural pseudometrics
defined in the previous section. To begin,
Lemma 4.1. The game-based pseudometric dGn coincides
with the Wasserstein pseudometric dWn ,
We note next that the modality P is non-expansive: We ex-
tend P to act on [0, 1]-valued functions f : ∆I → [0, 1] by

(Pf)(a) = Era(f).

Lemma 4.2. The map f 7→ Pf is non-expansive wrt. the
supremum metric, that is ‖Pf − Pg‖∞ ≤ ‖f − g‖∞ for all
f, g : ∆I → [0, 1].
Following our previous work [Wild et al., 2018], we prove
coincidence of the remaining pseudometrics in one big in-
duction, along with total boundedness (needed later to apply
a variant of the Arzelà-Ascoli theorem and the Kantorovich-
Rubinstein duality) and modal approximability of depth-n
bisimulation-invariant properties. We phrase the latter as den-
sity of the (semantics of)ALC(P)-concepts of rank at most n
in the non-expansive function space (Definition 3.1):
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Theorem 4.3. Let I be a model. Then for all n ≥ 0,

1. we have dGn = dWn = dKn = dLn =: dn on I;

2. the pseudometric space (∆I , dn) is totally bounded;

3. ALC(P)n is a dense subset of Pred(∆I , dn).

Proof sketch. By simultaneous induction on n.
In the base case n = 0, all the behavioural distances are the

zero pseudometric, so that total boundedness follows trivially
and the density claim follows because non-expansive maps
are just constants in [0, 1] and the syntax ofALC(P) includes
truth constants q ∈ Q ∩ [0, 1].

For the inductive step, let I be a model and n > 0, and
assume as the inductive hypothesis that all claims in Theo-
rem 4.3 hold for all n′ < n. We begin with Item 1; dGn = dWn
is already proved (Lemma 4.1).

• dWn = dKn follows by Kantorovich-Rubinstein dual-
ity (Lemma 3.4), since every totally bounded pseudometric
space is separable.

• dKn = dLn : By Lemma 4.2 and the inductive hypothesis,
P[ALC(P)n−1] is dense in P[Pred(∆I , dn−1)]. Thus, the
supremum in the definition of dKn does not change when it
is taken only over the concepts in ALC(P)n−1 instead of all
nonexpansive properties. The proof is finished by a simple
induction over propositional combinations of concepts.

Item 2: By the inductive hypothesis, the space (∆I , dn−1)
is totally bounded. By the Arzelà-Ascoli theorem (in a ver-
sion for totally bounded spaces and non-expansive maps,
cf. [Wild et al., 2018]), it follows that Pred(∆I , dn−1) is to-
tally bounded wrt. the supremum pseudometric. This implies
that depth-n distances can be approximated up to ε by exam-
ining differences at only finitely many, say m, concepts. As
([0, 1]m, d∞) is totally bounded, (∆I , dn) is, too.

Item 3: By the Stone-Weierstraß theorem (again in
a version for totally bounded spaces and non-expansive
maps [Wild et al., 2018]) it suffices to give, for each ε > 0,
each non-expansive map f ∈ Pred(∆I , dn), and each pair of
states a, b ∈ ∆I a concept C ∈ ALC(P)n such that

max(|f(a)− CI(a)|, |f(b)− CI(b)|) ≤ ε.

To construct such a C, we note that |f(a)− f(b)| ≤ dLn(a, b)
(by non-expansiveness), so there exists some D ∈ ALC(P)n
such that |DI(a)−DI(b)| ≥ |f(a)− f(b)|− ε. From D, we
can construct C using truncated subtraction 	.

This completes the proof of Theorem 4.3. Now that we
can approximate depth-k bisimulation-invariant properties by
ALC(P)-concepts of rank k on any fixed model, we need
to make the approximation uniform across all models. We
achieve this by means of a final model, i.e. one that realizes
all behaviours. Formally:

Definition 4.4. A (probabilistic) bounded morphism between
models I, J is a map f : ∆I → ∆J such that AI =
f−1[AJ ] for each A ∈ NC and rf(a)(B) = ra(f−1[B]) for
all B ⊆ ∆J , a ∈ ∆I (implying that a is blocking iff f(a)
is blocking). A model F is final if for every model I, there
exists a unique bounded morphism I → F .

It follows from standard results in coalgebra [Barr, 1993] that
a final model exists. Bounded morphisms preserve behaviour
on-the-nose, that is:
Lemma 4.5. Let f : I → J be a bounded morphism. Then,
for any a ∈ ∆I , dG(a, f(a)) = 0.
This entails the following lemma, which will enable us to
use approximants on the final model as uniform approximants
across all models:
Lemma 4.6. Let F be a final model, and let φ and ψ be
bisimulation-invariant first-order properties. Then, for any
model I, ‖φ− ψ‖I∞ ≤ ‖φ− ψ‖F∞.

5 Locality
The proof of the modal characterization theorem now fur-
ther proceeds by first establishing that every bisimulation-
invariant first-order formula φ is local in a sense to be made
precise shortly, and subsequently that φ is in fact even finite-
depth bisimulation invariant, for a depth that is exponential
in the rank of φ. Locality refers to a probabilistic variant of
Gaifman graphs [Gaifman, 1982]:
Definition 5.1. Let I be a model.
• The Gaifman graph of I is the undirected graph on the

set ∆I of vertices that has an edge for every pair (a, b) with
rI(a, b) > 0 or rI(b, a) > 0.
• The Gaifman distance D : ∆I × ∆I → N ∪ {∞} is

graph distance in the Gaifman graph: For every a, b ∈ ∆I ,
the distance D(a, b) is the least number of edges on any path
from a to b, if such a path exists, and∞ otherwise.
• For a ∈ ∆I and k ≥ 0, the radius k neighbourhood

Uk(a) = {b ∈ ∆I | D(a, b) ≤ k} of a consists of the states
reachable from a in at most k steps.
• The restriction of I to Uk(a) is the model Ika with set

Uk(a) of states, and

AI
k
a (b) = AI(b) rI

k
a (b, c) =

{
rI(b, c) if D(a, b) < k

0 if D(a, b) = k

for A ∈ NC and b, c ∈ Uk(a).
The restriction to Uk(a) thus makes all states at distance k
blocking. Restricted models have the expected relationship
with games of bounded depth:
Lemma 5.2. Let a be a state in a model I. Then D wins the
k-round 0-bisimulation game for I, a and Ika , a.
Locality of a formula now means that its truth values only
depend on the neighbourhood of the state in question:
Definition 5.3. A formula φ(x) is k-local for a radius k if for
every model I and every a ∈ ∆I , φI(a) = φI

k
a (a).

As ALC(P)-concepts are bisimulation-invariant, Lemma 5.2
implies
Lemma 5.4. Every ALC(P)-concept of rank at most k is k-
local.
To prove locality of bisimulation-invariant FO(P)-formulae,
we require a model-theoretic tool, an adaptation of Ehren-
feucht-Fraı̈ssé equivalence to the probabilistic setting:
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Definition 5.5. Let I,J be models, and let ā0 and b̄0 be
vectors of equal length over ∆I and ∆J , respectively. The
Ehrenfeucht-Fraı̈ssé game for I, ā0 and J , b̄0, played by
Spoiler (S) and Duplicator (D), is given as follows.
• Configurations: pairs (ā, b̄) of vectors ā over ∆I and b̄

over ∆J ; the initial configuration is (ā0, b̄0).
• Moves: Each round can be played in one of two ways,

chosen by S:
– Standard round: S selects a state in one model, say

a ∈ ∆I , and D then has to select a state in the other
model, say b ∈ ∆J , reaching the configuration (āa, b̄b).

– Probabilistic round: S selects an index i and a
fuzzy subset in one model, say φA : ∆I → [0, 1]. D
then has to select a fuzzy subset in the other model, say
φB : ∆J → [0, 1], such that Erai

(φA) = Erbi (φB).
Then, S selects an element on one side, say a ∈ ∆I ,
such that rai(a) > 0, and D subsequently selects an
element on the other side, say b ∈ ∆J , such that
φA(a) = φB(b) and rbi(b) > 0, reaching the config-
uration (āa, b̄b).
• Winning conditions: Any player who cannot move loses.
S wins if a configuration is reached (including the ini-
tial configuration) that fails to be a partial isomorphism.
Here, a configuration (ā, b̄) is a partial isomorphism if

– ai = aj ⇐⇒ bi = bj
– AI(ai) = AJ (bi) for all i and all A ∈ NC

– rI(ai, aj) = rJ (bi, bj) for all i, j.
PlayerD wins if she reaches the n-th round (maintaining
configurations that are not winning for S).

For our purposes, we need only soundness of Ehrenfeucht-
Fraı̈ssé equivalence:
Lemma 5.6 (Ehrenfeucht-Fraı̈ssé invariance). Let I,J be
models, and let ā0, b̄0 be vectors of length m over ∆I and
∆J , respectively, such that D wins the n-round Ehrenfeucht-
Fraı̈ssé game on ā0, b̄0. Then for every FO(P)-formula φ with
qr(φ) ≤ n and free variables at most x1, . . . , xm,

φ(ā0) = φ(b̄0).

Since embeddings into disjoint unions of models are bounded
morphisms, the following is immediate from Lemma 4.5:
Lemma 5.7. Every bisimulation-invariant formula is also in-
variant under disjoint union.
We are now in a position to prove our desired locality result:
Lemma 5.8 (Locality). Let φ(x) be a bisimulation-invariant
FO(P)-formula of rank n with one free variable x. Then φ is
k-local for k = 3n.

Proof sketch. Let a be a state in a model I. We need to show
φI(a) = φI

k
a (a). Construct models J ,K that extend I

and Ika , respectively, by adding n disjoint copies of both I
and Ika . We finish the proof by showing that

φI(a) = φJ (a) = φK(a) = φI
k
a (a).

The first and third equality follow by bisimulation invariance
of φ (Lemma 5.7), and the second using Lemma 5.6, by giv-
ing a winning invariant for D in the n-round Ehrenfeucht-
Fraı̈ssé game for J , a and K, a.

6 Proof of the Main Result
Having established locality of bisimulation-invariant first-
order formulae and modal approximability of finite-depth
bisimulation-invariant properties, we now discharge the last
remaining steps in our programme: We show by means
of an unravelling construction that bisimulation-invariant
first-order formulae are already finite-depth bisimulation-
invariant, and then conclude the proof of our main result, the
modal characterization theorem.
Definition 6.1. Let I be a model. The unravelling I∗ of I
is a model with non-empty finite sequences ā ∈ (∆I)+ as
states, where atomic concepts and roles are interpreted by

AI
∗
(ā) = AI(last(ā)) rI

∗
(ā, āa) = rI(last(ā), a),

for ā ∈ (∆I)+ and a ∈ ∆I , where last takes last elements.
As usual, models are bisimilar to their unravellings:
Lemma 6.2. For any model I and a ∈ ∆I , D has a winning
strategy in the 0-bisimulation game for I, a and I∗, a.

We next show that locality and bisimulation invariance imply
finite-depth bisimulation invariance:
Lemma 6.3. Let φ be bisimulation invariant and k-local.
Then φ is depth-k bisimulation invariant.

Proof sketch. By unravelling (Lemma 6.2) and locality
(Lemma 5.2), we need only consider depth-k tree models.
On such models, winning strategies in k-round bisimulation
games automatically win also the unrestricted game.

This allows us to wrap up the proof of our main result:

Proof of Theorem 3.11. Let φ be a probabilistic first-order
formula of rank n. By Lemma 5.8 and Lemma 6.3, φ is depth-
k bisimulation-invariant for k = 3n. By Theorem 4.3, for
every ε > 0, there exists an ALC(P) concept Cε of rank at
most k such that ‖φF −CFε ‖∞ ≤ ε on the final model F . By
Lemma 4.6, this approximation works over all models.

7 Conclusions
We have established a modal characterization result for a
probabilistic fuzzy DLALC(P), stating that every formula of
quantitative probabilistic FOL that is bisimulation-invariant,
i.e. non-expansive wrt. a natural notion of behavioural dis-
tance, can be approximated byALC(P)-concepts of bounded
modal rank, the bound being exponential in the rank of the
original formula. As discussed in the introduction, the bound
on the modal rank is the crucial feature making this result into
a van-Benthem (rather than Hennessy-Milner) type theorem.

It remains open whether our main result can be sharpened
to make do without approximation. (Similar open problems
persist for the case of fuzzy modal logic [Wild et al., 2018]
and two-valued probabilistic modal logic [Schröder et al.,
2017].) Further directions for future research include a treat-
ment of Łukasiewicz semantics of the propositional connec-
tives (for which non-expansiveness in fact fails). Moreover,
the version of our main result that restricts the semantics to
finite models, in analogy to Rosen’s finite-model version of
van Benthem’s theorem [Rosen, 1997], remains open.
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[Hájek, 2007] Petr Hájek. Complexity of fuzzy probability
logics II. Fuzzy Sets and Systems, 158:2605–2611, 2007.

[Halpern and Rabin, 1987] Joseph Halpern and Michael Ra-
bin. A logic to reason about likelihood. Artif. Intell.,
32:379–405, 1987.

[Halpern, 1990] Joseph Halpern. An analysis of first-order
logics of probability. Artif. Intell., 46:311–350, 1990.

[Hamblin, 1959] Charles Hamblin. The modal ‘probably’.
Mind, 68:234–240, 1959.

[Heifetz and Mongin, 2001] Aviad Heifetz and Philippe
Mongin. Probabilistic logic for type spaces. Games Econ.
Behav., 35:31–53, 2001.

[Hennessy and Milner, 1985] Matthew Hennessy and Robin
Milner. Algebraic laws for non-determinism and concur-
rency. J. ACM, 32:137–161, 1985.

[Herzig, 2003] Andreas Herzig. Modal probability, belief,
and actions. Fund. Inf., 57:323–344, 2003.

[Huth and Kwiatkowska, 1997] Michael Huth and Marta
Kwiatkowska. Quantitative analysis and model checking.
In Logic in Computer Science, LICS 1997, pages 111–122.
IEEE, 1997.

[Janin and Walukiewicz, 1995] David Janin and Igor
Walukiewicz. Automata for the modal µ-calculus and
related results. In Mathematical Foundations of Computer
Science, MFCS 1995, volume 969 of LNCS, pages
552–562. Springer, 1995.

[Kozen, 1985] Dexter Kozen. A probabilistic PDL. J. Com-
put. Sys. Sci., 30(2):162–178, 1985.

[Larsen and Skou, 1991] Kim Larsen and Arne Skou. Bisim-
ulation through probabilistic testing. Inf. Comput., 94:1–
28, 1991.

[Litak et al., 2018] Tadeusz Litak, Dirk Pattinson, Katsuhiko
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