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Abstract

Existing approaches to causal embeddings rely
heavily on hand-crafted high-precision causal pat-
terns, leading to limited coverage. To solve this
problem, this paper proposes a method to boost
causal embeddings by exploring potential verb-
mediated causal patterns. It first constructs a seed
set of causal word pairs, then uses them as super-
vision to characterize the causal strengths of ex-
tracted verb-mediated patterns, and finally exploits
the weighted extractions by those verb-mediated
patterns in the construction of boosted causal em-
beddings. Experimental results have shown that
the boosted causal embeddings outperform several
state-of-the-arts significantly on both English and
Chinese. As by-products, the top-ranked patterns
coincide with human intuition about causality.

1 Introduction
Causation or causality is a special semantic relationship be-
tween one cause process (or state) and another process (or
state), where the cause is partially responsible for the effect,
and the effect is partially dependent on the cause. Causa-
tion plays an important role in human thinking and reasoning.
Whenever something serious happens, human usually tries to
determine its causes and its effects.

Human is able to figure out causalities in text for at least
two reasons. On the one hand, human can recognize lexical
units that explicitly indicate causalities, such as because,
cause, result in and as a consequence, which
makes it possible to detect causalities even when human has
no knowledge about the meaning of the cause or the effect.
On the other hand, human can understand the meaning of
language and has both commonsense and domain-specific
knowledge, and thus can detect causalities even when there
are no explicit causal lexical units. These two cognitive char-
acteristics get mixed together and assign human the ability of
causality understanding and causal reasoning. The results of
causality understanding and causal reasoning can enrich hu-
man’s knowledge, the other way round.
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It is challenging for computer to perform such a task. For
many years, NLP community has made a lot of efforts to
causality-related tasks, resulting in a lot of proposed meth-
ods. Ealiest approaches were based on hand-coded domain-
specific knowledge bases to extract explicit causal knowledge
from text [Kaplan and Berry-Rogghe, 1991] and to rank the
extracted possible causalities [Girju and Moldovan, 2002].
These works achieved satisfactory precision but low recall.
Newer approaches employed machine learning algorithms to
extract explicit and implicit causalities from text [Girju, 2003;
Chang and Choi, 2006; Hashimoto et al., 2015a], which re-
lies heavily on feature engineering. Automatic detection of
causalities has played a fundamental role in various down-
stream applications such as question answering [Oh et al.,
2013], event prediction [Radinsky et al., 2012] and future sce-
nario generation [Hashimoto et al., 2014].

In recent years there has been an increasingly interest in
using word embeddings [Collobert et al., 2011; Mikolov et
al., 2013] as an alternative to traditional hand-crafted fea-
tures. More recent studies have focused on how to build and
use task-specific word embeddings [Tang et al., 2014; Boros
et al., 2014; Nguyen and Grishman, 2014; Hashimoto et al.,
2015b; Li et al., 2017]. As for the cause-effect relationship,
several methods have been proposed in [Sharp et al., 2016;
Xie and Mu, 2019] to construct causality-specific word em-
beddings (or causal embeddings in short) from a set of causal
phrase pairs extracted via a handful of high-precision pat-
terns.

The construction of causal embeddings is a valuable
causality-related task in several aspects. Firstly, causal word
pairs are important lexical knowledge resource which is help-
ful to causality extraction [Chang and Choi, 2006]. Causal
embeddings can provide a simple way to measure the causal
affinity of word pairs, or equivalently, provide a large scale
collection of causal word pairs. Secondly, with causal em-
beddings, the causal affinity between two phrases can be mea-
sured as the maximal causal affinity of all the word pairs be-
tween them, which can facilitate detecting implicit causal-
ity detection and measuring causal strengths of potential pat-
terns. Last but not the least, causal embeddings are comple-
mentary to vanilla word embeddings in downstream appli-
cations such as why-question answering [Sharp et al., 2016;
Xie and Mu, 2019].

As for the causal embedding methods, existing works
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[Sharp et al., 2016; Xie and Mu, 2019] usually have to first
extract a large number of causal phrase pairs by a handcrated
set of strong causal patterns, and then construct causal em-
beddings from them. The resulting causal embeddings have
shown high precision, but relatively low coverage, because
a large number of textual causalities are connected only by
weak patterns. To solve this problem, we propose a novel
method (called BoostedMaxMatching, or BMM in short) to
boost the causal embeddings by exploring potential weak
causal patterns. This paper makes the following contribu-
tions:
• Firstly, it proposes an extraction method for verb-

mediated patterns, defines an inversion operation of pat-
terns to handle the causal directionality problem, and de-
signs an algorithm to learn pattern weights that indicate
their causality-indicating strengths.
• Secondly, it proposes a method to boost causal embed-

dings by fusing the existing strong causal phrase pairs
and the extactions from (possibly weak) verb-mediated
patterns. Experimental results have shown that the re-
sulting causal embeddings have achieved high precision
and recall on both Chinese and English test data.
• Finally, our method also ouputs verb-mediated patterns

together with their causal strengths, as byproducts. Ex-
amination of them has shown that the top-ranked pat-
terns coincide with human intuition about causality.

2 Related Work
To the best of our knowledge, there are two existing works
on causality-specific embeddings [Sharp et al., 2016; Xie and
Mu, 2019] which are closely related to this paper.

Sharp et al. [2016] did the first work on causal embed-
dings and proposed a series of cEmbed-family methods. They
generated a causality-specific embeddings and demonstrated
that these dedicated embeddings are helpful in a down-
stream causal QA task. Their cEmbed-family methods for
embedding construction are based on the Skip-Gram algo-
rithm [Mikolov et al., 2013], by treating an effect phrase as
the context of its cause and a cause phrase as the context of
its effect. However, such treatment is based on the assump-
tion that each word pair between a cause-effect phrase pair
is causally related. Due to the fact that the assumption is far
from reality and thus introduces too much noise, the perfor-
mance of cEmbed-family models is undistinguished.

Xie and Mu [2019] proposed three methods (Pairwise
Matching, Max Matching, and Attentive Matching) for build-
ing causal embeddings from a corpus of cause-effect phrase
pairs. In order to transfer causal relationship from phrase-pair
level to word-pair level, Max-Matching method assumes that
there is at least one word pair carrying the causality informa-
tion of the positive phrase pair, which can be thought of as
a special case of multi-instance learning. Attentive-Matching
takes the assumption that for a causal phrase pair, there must
exist at least one close interaction between a cause word and
the effect phrase and another between an effect word and the
cause phrase. Both Max-Matching and Attentive-Matching
have achieved satisfactory performance on both English and
Chinese corpora.

The research work on vanilla and task-specific word em-
beddings is also related to our work. In recent years, there
is an upsurge of deep learning in natural language process-
ing [Collobert et al., 2011], where distributed representa-
tion of words serves as the basis. The neural methods
that learn vanilla distributed representation of words (called
word embeddings) usually capture only co-occurrence rela-
tionships between words [Mikolov et al., 2013]. Although
such a general-purpose word embeddings are helpful for
various NLP tasks, the acquisition of generality is often at
the cost of losing specificity to a certain degree. Tang et
al. [2014] proposed learning sentiment-specific word embed-
ding for sentiment analysis, where sentiment information is
encoded into the continuous representation of words such that
it can separate good and bad to opposite ends of the spec-
trum. Hashimoto et al. [2015b] proposed a novel method to
train word embeddings for semantic relation classification, by
predicting words between noun pairs using lexical relation-
specific features. Li et al. [2017] developed a tailored neural
network to learn contradiction-specific word embedding.

3 Method
Existing works on causal embedding (inclusive of Sharp et
al. [2016], Xie and Mu [2019]) extract a set of causal phrase
pairs by a handful of hand-crafted causal patterns, and then
build causal embeddings from the phrase pairs, which may
suffer from limited coverage. To remedy this deficiency, we
propose a novel method to take weak-causality patterns into
consideration, in order to boost the coverage of the learned
causal embeddings. The architecture of our method is illus-
trated in Figure 1, which consists of four main components:
• Triple extraction via verb-mediated patterns: This

paper focuses on the verb-mediated patterns and treats
their extractions;
• Causal word pair seeding: A high-quality seed set of

causal word pairs is generated, which will provide su-
pervision information to the phase of pattern weighting;
• Pattern weighting and scoring: The candidate patterns

are weighted and scored according to their ability to ex-
tract causal pairs;
• Boosted causal embeddings via weak-causality pat-

terns: The phrase pairs extracted by the verb-mediated
patterns are weighted and filtered according to the pat-
tern scores and then get fused with the previously ex-
tracted high-precision causal phrase pairs, to construct
the boosted causal embeddings.

3.1 Triple Extraction via Verb-Mediated Patterns
Verb-mediated patterns that indicate causation are a most fre-
quent kind of explicit intra-sentential causal pattern [Girju,
2003]. In this paper, we focus on three simplest easy-to-
extract forms, which work on English corpus as follows, after
parsing the corpus with the SpaCy1 dependency parser:
• for each transitive verb with active voice, locate its
nsubj or csubj as the subject phrase, its dobj or

1http://spacy.io
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Figure 1: The architecture of the boosted causal embeddings.

Figure 2: Examples of triple extractions

ccomp extended by its oprd, xcomp, and acomp as
the object phrase, and use the verb’s lemma as the pat-
tern;

• for each transitive verb with passive voice, locate its
agent as the subject phrase, its nsubjpass or
csubjpass as the object phrase, and use the verb’s
lemma as the pattern;

• for each intransitive verb (with active voice), locate its
nsubj or csubj as the subject phrase, the pobj or
pcomp of its prep as the object phrase, and use the
verb’s lemma plus the preposition as the pattern.

A phrase is valid if it contains at least a content word (i.e.,
noun, verb, adjective or adverb). Only the extractions whose
subject and object phrases are both valid will be kept. Fig-
ure 2 illustrates several extraction examples. On Chinese cor-
pus, the dependency parser in LTP toolkit2 is used instead and
some minor modifications are made to the rules accordingly.

Applying the above rules on a raw text corpus, we can ob-
tain a dataset E of triples 〈S, p,O〉, where S is the subject
phrase, O is the object phrase, and p is the pattern that is
either simply a transitive verb or an intransitive verb plus a
following preposition.

For these causality-indicating patterns, the causal di-
rectionality deserves our attention. Some of them such as

2http://github.com/HIT-SCIR/pyltp

prompt have their subject phrases as cause, for exam-
ple in the first sentence “The powerful typhoon prompts
a huge flood”, while the others such as result from
have their object phrases as cause, for example in the
second sentence “A huge flood resulted from the powerful
typhoon”, where (typhoon, flood) is known to be
a causal word pair. Therefore, it is desirable to create a
new pattern by inverting an existing one. Specifically, for
a given pattern p, we can make its inverted version pT by
inverting the subject phrase and the object phrase of p. That
is, for each triple 〈S, p,O〉 ∈ E, we will add its inverted
triple 〈O, pT , S〉 into E. For example, the triple 〈A huge
flood, result from, the powerful typhoon〉
extracted from the second sentence will be inverted to 〈the
powerful typhoon, result from inv, A huge
flood〉, where result from inv is the inverted pattern
of result from. Clearly, inverting the patterns will double
the size of dataset E. Let P = {p1, p2, . . . , pK} denote the
set of patterns in E, and γ(p) denote the set of subject-object
phrase pairs extracted with a pattern p ∈ P .

In addition, these verb patterns vary significantly in the
strength of indicating causality, due to the ambiguity of verbs.
Some verb patterns such as cause and result from al-
ways convey strong causal signal, some patterns such as
contain and consist of have weak or even no signal
of causality.

3.2 Seed Set of Causal Word Pairs
At the starting point of our method, it is assumed that there
are
• a collection Eh of high-precision causal phrase pairs,
• a cause embedding function c which maps a word w to

its cause embedding c(w) in a d-dimensional Euclidean
space Sc (called the cause space), i.e. c(w) ∈ Rd, and
• an effect embedding function e which maps a word w to

its effect embedding in another d-dimensional Euclidean
space Se (called the effect space), i.e. c(w) ∈ Rd,

where the embeddings c and e are built up from Eh by one of
the cEmbed-family methods [Sharp et al., 2016] or the Max-
Matching and Attentive-Matching algorithms [Xie and Mu,
2019]. To measure the causality of word pair (w1, w2), the
causal interaction score cs(w1, w2) is defined as the inner
product between the cause embedding of w1 and the effect
embedding of w2:

cs(w1, w2) = c(w1)
> · e(w2) (1)

Identifying Candidate Causal Word Pairs
Given a high-precision causal phrase pair (C,E) ∈ Eh, the
word pair (c, e) with the highest causal interaction score be-
tweeen C and E is thought of as the dominant word pair, that
is:

(c, e) = argmax
(w1,w2):w1∈C,w2∈E

cs(w1, w2) (2)

A word pair (w1, w2) is a candidate causal word pair if it
serves as the dominant word pair of at least λ1 phrase pairs in
Eh and its causal interaction score is not less than λ2 (λ1 and
λ2 are set to 30 and 0.55 by default).
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Generating Seed Causal Word Pairs by Pruning
The candidate causal word pairs are then pruned according
to the irreflexive and antisymmetric properties of causal rela-
tionship:
• We remove all the word pairs (w,w) whose cause and

effect words are identical, because of the irreflexity of
causal relation;
• For two different words, w1 6= w2, if (w1, w2) and its

reverse (w2, w1) belong to the seed set at the same time,
we remove both of them, because the causal relation is
antisymmetric.

The resulting set of seed causal word pairs is denoted as S,
which will provide supervision information for learning pat-
tern weights.

3.3 Pattern Weighting and Scoring
Since different patterns usually have different strengths of
causality, we would like to assign a weight to each pattern.
The problem is how to learn these weights and where the su-
pervision information comes from. In Section 3.1, we have
built up the connections between patterns and phrase pairs
in E, which is equivalent to a co-occurrence matrix of pat-
terns and phrase pairs (or PPP matrix in short), denoted as
Mppp. The dataset Eh can serve as the gold standard, but it is
not helpful in practice to tell us which phrase pairs in Mppp

are positive (or causally-related), because of the sparsity of
phrase pairs (i.e., a phrase pair seldom co-occurs more than
one time in the text). Therefore, we cannot infer the pattern
weights directly on the level of phrase pairs.

Pattern Weighting
To solve this problem, let us move to the level of word pairs
and seek for possible solution. We first build connections be-
tween patterns and word pairs in a so-called co-occurrence
matrix of patterns and word pairs (PWP matrix in short, de-
noted as Mpwp), where the element fk(w1, w2) at the row
of word pair (w1, w2) and the column of pattern pk indicates
how many times w1 and w2 are linked by pk:
fk(w1, w2) = |{(S,O) ∈ γ(pk) : w1 ∈ S,w2 ∈ O}|. (3)

For the i-th word pair in Mpwp, it is labeled as positive
(yi = 1) if it belongs to the seed set S; otherwise, it is neg-
ative (yi = 0). Since the positives and negatives are ready
and the examples (or word pairs) are described by a feature
set {f1, . . . , fK}, we propose a pattern-weighting method as
following, similar to logistic regression.

The causal affinity ca of a word pair (w1, w2) is measured
by the average weight of all its features:

ca(w1, w2) = σ

(∑K
k=1 ak × fk(w1, w2)∑K

k=1 fk(w1, w2)

)
(4)

where σ(·) = exp(·)
1+exp(·) is the sigmoid function that makes

normalization.
The weight vector a = (a1, . . . , aK) is trainable to mini-

mize the cross-entropy loss with l2 regularization:

L =− 1

N

N∑
i=1

yi log ca(wpi) + (1− yi) log(1− ca(wpi))

+ λ‖a‖

(5)

where wpi is the i-th word pair in Mpwp, N = |Mpwp| is
the total number of word pairs in Mpwp, and λ is the regu-
larization coefficient that is set to 10−5 by default. It is ex-
pected that causality-indicating patterns get positive weights
and word pairs connected by many causality-indicating pat-
terns will receive high causal affinities.

Pattern Scoring
Given a pattern pi, it is of interest to know the average causal
affinity of the phrase pairs it connects, measured by the score
s(pi):

s(pi) =
1

‖γ(pi)‖
∑

(C,E)∈γ(pi)

CA(C,E), (6)

where the causality affinity CA of phrase pair (C,E) is cal-
culated as the maximum causal affinity among the word pairs
between C and E:

CA(C,E) = max
c∈C,e∈E

ca(c, e) (7)

Patterns whose scores are less than a threshold (0.55 by
default), together with the phrase pairs they connect, are re-
moved from E. For each phrase pair PP ∈ E, the score
of its pattern p is assigned as its weight (v(PP ) = s(p));
while for each phrase pair PP ∈ Eh, the weight v(PP ) is
set to 1.0. As a result, we can merge E and Eh into a set of
weighted phrase pairs, denoted as Ew. Section 3.4 will build
the boosted causal embeddings on it.

3.4 Weighted Max-Matching for Boosted Causal
Embeddings

Now that we have obtained the weighted phrase pair set:
Ew = {(Si, Oi)|1 ≤ i ≤ |Ew|}, the task is to construct
boosted causal embeddings, c̃ and ẽ from it. This task looks
similar to the one solved by [Sharp et al., 2016] and [Xie
and Mu, 2019], except that all the phrase pairs have their as-
sociated weights. Therefore, we propose a variant of Max-
Matching algorithm, called Weighted Max-Matching, to take
the weight information into consideration.

For a given word pair (w1, w2), the boosted causal score
c̃s(w1, w2) is defined as the inner product between the
boosted cause embedding of w1 and the boosted effect em-
bedding of w2:

c̃s(w1, w2) = c̃(w1)
> · ẽ(w2) (8)

It is different from the causal interaction score defined by
Equation (1) in that it uses different embeddings c̃ and ẽ.

Similar to the Max-Matching model, its weighted variant
also treats the task of learning causal embeddings as a multi-
instance learning problem [Maron and Lozano-Pérez, 1998].
A phrase pair (C,E) can be mapped to a bag of word pairs
{(c, e)|c ∈ C, e ∈ E}. It assumes that the bag contains at
least one positive word pair if the phrase pair is positive, and
all the word pairs are negative if the phrase pair is negative.
That is, for a given positive phrase pair (C,E), it is expected
that we can find a word pair (c, e) between C and E such that
the cause word c ∈ C has a large boosted causal score with
the effect word e ∈ E.
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The boosted causal score of a phrase pair (C,E) is defined
as the maximum causal interaction score among all the word
pairs between C and E:

c̃s(C,E) = max
c∈C,e∈E

c̃s(c, e) (9)

In other words, only the word pair with the highest causal
interaction score is selected as the positive word pair, which
serves as the representative of the positive phrase pair.

The boosted variant has adopted the same negative sam-
pling strategy as Max-Matching algorithm. Let N denote the
set of all the sampled negative phrase pairs. Then, the loss J
to minimize is calculated by summing all the cross-entropy
losses of the training examples:

J =
∑

(C,E)∈Ew

v((C,E)) · log(σ(c̃s(C,E))

+
∑

(C,E)∈N

∑
c∈C,e∈E

log(1− σ(c̃s(c, e))
(10)

where v((C,E)) is the weight of the phrase pair (C,E).

4 Evaluation on English Corpus
To make an evaluation on English, we make use of a high-
precision corpus Eh of 815,233 cause-effect phrase pairs
which was extracted with a set of 13 hand-crafted rules from
Gigaword and Simple English Wikipedia. Both the rules and
the corpus are taken from [Sharp et al., 2016]3. The Max-
Matching algoirthm [Xie and Mu, 2019] is used to build the
initial causal embeddings4 c and e because of its superior per-
formance.

We compare our causal embedding method against several
state-of-the-arts:

• vEmbed: The vanilla word embeddings trained on raw
text corpus by the skip-gram algorithm [Mikolov et al.,
2013] with a sliding window of 5;
• cEmbed: The cEmbed method [Sharp et al., 2016] treats

the effect phrase as the context of the cause, and uses a
variant of Skip-Gram to train the causal embeddings;
• cEmbedBi: The bidrectional model [Sharp et al., 2016]

trains a second model treating causes as context, and
ranks word pairs by averaging it and cEmbed;
• cEmbedBiNoise: The noise-aware bidirectional

model [Sharp et al., 2016] improves cEmbedBi by
weighting word pairs with their likelihoods of being
truly causal;
• Attentive-Mathing: It assumes that there are close inter-

actions between a cause word and the effect phrase, and
also between an effect word and the cause phrase [Xie
and Mu, 2019];
• Max-Matching: It is built upon the assumption that there

is at least one word pair carrying the causality informa-
tion of positive phrase pair [Xie and Mu, 2019];

3http://clulab.cs.arizona.edu/data/emnlp2016-causal/
4http://www.ke.fudan.edu.cn/data/causal/en causal embeds.zip

Figure 3: Precision-recall curves of the compared models to rank
causal word pairs above non-causal pairs

• BoostedMaxMatching (BMM in short): The proposed
method in this paper, running on the corpus of English
Wikipedia5.

4.1 Causal Word Pair Ranking
Our method together with several state-of-the-arts are evalu-
ated on an external set of word pairs drawn from the SemEval
2010 Task 86 [Hendrickx et al., 2010], which is originally a
multi-way classification of semantic relations between nom-
inals. This external set contains 1730 nominal pairs in total,
865 of which are from the Cause-Effect relation and an equal
number of which are from the other eight relations.

Figure 3 shows the precision-recall (PR) curves for these
embedding methods. Two facts can be observed from it:

• First, our BMM method has achieved much higher cov-
erage for it has covered almost all the test word pairs.
However, the curves of all the other causal embedding
models become straight at tail, because about 30% of
test word pairs have at least one word missing from their
training examples, which means that they have only 70%
coverage of the test word pairs;

• Second, our BMM method is much more precise than
cEmbed-family methods (inclusive of cEmbed, cEm-
bedBi and cEmbedBiNoise). As for Attentive-Matching
and Max-Matching methods, their precisions both have
a sharp drop after the recalls exceed 0.5, while the curve
of BMM runs more smoothly, even on the range of high
recall values.

As the result of the combination of the two observations, the
PR curve of BMM runs above all the others, at almost all
the positions, resulting in the highest Area-Under-PRCurve
(AUC) value as shown in Table 1.

4.2 Top-Ranked English Patterns
Besides the boosted causal embeddings, our method out-
puts potential patterns with the calculated causal strengths

5http://dumps.wikimedia.org/enwiki/20181120/
enwiki-20181120-pages-articles-multistream.xml.bz2

6http://www.kozareva.com/downloads.html
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vE cE cEB cEBN AM MM BMM
0.52 0.62 0.64 0.64 0.81 0.80 0.87

Table 1: The AUC values. Method names are abbreviated: vEm-
bed (vE), cEmbed (cE), cEmbedBi (cEB), cEmbedBiNoise (cEBN),
Attentive-Matching (AM) and Max-Matching (MM).

Rank 1-7 Rank 8-14 Rank 15-21
spark aggravate stir
precipitate ignite pave
exacerbate force arouse
worsen result from inv reduce
provoke inflict fuel
stem prompt alleviate
trigger increase with inv contribute to

Table 2: The top-21 English verb-mediated patterns in causal
strengths. The patterns ending with inv are the inverted patterns
of their prefixes.

by Equation (6), which can help detect and extract explicit
(potential) causalities from text. The top-21 verb-mediated
patterns are listed in Table 2. It can be observed that:

• Based on human examination, all the listed patterns can
indicate causality in some degree, and coincide with hu-
man intuition about causality;

• Among the top-21 verbs, 18 of them are excitatory, and
only 3 are inhibitory. We also find that the excitatory
and inhibitory verbs ususally have high ranks, which is
related to the work of [Hashimoto et al., 2012];

• Interestingly, an inverted pattern result from inv is
top-ranked, indicating that result from is a effect-to-
cause pattern. Such information is conducive to improv-
ing the accuracy of causality extraction.

5 Evaluation on Chinese Corpus
To make evaluation on Chinese, we use the Sogou7 set of
517,746 high-precision causal phrase pairs which were ex-
tracted by Xie and Mu [2019] from the SogouCS8 news cor-
pus [Wang et al., 2008]. The causal embeddings9 constructed
by the Max-Matching algorithm [Xie and Mu, 2019] are used
to generate the seed set of causal word pairs.

5.1 Causal Word Pair Identification
To evaluate the boosted causal embeddings on the task of
identifying causal word pairs from causal phrase pairs, we use
an external set of 355 phrase pairs10 extracted from a Chinese
encyclopedia corpus, where each phrase pair was annotated
with the causal word pair that indicates the causality between
the phrases[Xie and Mu, 2019].

Given a cause-effect phrase pair pp = (C,E) where C =
c1c2 . . . cm and E = e1e2 . . . en, all the word pairs between
C and E get ranked according to their interaction scores
cs(·, ·) in Equation 1. For a word pair wp = (c, e) where

7http://www.ke.fudan.edu.cn/data/causal/sg hp extractions.txt
8http://www.sogou.com/labs/resource/cs.php
9http://www.ke.fudan.edu.cn/data/causal/sg causal embeds.zip

10http://www.ke.fudan.edu.cn/data/causal/bk eval.txt

Model Accuracy MRR
vEmbed 8.4% 0.272
cEmbed 18.9% 0.345
cEmbedBi 19.2% 0.344
cEmbedBiNoise 18.3% 0.334
Max-Matching 42.9% 0.586
Attentive-Matching 42.1% 0.572
BMM 44.3% 0.601

Table 3: Quantitative performance on Baidu test data of the causal
embeddings trained from Sogou corpus

Table 4: The top-21 Chinese verb-mediated patterns in causal
strengths. The patterns ending with inv are the inverted patterns
of the prefixes.

c ∈ C and e ∈ E, let r(wp, pp) denote the rank of word pair
wp with respect to the phrase pair pp. If the 1st ranked word
pair is the same as the annotated causal word pair, then we say
that the causal embedding has correctly identified the causal
word pair. The accuracy of a causal embedding model on the
test dataset is defined as the percentage of the correctly iden-
tified causal word pairs. The mean reciprocal rank (MRR) is
calculated as:

MRR =
1

|D|
∑
pp∈D

1

r(ann(pp), pp)
(11)

where ann(pp) denotes the annotated word pair for the
phrase pair pp ∈ D.

The accuracies and MRRs are reported in Table 3. It can
be seen that our Boosted Max-Matching model has achieved
the highest performance on both accuracy and MRR, among
all the competitors. In addition, the top-21 patterns ranked by
their causal strengths are listed in Table 4, where observations
can be made similar to Section 4.2.

6 Conclusion
In this paper, we propose a novel method to boost causal
embeddings by exploring potential verb-mediated causal pat-
terns. It first learns the pattern weights that indicate their
causal strengths, and then boosts causal embeddings by fus-
ing the existing strong causal phrase pairs and the extactions
from (possibly weak) verb-mediated patterns. Experimental
results have shown that the resulting causal embeddings have
achieved high precision and recall on both Chinese and En-
glish. In addition, the top-ranked patterns, as byproducts, co-
incide with human intuition about causality.
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