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Abstract

Multilingual knowledge graphs constructed by en-
tity alignment are the indispensable resources for
numerous Al-related applications. Most existing
entity alignment methods only use the triplet-based
knowledge to find the aligned entities across mul-
tilingual knowledge graphs, they usually ignore
the neighborhood subgraph knowledge of entities
that implies more richer alignment information for
aligning entities. In this paper, we incorporate
neighborhood subgraph-level information of enti-
ties, and propose a neighborhood-aware attention-
al representation method NAEA for multilingual
knowledge graphs. NAEA devises an attention
mechanism to learn neighbor-level representation
by aggregating neighbors’ representations with a
weighted combination. The attention mechanism
enables entities not only capture different impact-
s of their neighbors on themselves, but also attend
over their neighbors’ feature representations with
different importance. We evaluate our model on t-
wo real-world datasets DBP15K and DWY 100K,
and the experimental results show that the proposed
model NAEA significantly and consistently outper-
forms state-of-the-art entity alignment models.

1 Introduction

The multilingual knowledge graphs (KGs) like YAGO
[Suchanek et al., 2008] and DBpedia [Bizer et al., 2009]
increasingly play an significant role in supporting vari-
ous knowledge-driven tasks. Those multilingual knowledge
graphs consist of monolingual knowledge, in forms of direct-
ed graphs, where entities are represented as nodes and re-
lations as edges. The monolingual knowledge are stored as
triplets (ep, 7, e; ), representing that the head entity ey, and tail
entity e; are linked by relation r. Besides monolingual knowl-
edge, the multilingual KGs also embody cross-lingual knowl-
edge (ep, align(), e},) that matches the same real-world en-
tities e;, and e}, among different human languages L and
L’ by alignment operation align(), see Figure 1. A great
deal of methods focus on exploiting monolingual knowledge
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Figure 1: Multilingual Knowledge Graphs. KG and KG' are the
knowledge graphs of languages L and L'.

graphs in recent years. Particularly, the embedding-based
methods that encode entities and relations into continue low-
dimensional vector spaces, have achieved promising perfor-
mance. Exemplarily, given a triplet (ep, , e;), TransE [Bor-
des et al., 2013] regards the relation embedding r as the trans-
lation vector between the head and tail entity embedding e,
and e, and expects e, +r ~ e; when (e, 7, e;) holds. Other
extended works such as TransH [Wang et al., 2014], TransR
[Lin et al., 2015a] and TransD [Ji et al., 2015] also emerged
with different translation forms in characterizing relation r.
However, a few methods have been done for modeling multi-
lingual knowledge graphs.

Entity alignment is an effective way to integrate the mul-
tilingual KGs, which is the task of finding the same real-
world entities in different KGs. The traditional multilingual
entity alignment methods mainly based on machine trans-
lation, have low accuracy due to the poor performance in
translation between multiple languages. Most recently, fol-
lowing above popular embedding-based models, MTransE
[Chen er al., 2017] provides the cross-lingual transitions for
both entities and relations across different knowledge graph
embeddings. IPTransE [Zhu et al., 2017] jointly encodes
both entities and relations of various KGs into an unified
low-dimensional semantic space via sharing parameters on
a seed set of aligned entities, JAPE [Sun et al., 2017] fur-
ther incorporates attribute triplets as additional information
for learning KGs’ embeddings in an unified space. BootEA
[Sun et al., 2018] adopts bootstrapping [Yarowsky, 1995;
Abney, 2004] approach to iteratively label likely entity align-
ment as training data and leverage it for learning alignment-
oriented embeddings. Existing entity alignment methods on-
ly use the triplet-based information, but ignore the inheren-
t neighborhood information of entities for aligning entities.
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Figure 2: Simple Visualization of NAEA Model.

Compared with the triplet-based information, the neighbor-
level information factually implies more richer alignmen-
t properties because arbitrary two aligned (equivalent) entities
in different KGs usually contain equivalent neighborhood in-
formation.

This paper proposes a neighborhood-aware attentional rep-
resentation method NAEA for multilingual knowledge graph.
As Figure 2 shown, NAEA are composed of knowledge em-
bedding component KE and entity alignment component EA.
Both KE and EA components incorporate neighbor-level and
relation-level information with different weights for learn-
ing KGs’ embedding representation and aligning entities re-
spectively. KE component devises an attention mechanism
to obtain neighbor-level representation by aggregating neigh-
bors with a weighted combination, and uses the triplet-based
characteristic information to learn relation-level representa-
tion. EA component determines alignments between enti-
ties across multilingual KGs by measuring the similarity of
their integrated representations, which are also fused from
neighbor-level and relation-level representations with differ-
ent weights.

Our contributions. We propose a neighborhood-aware
attentional representation model NAEA for multilingual
knowledge graphs, which can better capture the entity and
relation features for targeting aligned entities. Two compo-
nents, knowledge embedding component KE and entity align-
ment component EA, are included in NAEA.

e NAEA incorporates neighbor-level with relation-level
feature information in knowledge graphs to perform
multilingual entity alignment task.

e KE component devises a neighborhood-aware attention
mechanism to learn neighbor-level representation by ag-
gregating neighbors’ embeddings with different impacts.

e EA component performs entity alignment by the similar-
ity of entity integrated representations, which integrates
neighbor-level and relation-level feature representation.

We evaluate our NAEA model on two real-world dataset-
s DBP15K and DWY100K. Experimental results show that
NAEA significantly achieves state-of-the-art performance on
entity alignment task.
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2 Problem Formulation

We describe an entity set as F, a relation set as R, a knowl-
edge graph as G = {7|r = (en,7,e:)} with ep,e; €
E,r € R. A KG pair specified by languages L; and Lo
is G’ = (Gr,,GL,), and its known aligned entities set is
A = {(er,ez)ler € Er,,ey € Er,}, where E,, and Er,
are respectively the entity set of G, and G,. Each aligned
entity pair (ey, e y) represents an entity ey in Gz, has its syn-
onymous counterpart e in G, with language-specific sur-
face names.

The entity alignment task in this paper is as follows:
given the language-specific knowledge graph pair G’ =
(Gr,,GL,), and the known alignment seeds A = {(es,ez)},
entity alignment aims to automatically find and align more
unaligned entities.

3 Model

This paper proposes a neighborhood-aware attentional repre-
sentation method NAEA for multilingual knowledge graph-
s. As illustrated in Figure 2, NAEA consists of knowledge
embedding component KE and entity alignment component
EA: (1) KE in section 3.1 aims to learn alignment-oriented
knowledge embedding representation, and (2) EA in section
3.2 aims to perform alignment in various KGs.

3.1 Neighborhood-aware Knowledge Embedding

KE fuses neighbor-level and relation-level information, and
introduces an attention mechanism to learn neighbor-level
representation of heterogeneous KGs.

Neighbor-level Attentional Representation

For obtaining neighbor-level entity representation, we intro-
duce an attention mechanism to aggregate entities’ neighbors
with different importance. As shown in Figure 2, the attention
mechanism takes as input an entity e;, with its neighborhood
set {(rn1, €n1), (Th2s €r2), -y (Thns €nn)}, and outputs its
corresponding neighbor-level feature representation Ne(ey, ).
Here rp; with j = 1, ..., n is the relation that links from entity
ep 1o ep; or vice versa, and n is the number of neighbors of
entity ey,.
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Specifically, for each entity-neighbor pair, we first use two
shared linear transformations, parameterized by two weight
matrices W; € R™ ™ and W,y € R™*2™ tg transform
the input features into higher-level features, and then adopt
self-attention on entities to compute attention coefficients be-
tween entity ej, and its neighborhood entity e, ; with relation
Thys 1.€.,

chj = ay [Wien, Walry;, ep;]]

where cj, ; represents the importance of entity ep;’s features
to entity ey, with relation r,j, a5, € R?™ is an entity-specific
weight vector, ey,,ep;,ry; € R are the vector embeddings
of ep,en;,mn;, and [,] indicates the concatenation operation.
m is the dimension of entity and relation embedding space.

Obviously the above self-attention mechanism allows to
calculate the importance of arbitrary two linked entities. To
make coefficients easily comparable across different entities,
we normalize them across all choices of j = 1,2, ..., n using
the softmax function:

exp(LeakyReLU(cy, 5))

= soft )=
o, = softmax(cy, ;) >, exp(LeakyReLU(cy, ;)

To obtain the final output neighbor-level feature representa-
tion Ne(ey, ) of input entity e, we compute a linear combina-
tion of its neighbors’ high-level features with different weight
coefficients oy, ;, and adopt multi-head attention [Vaswani et
al., 2017] to stabilize the process of self-attention, i.e.,

K n
Ne(ep) = ¢(% DD ah Wihlens,en))

k=1j=1

where ¢ = sigmoid is the activation function, aﬁi ; are the
normalized attention coefficients computed by the k-th atten-
tion mechanism, and K is the number of head. Although
the multi-head attention mechanism expands the parameter
requirements by a factor of K, the individual heads’ compu-
tations are fully independent and can be parallelized.

We mainly perform such attention mechanism to get
neighbor-level entity representations. For the sake of fairness,
we use Nr(r) = Wr to represent the neighbor-level relation
representation of relation r with W € R™*™,

Relation-level Representation

Besides utilizing the neighbor-level information, we also con-
sider the triplet-based information for our model NAEA. In
order to fully preserve the inherent structural property of
triplets, we use (ep, r,e;) to describe the relation-level em-
bedding representation of a triplet (e, 7, e;).

Loss Function

For capturing neighbor-level information of knowledge
graphs, similar to the widely-used embedding based model
TransE [Bordes et al., 2013], we define the neighbor-level s-
core function fi(7) = ||Ne(en) + Nr(r) — Ne(e;)||3 for a
triplet 7 = (ep, r, e;). Different from the margin-based rank-
ing loss function used in TransE, we adopt following limit-
based scoring loss function [Zhou er al., 2017] since it not
only ensures the discrimination between the scores of posi-
tive and negative triplets, but also ensures the lower scores
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for positive triplets, i.e.,

L= > [h(®)+m— A+

TeT 7/'€T’

+9 D [fi(r) — ol

TeT

ey

where [-]+ means that max(-,0), 7 and 7’ are respectively the
positive and negative triplet from positive and negative triplet
set T and T”, v > 0 is a balance hyper-parameter, and p1, 1o
are two hyper-parameters with the constraint pq, po > 0.

For capturing relation-level information of knowledge
graphs, we also define the relation-level score function
f2(T) = |len + r — e;||3 for measuring the plausibility of
the triplet 7 = (ey,, r, €¢), and use the same loss framework
as L; to define relation-level scoring loss function Ls.

We aim to learn embedding representations of KGs by fus-
ing neighbor-level and relation-level information of knowl-
edge graphs with different weights. Therefore, we propose
following combined loss function for optimization:

Lg=BL1+(1-8)Ls 2)

where [ is the weight hyper-parameter that balances the im-
portance of neighbor-level of information.

3.2 Entity Alignment

Entity alignment aims to find A’ = {(e;,e;) € Er, X Ep,|
e; = e;}, where e; =, e; means that an equivalence rela-
tion =, holds between e; and e;. Usually the already known
aligned pairs subset A = {(er,es)ler € Ep,,e; € Ep,} of
A’ is used as training data.

In this paper, we consider the alignment task as the classi-
fication problem that labels entity e; in Gz, using entity e;
in Gr,. As said in [Lacoste-Julien er al., 2013; Zhang et al.,
2015; Sun et al., 2018], this entity alignment task has the one-
to-one alignment constraint: an entity can be aligned with at
most one label, and a label can be assigned to at most one
entity. This constraint makes difference between our prob-
lem and the common classification problem [Liu et al., 2019;
Liu et al., 2017]. We define the alignment probability of using
entity e; to label e; as

m(ejle;) =B ¢(sim(Ne(e;), Ne(e;)))

+ (1 = B) ¢(sim(e;, e;))
where sim(-) is the cosine similarity. Based on neighbor-level
and relation-level knowledge information, we minimize the

following negative log-likelihood function to obtain the opti-
mal parameters with the highest alignment likelihood:

Ly=- Z Z 1 log m(ejle;)
e;€EL, e;€EEL,

where 1 is the indicator function that equals to 1 when e; is
the true label of entity e;, otherwise 0.

3.3 Training

To enable parameters of our model not only to capture the
alignment likelihood information, but also model the inherent
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semantic knowledge of KGs. We minimize following joint
objective function to perform model training:

L=Lg+AL4 3)

where ) is the positive hyper-parameter that measures the im-
portance of L 4.

In training stage, for regularization and avoiding over-
fitting, we apply dropout to the weight parameters
W, W, W5 and L2 regularization to embeddings of KGs.
For addressing the inadequate prior alignment, we use boot-
strapping strategy used in [Sun e al., 2018] that iteratively
label likely alignment as training data to train our model.

Construct 7 and T’. For constructing the positive triplets
set T', we deliberately exchange the entity with its counterpart
in triplets to calibrate different KGs in the unified embedding
space. Given an aligned entity pair (es,e;) € A, following
positive triplets are generated:

To(er,er) ={(es,r,e)|(er,rer) € T, }
U{(en,r es)|(en,r er) € Tr,}
U{(er,re)l(es,rer) € Toy}t
U{(en,r er)|(en,res) € Try}

where 77, and 77, are respectively the positive triplets set
of knowledge graphs G, and G'1,,. Thus we have the gen-
eral positive triplets set in Eq. (1) asT = T, UTL, UTy
with Ty = U(ebe‘])eA T.(er, es). For constructing the nega-
tive triplets set 7", instead of the traditional uniform negative
sampling in [Bordes er al., 2013] that samples the replacer
of entity from entire entity set, we adopt Nearest Neighbor
Sampling strategy to limit the scope of sampling candidates.
Specifically, for an entity e that will be replaced, we choose
the top-s nearest neighbors of entity e in the embedding s-
pace as candidates. In this way, those entities that have low
embedding similarities with entity e, are truncated and would
not be sampled. Here, we use cosine similarity between in-
tegrated representation of entities to determine the top-s n-
earest neighbors of entities. The integrated representation of
entity e is defined as 8 Ne(e) + (1 — S)e.

4 Experiment

4.1 Experiment Setup

Datasets. We conduct experiments on two real-world
datasets DBP15K and DWY100K. DBP15K [Sun et al.,
20171 is selected from the multilingual versions of DBpe-
dia that includes entity alignment links from entities of En-
glish version to those in other languages. Three multilingual
datasets DBPzy gn (Chinese to English), DBPjs gn (Japanese
to English) and DBPprr gn (French to English) are built in
DBPI15K. Each dataset contains 15 thousand reference align-
ment links with popular entities from English to Chinese,
Japanese and French respectively. DWY100K [Sun ef al.,
2018] is built from three large-scale multi-lingual knowl-
edge graph DBpedia, Wikidata and YAGO3. Two large-scale
datasets, DBP-WD and DBP-YG, are respectively extracted
with 100 thousand reference alignment links from the English
version of DBpedia to that of Wikidata and YAGO3. Table 1
illustrates the statistics of those data sets.

1946

| DataSets | #Ent #Rel ~ #Att  #Reltri  #Atttri |

DBPISKy | Chinese | 66469 2,830 8,113 153929 379,684
‘EN| English | 98,125 2317 7,173 237,674 567,755

Japanese | 65,744 2,043 5,882 164373 354,619

DBPISKiaen Egglish 95,680 2,096 6,066 233319 497,230
DBPI5Kppy | French | 66858 ~ 71379 4547 192191 528665
- English | 105,889 2,209 6,422 278,590 576,543

DBP-WD DBpedia | 100,000 330 351 463294 381,166
Wikidata | 100,000 220 729 448,774 789815

DBPYG DBpedia | 100,000 302 334 428,952 451,646
YAGO3 | 100,000 31 23 502,563 118,376

Table 1: Statistics of the Datasets.

Parameter settings. In our model, we set the maximum
number of neighbors n as 200, and select the dimension of
entity(relation) embeddings m from {50, 75, 100, 150, 200},
the learning rate n from {0.001, 0.01, 0.1}, 8 from {0, 0.2,
0.4, 0.6, 0.8, 1}, A from {0.1, 0.5, 1, 1.5, 2}, p from {0.5,
1, 2, 3, 4}, po from {0.01, 0.1, 0.5, 0.8, 1, 1.5, 2}, v from
{0.1, 0.5, 1, 1.5, 2, 2.5}, the number of head K from {1, 2,
4, 6, 8}. For our model, the best optimal parameter config-
urations are m = 75, 5 = 0.8, A = 1, u; = 1, o = 0.1,
v =2, K =4,n = 0.01. For each positive triplet, we select
10 negative triples for training, and set the training epochs as
1000. Following BootEA [Sun er al., 2018], we used 30% of
the gold standards as seed alignment while left the remaining
as testing data, i.e., the latent aligned entities to discover.

4.2 Baselines

For comparative models, we select current four state-of-the-
art methods as baselines in our experiments.

e MTransE [Chen et al., 2017] provides the transfor-
mation for entities and relations in different language-
specific knowledge graphs.

e IPTransE [Zhu et al., 2017] incorporates relational path-
s and learns joint embeddings by sharing parameters
based on iteratively aligning entities according to their
semantic distance.

e JAPE [Sun et al., 2017] is an attribute-preserving em-
bedding model that incorporates the relation and at-
tribute embeddings for entity alignment.

e BootEA [Sun e al., 2018] adopts the bootstrapping pro-
cess to label likely alignment as training data and edit
alignment during iterations.

In this experiment, we directly copy the experiment results
of baseline models reported in their papers since the same
datasets are used.

4.3 Multilingual Entity Alignment

The objective of this task is to find the same semantic entities
from different languages in knowledge graphs. Comparing
with baseline models, we consider two measures as evalua-
tion metrics: (1)Hits@k: the proportion of correct alignmen-
t ranked in top-k. Here Hits@1 and Hits@10 are adopted,
(2) Mean Reciprocal Rank(MRR): the average of the recipro-
cal ranks of results. Higher Hits@k and MRR are expected,
which indicates better alignment performance.
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Model DBP15Kzi5x DBP15Kja gx DBP15Kgg £x DBP-WD DBP-YG
Hits@l Hits@10 MRR | Hits@l Hits@l0 MRR | Hits@l Hits@l0 MRR | Hits@1 Hits@10 MRR | Hits@l Hits@10 MRR
MTransE | 30.83 6141 0364 | 27.86 5745 0349 | 24.41 5555 0335 | 28.12 5195 0363 | 25.15 4929 0334
IPTransE 40.59 73.47 0.516 36.69 69.26 0.474 33.30 68.54 0.451 34.85 63.84 0.447 29.74 55.76 0.386
JAPE 41.18 74.46 0.490 36.25 68.50 0.476 32.39 66.68 0.430 31.84 58.88 0.411 23.57 48.41 0.320
BootEA | 62.94 8475  0.703 | 62.23 8539  0.701 | 65.30 87.44 0731 | 74.79 89.84  0.801 | 76.10 89.44  0.808
NAEA 65.01 86.73 0.720 64.14 87.27 0.718 67.32 89.43 0.752 76.70 91.79 0.817 77.86 91.25 0.821
Table 2: Results on DBP15K and DWY 100K.
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Figure 3: Performance of NAEA

Table 2 gives the convinced results of entity alignment on
DBP15K and DWY100K. From Table 2, we can observe that
our model NAEA consistently outperforms all baselines on
five data sets. More specifically, NAEA achieves at least
1.76% on Hits@1, 1.81% on Hits@10 and 1.3% on MR-
R higher performance than other models. We attribute the
superiority of our model to its three advantages: (1) Our
model devises knowledge embedding component for learn-
ing knowledge embeddings and entity alignment component
for aligning entities ingeniously. (2) Our model incorporates
the neighbor-level and relation-level information of KGs with
different weights for multilingual entity alignment. (3) Our
model introduces a multi-head attention mechanism to learn
the neighbor-level representations by integrating neighbors’
embeddings with a weighted combination.

MTransE [Chen et al., 2017] obtains the worst alignmen-
t performance because it learns the embeddings of KGs in
different vector spaces, and losses information when model-
ing the translation between different embedding spaces. IP-
TransE [Zhu et al., 2017] and JAPE [Sun et al., 2017] achieve
better performance than MTransE due to relational path and
entity attribute information of KGs are respectively lever-
aged. Expect for our model NAEA, BootEA has the highest
results among baselines since it uses bootstrapping process to
accurately label likely alignment as training data, and address
the problem caused by the small proportion of prior align-
ment.

Link prediction in monolingual KG. Effective link pre-
diction can help to improve the completeness of a knowledge
graph, and further helps to improve the alignment perfor-
mance. Link prediction task is to predict the missing head/tail
entity given a triplet (h,r,?)/(?,7,t). Usually two evalua-
tion metrics are used: (1) mean rank of correct entities (Mean
Rank), (2) proportion of correct answers ranked in top-10

on Different Number of Head K.

(Hit@10). In above settings, lower Mean and higher Hit@ 10
are expected. To testify the effectiveness of neighbor-level
information for improving link prediction performance, we
compare NAEA with TransE, BootEA on a monolingual KG
with the representations obtained by only using individual
embedding objective, such as Eq. (2). In this experiment,
we randomly select monolingual triplets from DBP15Kyy gx
and DBP-WD to organize the training, valid and test set ac-
cording to ratio 8 : 1 : 1. The results of link prediction on
datasets are shown in Table 3, which are that NAEA achieves
best performance among baselines on all metrics since NAEA
successfully alleviates the neighbor-level information of enti-
ties in knowledge graphs. It suggests that the neighbor-level
information in KGs can provide indispensable characteristic
information of knowledge graphs, and is indeed beneficial to
enhance link prediction performance.

4.4 Discussion

In this section, we evaluate how different choices of parame-
ters affect our model’s performance. In the following experi-
ments, except for the parameter being tested, the rest param-
eters are set as the optimal configurations.

Performance on different K. The above experimental
results show that the usage of neighbor-level information
through the multi-head attention mechanism is beneficial
for improving alignment performance. Thus this subsection
mainly explores how the performance of our model changes
with different number of head K. In this experiment, we test
our model with selecting K from {1, 2, 3, 4, 5, 6}. Figure
3 gives the convinced results. From this figure, we can see
that:(1) NAEA has the best performance when K = 4, indi-
cating that K = 4 setting best expresses the neighbor-level
information of entities, and delivers alignment characteristics
of entities in multilingual knowledge graphs. (2) The perfor-
mance on all datasets begins to gradually rise to the highest
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DBP15Kzi.en DBP-WD
Model ZH EN DBpedia Wiki
Mean Hits@10 ‘ Mean Hits@10 | Mean Hits@10 ‘ Mean Hits@10
TransE 471 57.3 402 60.9 360 62.7 298 65.8
BootEA 286 724 234 75.2 221 76.4 191 78.9
NAEA 209 77.2 183 79.3 165 80.6 152 81.3

Table 3: Results of Link Prediction.

point and then declines as the number of head K grows. This
mainly because that too small K can not capture the richer
neighbor-level information, and too large K may introduce
noisy and lead to over-fitting problem.

Performance on different 5. In our model, 5 is to weight
the importance of neighbor-level information for multilingual
entity alignment. To evaluate the influences of different 5 on
alignment performance, we test our model with different 3
selected from {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. 0.8, 0.9,
1} on Hit@10 metric. We report the experimental results in
Figure 4. From Figure 4, we find that:(1) Under § = 0.8
setting, NAEA can achieve the best alignment performance
on all datasets, which indicates that such setting can suffi-
ciently reflect the significance of neighbor-level information
in aligning entities. (2) The performance of our model first
is increasing with the growth of 8 and then drops with 3 fur-
ther increases, and has the lowest accuracy when 8 = 0 or
B = 1. It suggests that the neighbor-level and relation-level
information in KGs are both necessary.

5 Related Work

5.1 Knowledge Representation

In recent years, a series of embedding-based methods such
as [Bordes et al., 2013; Wang et al., 2014; Zhu et al.,
2019] have been quickly developed for knowledge represen-
tation learning. Those methods attempt to encode entities
and relations into low-dimension vector spaces while pre-
serving KGs’ properties. Among those methods, the most
widely used translation-based method TransE [Bordes et al.,
2013] projects entities and relations into a continuous low-
dimensional vector space, and treats relation vector as the
translation between head and tail entity vectors, i.e., expect-
sep+r &~ e for a triplet (ep,r,¢e;). TransE is effec-
tive and promising for knowledge graph completion, while
it has issues in modeling complex relations. Therefore, lat-
er works such as [Wang et al., 2014; Lin et al., 2015a; Ji et
al., 2015; Yang er al., 2015] are proposed to address the is-
sues of TransE. Also, there exists some non-translation based
models, such as [Socher et al., 2013; Nickel et al., 2016;
Shi and Weninger, 2017; Dettmers et al., 2018], for learning
knowledge graph embedding representations.

Besides above models that use one-step relational path to
complete knowledge graphs, many models such as [Garcia-
Durén et al., 2015; Lin et al., 2015b] based on multi-step
relational paths are also presented and achieve better perfor-
mance in knowledge graph embedding.

5.2 Knowledge Alignment

Traditional knowledge alignment methods heavily rely on hu-
man efforts [Vrandecic, 2012] or well-designed hand-crafted
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features [Mahdisoltani er al., 2015]. Though achieving bet-
ter alignment performance, they are time-consuming, labor-
expensive and usually suffer from inflexible extension.
Automated knowledge alignment mainly leverages vari-
ous heterogeneous information in different KGs for knowl-
edge alignment. Some models such as [Wang er al., 2013;
Suchanek et al., 2011] make use of external lexicons or
Wikipedia links to address the heterogeneity between differ-
ent KGs. Differing from these models, many embedding-
based models only using internal triplet-based information,
were proposed for entity alignment. MTransE [Chen et al.,
2017] utilizes TransE to embed language-specific KGs in-
to separate embedding spaces, and learns the transition be-
tween different spaces. IPTransE [Zhu er al., 2017] uses P-
TransE [Lin er al., 2015b] and parameter sharing module to
jointly encode entities and relations into a unified semantic
spaces. JAPE [Sun et al., 2017] employs semantic structures
and attribute correlations of KBs to embed entity and relation
embedding representations into an unified embedding spaces.
BootEA [Sun et al., 2018] leverages bootstrapping idea to la-
bel likely alignment as training data and edit alignment during
iterations, which is state-of-the-art entity alignment model.

6 Conclusion

This paper presents a neighborhood-aware attentional repre-
sentation method NAEA for multilingual knowledge graph-
s, which incorporates the neighbor-level and relation-level
information of KGs. NAEA devises knowledge embedding
component KE for learning knowledge embeddings and enti-
ty alignment component EA for aligning entities. KE intro-
duces an attention mechanism to obtain neighbor-level repre-
sentation by assigning different importance to entities’ neigh-
bors. EA discovers aligned entities based on the integration
of their neighbor-level and relation-level representation with
different weights. We empirically conduct experiments on
multilingual entity alignment task and monolingual link pre-
diction task with two data sets DBP15K and DB100K. The
experimental results show that NAEA significantly and con-
sistently achieves state-of-the-art performance.
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