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Abstract
The puzzle of computer vision might find new so-
phisticated solutions when we realize that most suc-
cessful methods are working at image level, which
is remarkably more difficult than processing di-
rectly visual streams, just as it happens in nature.
In this paper, we claim that the processing of a
stream of frames naturally leads to formulate the
motion invariance principle, which enables the con-
struction of a new theory of visual learning based
on convolutional features. The theory addresses a
number of intriguing questions that arise in natu-
ral vision, and offers a well-posed computational
scheme for the discovery of convolutional filters
over the retina. They are driven by the Euler-
Lagrange differential equations derived from the
principle of least cognitive action, that parallels
the laws of mechanics. Unlike traditional convolu-
tional networks, which need massive supervision,
the proposed theory offers a truly new scenario in
which feature learning takes place by unsupervised
processing of video signals. An experimental re-
port of the theory is presented where we show that
features extracted under motion invariance yield an
improvement that can be assessed by measuring
information-based indexes.

1 Introduction
While the emphasis on a general theory of vision was al-
ready the main objective at the dawn of the discipline [Marr,
1982], computer vision has evolved without a systematic ex-
ploration of foundations in the framework of machine learn-
ing. In particular, in most cases, computer vision is regarded
just as an application of machine learning. When the target is
moved to unrestricted visual environments and the emphasis
is shifted from huge labelled databases to a human-like proto-
col of interaction, we need to go beyond the current peaceful
interlude that we are experimenting in vision and machine
learning. So far, the semantic labeling of pixels of a given
video stream has been mostly carried out at frame level. This
seems to be the natural outcome of well-established pattern
recognition methods working on images, which have given
rise to nowadays emphasis on collecting big labelled image

databases (e.g., [Deng et al., 2009]) with the purpose of de-
vising and testing sophisticated machine learning algorithms.

A crucial problem that has been recognized by Poggio and
Anselmi [Poggio and Anselmi, 2016] is the need to incor-
porate visual invariances into deep nets that go beyond sim-
ple translation invariance that is currently characterizing con-
volutional networks. They propose an elegant mathemati-
cal framework on visual invariance and enlighten some in-
triguing neurobiological connections. Overall, the ambition
of extracting distinctive features from vision poses a chal-
lenging task. While we are typically concerned with fea-
ture extraction methods that are independent of classic ge-
ometric transformation, it looks like we are still missing the
fantastic human skill of capturing distinctive features to rec-
ognize “ironed and rumpled shirts”, for example. There
is no apparent difficulty to recognize shirts by keeping the
recognition coherence in case we roll up the sleeves, or
we simply curl them up into a ball for the laundry bas-
ket. Of course, there are neither rigid transformations, like
translations and rotation, nor scale maps, that transforms an
ironed shirt into the same shirt thrown into the laundry bas-
ket. In this paper, we claim that motion invariance can in
fact capture all we need. Translation and scale invariance,
that have been the subject of many studies [Lowe, 2004;
Gori et al., 2016], are in fact examples of invariances that
can be fully gained whenever we develop the ability to de-
tect features that are invariant under motion. For instance,
the moving of the finger experimented by infants leads them
to enforce a natural invariance: The finger will become big-
ger and bigger as it approaches their face, but it is still their
inch, which requires to impose a consistent decision. Clearly,
translation, rotation, and complex deformation invariances
derive from motion invariance. Humans always experiment
motion in their life, so as the gained visual invariances nat-
urally arise from motion invariance. Animals with foveal
eyes also move quickly the focus of attention when looking at
fixed objects, which means that they continually experiment
motion. Hence, also in case of fixed images, conjugate, ver-
gence, saccadic, smooth pursuit, and vestibulo-ocular move-
ments lead to acquire visual information from relative mo-
tion. We claim that the production of such a continuous vi-
sual stream naturally drives feature extraction, since the cor-
responding convolutional features are expected not to change
during motion. The enforcement of this consistency condition
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creates a mine of visual data during animal life. Of course, we
need to compute the optical flow at pixel level so as to enforce
the consistency of all the extracted features. Early studies on
this problem [Horn and Schunck, 1981], along with recent
related improvements (see e.g. [Baker et al., 2011]) suggest
to start computing the velocity field by enforcing brightness
invariance. As the optical flow is gained, it is used to en-
force motion consistency on the visual features. Interestingly,
the theory we propose is quite related to the variational ap-
proach that is used to determine the optical flow in [Horn and
Schunck, 1981], so that the developed features could be also
used to reinforce motion estimation. It is worth mentioning
that an effective visual system must also develop features that
do not follow motion invariance. What we study in this pa-
per is general enough to embrace also the case in which some
of the learned features are not subject to motion invariance.
These kind of features can be conveniently combined with
those that are discussed in this paper with the purpose of car-
rying out high level visual tasks.

The visual features that we propose in this paper are de-
rived in the framework of the principle of cognitive ac-
tion [Betti and Gori, 2016], which gives rise to a time-
variant differential equation, where the Lagrangian coordi-
nates correspond with the values of the convolutional filters.
The learning process can be interpreted in the framework of
the minimization of the cognitive action that offers a self-
consistent framework. There are other works that study the
unsupervised learning of visual features for temporally vary-
ing signals, such as Slow Feature Analysis (SFA) [Wiskott
and Sejnowski, 2002; Sun et al., 2014]. SFA includes mo-
tion estimation as an example of application of SFA itself,
while here we focus on exploiting motion to learn pixel-level
features. In the last decade, a number of approaches have
been proposed to develop features in an unsupervised man-
ner, mostly using collections of images [Huang et al., 2007;
Kavukcuoglu et al., 2010]. Only in the last few years we
find some works that consider unsupervised learning from
video data, jointly with motion [Wang and Gupta, 2015;
Li et al., 2016; Pathak et al., 2017]. These works usually learn
image-level representations, and, to the best of our knowl-
edge, none of them aims at developing a learning theory
for the unsupervised development of visual features that is
specifically rooted around the notion of motion, that is the
goal of this paper.

This paper is organized as follows. Section 2 introduces the
principle of least cognitive action and the basic elements of
the proposed architecture. Section 3 focusses on the discrete
case, and defines the differential equations that we integrate
to develop features while processing the video stream. Sec-
tion 4 includes a collection of experiments aimed at showing
the behaviour of the system under different configurations, in
terms of information-based indices. Finally, Section 5 con-
cludes the paper. Supplementary Material can be found at
http://sailab.diism.unisi.it/motion-invariance/.

2 The Principle of Least Cognitive Action
We consider the mechanisms that give rise to the construction
of local features for any pixel x ∈ X of the retina, at any

time t ∈ [0, T ]. These features, along with the video itself,
therefore can be regarded as visual fields, that are defined on
the domain D = X × [0, T ]. A set of symbols are extracted
at every layer of a deep architecture, so as each pixel — along
with its context — turns out to be represented by the list of
symbols extracted at each layer.

In what follows, points on the retina will be represented
with two dimensional vectors x = (x1, x2). The temporal
coordinate is usually denoted by t, and, therefore, the video
signal on the pair (x, t) is C(x, t). This color field can be
thought of as a field that is characterized by m components
for each single pixel (m = 3 for RGB) . We are concerned
with the problem of extracting visual features that, unlike the
components of the video, express the information associated
with the pair (x, t) and with the neighborhood of pixel x. A
possible way of constructing this kind of features is to define

C1 i(x, t) =
1

n
+

m∑
j=1

∫
X

dy ϕij(x, y, t)Cj(y, t) (1)

Here we assume that n symbols (indexed by i) are generated
from the m components of the video. Notice that the ker-
nel ϕ(x, y, t) is responsible of expressing the spatial depen-
dencies. It is worth mentioning that whenever ϕ(x, y, t)  
ϕ(x−y, t) the above definition reduces to an ordinary spatial
convolution. The computation of C1 i(x, t) yields a field with
n features, and Eq. (1) can be used for carrying out a piping
scheme where a new set of features C2 is computed from C1 .
Of course, this process can be continued according to a deep
computational structure with a homogeneous convolutional-
based computation, which yields the features Cz at the z-th
convolutional layer. The theory proposed in this paper fo-
cuses on the construction of any of these convolutional layers
which are expected to provide higher and higher abstraction
as we increase the number of layers. The filters ϕ are what
completely determines the features Cz . In this paper we for-
mulate a theory for the discovery of ϕ that is based on three
driving principles, that are described below.
Optimization of information-based indices. Beginning
from the color field C, we attach a symbol yi ∈ Σ of a
discrete vocabulary to pixel (x, t) with probability C1 i(x, t),
assuming that ∀x, t : C1 i(x, t) is subject to the probabilis-
tic constraints

∑
i C1 i(x, t) = 1 (normalization) and 0 ≤

C1 i(x, t) ≤ 1 (positivity). The quantity C1 i(x, t) can be identi-
fied with the conditional probability of the random variable Y
associated with the symbols yi subject to a certain value of the
random variables X , T and F that models, respectively, the
distribution of the position over the retina, of the temporal co-
ordinate and of all the possible configurations of pixel intensi-
ties over the frame. The conditional entropy S(Y | X,T, F )
is given by S(Y | X,T, F ) = −

∫
Ω

∑n
i=1 dPX,T,F pi log pi

where pi is the conditional probability of Y conditioned to
the values ofX , T and F , dPX,T,F is the joint measure of the
variable X,T, F , and Ω is a Borel set in the (X,T, F ) space.
We can rewrite the conditional entropy as S(Y | X,T, F ) =
−
∫
D
dµ(x, t)

∑n
i=1 C1 i(x, t) logC1 i(x, t), where µ(x, t) is a

space-time measure. Clearly, we want to keep the conditional
entropy as small as possible so as to develop dominating fea-
tures. At the same time we must ensure that the entropy
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of variable Y , S(Y ) = −
∑n
i=1 Pr(Y = yi) log Pr(Y =

yi), must be as high as possible, since this ensures the de-
velopment of all the features associated with the alphabet
of symbols. If we use the law of total probability to ex-
press Pr(Y = yi) in terms of the conditional probability
pi and use the above assumptions we get Pr(Y = yi) =∫

Ω
dPX,T,F pi =

∫
D
dµ(x, t)C1 i(x, t). Then S(Y ) =

−
∑n
i=1(

∫
D
dµ(x, t)C1 i(x, t)) · log(

∫
D
dµ(x, t)C1 i(x, t)). To

sum up (see the Supplementary Material for further details on
the computation of S(Y )), the index

I(ϕ) = S(Y )− S(Y | X,T, F ),

which is somewhat related to the classic Shannon mutual in-
formation, must be maximized [Gori et al., 2012; Melacci
and Gori, 2012].
Motion invariance. If we focus attention on a pixel x at
time t, which moves according to the trajectory x(t) then
C1 (x(t), t) = c, being c a constant. This “adiabatic” condi-
tion is thus expressed by the condition dC1 /dt = 0, which
yields

M(ϕ) := ∂tC1 i +
2∑
j=1

vj∂jC1 i = 0, (2)

where v : D → R2 is the velocity field that we assume to
be given, and ∂k is the partial derivative with respect to xk.
When replacing C1 i as stated by Eq. (1) we get

M(ϕ) =
m∑
j=1

∫
X

dy
(
∂tϕijCj +ϕij∂tCj +

2∑
k=1

vk∂kϕijCj
)
,

which holds for any (t, x) ∈ D. Notice that this constraint
is linear in the field ϕ. This can be interpreted by stating
that learning under motion invariance consists of determining
elements of the kernel of the function M(ϕ). Clearly, the
learning process is expected to keep the value of M(ϕ) as
small as possible.
Parsimony principle. Like any principled formulation of
learning, we require the filters to obey the parsimony prin-
ciple. Amongst the philosophical implications, it also fa-
vors the development of a unique solution. Given the fil-
ters ϕ, there are two parsimony terms, one P(ϕ), that pe-
nalizes abrupt spatial changes, and another one, K(ϕ) that
penalizes quick temporal transitions. Ordinary regularization
issues suggest to discover functions ϕij such that

λPP + λKK =
∑

1≤i≤n
1≤j≤m

∫
D

dtdx h(t)
[λP

2
(Pxϕij(x, t))

2

+
λK
2

(Ptϕij(x, t))
2
]
,

is “small”, where Px, Pt are spatial and temporal differential
operators, and λP , λK are non-negative reals. We assumed
an ergodic translation of dµ, that, in this case, only involves
the temporal factor h(t).

Overall, the process of learning is regarded as the mini-
mization of the cognitive action

A(ϕ) = −I(ϕ) + λMM(ϕ) + λPP(ϕ) + λKK(ϕ), (3)

where λM , λP , λK are positive multipliers. While the first
and third principles are typically adopted in classic unsuper-
vised learning, motion invariance does characterize the ap-
proach followed in this paper. The motion invariance prin-
ciple can also be limited to a subset of the n features. In
other words, our model can also develop visual features that
do not obey the motion invariance principle. Basically, the
process of learning consists of solving the variational prob-
lem ϕ̂ = arg minϕA(ϕ) (see the Supplementary Material for
futher details). As it will be shown in the following, in our
multi-layer implementation the minimization of A(·) takes
place at each layer of the architecture, involving the filters of
the considered layer only, relying on a piping scheme that is
inspired to developmental learning issues.

3 Euler-Lagrange Equations
The field theory of the previous section can be approximated
over the discrete (and bounded) retina X], where the video
frames are represented. Then, the Euler-Lagrange equations
of the cognitive action (3) lead to those differential equations
that we can integrate to learn the convolutional filters.

In detail, instead of the fields ϕij(x, t), we consider a
bunch of functions of time ϕijx(t), indexed by the point on
the retina x other than the filter/feature index i and the input
channel index j. Similarly, the color field will be replaced
by Ckx(t). In doing so the motion invariance becomes a
quadratic form in ϕ and ϕ̇, while the other relevant terms of
the theory (entropy, relative entropy) are trivially functions of
ϕ(t) and t.

We assume filters to have a unique and finite size for all the
features. As a consequence, for each feature i, we can flat-
ten the filter ϕijx into a vector, and concatenate the n filter-
vectors into q. We selected a second order term to implement
the parsimony principle, h/2(α|q̈|2 +β|q̇|2 +2γq̈ · q̇+k|q|2),
being α, β, γ and k positive constants. If we make the en-
tropy term local in time, and evaluate the first variation of the
discretized cognitive action, the differential Euler-Lagrange
(EL) equations are (for the sake of simplicity, we skip the
derivations, see Supplementary Material for all the details):

α̂q(4) + 2 ˙̂αq(3) + (¨̂α+ ˙̂γ − R̂)q̈ −
(

˙̂
R− ¨̂γ − λM N̂ \

+ λM (N̂ \)′
)
q̇ −

(
(

˙̂
N \)′ − Ẑ

)
q +∇qw =

λC − 1

n
b,

(4)

where q(4), q(3) are the fourth and third derivatives of q over
time, λC is a positive constant, and we have used the nota-
tion f̂ = hf (so that for example ¨̂α = ḧα). In order to
define the other terms, we introduce the notation Γx to indi-
cate the area (volume if m > 1) of the input signal centred
around x, of the same size of the filters, flattened into a vec-
tor. We have R := β + λMM

\, and the notation A\ indicates
a block-diagonal matrix whose blocks are A. The matrix M
is composed of Mal :=

∑
x∈X] gxΓx(a)Γx(l), and gx is a

distribution over the retina. Analogously, we define Nal :=∑
x∈X] gxr(a)Γx(l), being r := Γ̇x + v · ∆Γx. We have

Z := k+B\−λCM \+λ1M̃+λMO
\, where M̃ is a squared

matrix composed of m×m repetitions of M , λ1 is a positive
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constant, Bal = babl, and ba =
∑
x∈X] gxΓx(a). The ma-

trix O is composed of Oal =
∑
x∈X] gxr(a)r(l). Finally,

w(t, q) :=
∑
x∈X] gx( 1

n + ξ(q,Γx))′[ 1
n + ξ(q,Γx) < 0],

where ξ(q,Γx) returns the n-length vector with the result of
the convolutions of the n filters with the input, [·] = 1 if the
condition in brackets is true, otherwise it is 0, and it operates
element-wise when a vector of conditions is provided.

In deriving equations some conditions arises naturally at
t = T (see the Supplementary Material for more details):

α̂q̈ + γ̂q̇ = 0,

α̂q(3) + ˙̂αq̈ − (β̂ + λMM̂
\ − ˙̂γ)q̇ − λM (N̂ ])′q = 0.

(5)

An interesting special case of these equations is that ob-
tained with a null signal C ≡ 0. With this assumption and
assuming that h(t) = eθt, θ > 0, our equations (4) become

αq(4) + 2θαq(3) + (θ2α+ θγ−β)q̈+ (θ2γ− θβ)q̇+kq = 0.
(6)

In order to see whether this equation can be stable we need
to apply the Routh-Hurvitz criterion. For a fourth order ODE
q(4) +aq(3) +bq̈+cq̇+dq = 0 this criterion reduces to check
if a > 0, b > 0, 0 < c < ab and 0 < d < (abc− c2)/a2 that
in our case means that

γ >
β

θ
, k <

(β − γθ)[β − θ(γ + 2αθ)]

4α
. (7)

So for example if we choose α = k = 1/2, γ = 2 and
θ = β = 1 we obtain a stable equation. This being said it is
also crucial to notice that we have control over the important
parameter of the theory θ as long as we choose the regular-
ization parameters carefully.

4 Experiments
We implemented a solver for the differential equation of (4)
that is based on the Euler method with step size τ . After
having reduced the equation to the first order, the variables
that were updated at each t are q, q̇, q̈, and q(3). The code
and data we used to run the following experiments can be
downloaded at http://sailab.diism.unisi.it/motion-invariance/,
together with the full list of model parameters. We randomly
selected two real world video sequences from the Hollywood
Dataset HOHA2 [Marszałek et al., 2009], that we will re-
fer to as “skater” and “car”, and a clip from the movie “The
Matrix” ( c©Warner Bros. Pictures). The frame rate of all
the videos is ≈ 25 fps (we set τ = 1/25), each frame was
rescaled to 240 × 110 and converted to grayscale. Videos
have different lengths, ranging from ≈ 10 to ≈ 40 seconds,
and they were repeated in loop until 45, 000 frames were gen-
erated, thus covering a significantly longer time span. We
randomly initialized q(0), while the derivatives at time t = 0
were set to 0. We used the softmax function to force a prob-
abilistic activation of the features, and computed the optical
flow v using an implementation from the OpenCV library.
Convolutional filters cover squared areas of the input frame,
and we set gx to be the uniform distribution. All the results
that we report are averaged over 10 different runs of the al-
gorithms. The video is presented gradually to the agent so
as to favour the acquisition of small chunks of information.
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Figure 1: Comparing 4 configurations of the parameters, charac-
terized by different properties in terms of stability and reality of the
roots of the characteristic polynomial. The input video is reproduced
(in loop) for 45k frames (x-axis). From left-to-right, top-to-bottom
we report the Cognitive Action (CA), the portion of the cognitive ac-
tion that is about the Mutual Information (MI) (that we maximize),
the portion that is about the Conditional Entropy, the MI per-frame,
the norm of q(t), and the fraction of “reset” operations performed
every 1000 frames.

In detail, C(x, t) = φ(t)[gauss
(
δ(1 − φ(t))

) x∗Co(x, t)],
where x∗ is the spatial convolution operator, Co(x, t) is the
source video signal, gauss(σ2) is a Gaussian filter of vari-
ance σ2, and δ > 0 is a customizable scaling factor. We start
with φ(0) = 0, and then φ is progressively increased as time
passes, φ(t+1) = φ(t)+η(1−φ(t)) (we set η = 0.0005). We
refer to the quantity 1−φ as the “blurring factor”. In order to
be able to (approximately) satisfy the conditions in Eq. (5) we
need to keep the derivatives small, so we implement a “reset
plan” according to which the video signal undergoes a “re-
set” whenever the derivatives become too large. Formally, if
‖q̇(t′)‖2 ≥ ε1, or ‖q̈(t′)‖2 ≥ ε2, or ‖q(3)(t′)‖2 ≥ ε3 then we
forced φ(t′) to 0 (εj = 300 · n, for all j), and then we set to 0
all the derivatives.

Our experiments are designed (i) to evaluate the dynam-
ics of the cognitive action in function of different temporal
regularities imposed to the model weights (parsimony), and
then (ii) to evaluate the effects of motion, that introduces a
spatio-temporal regularization on single and multi-layer ar-
chitectures. We recall that our learning task is fully unsuper-
vised, so we focus on the transfer of information from each
considered video stream to the learned features at different
layers, evaluating the impact of the motion-based term. For
this reason, we report the Mutual Information (MI) index, to-
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(a) (b)
Config (Skater) Blurring (n = 10, 5× 5)

S̄R̄ 0.54± 0.07 Slow 0.35± 0.08
S̄R 0.54± 0.08 Fast 0.39± 0.05
SR̄ 0.44± 0.11 None 0.34± 0.08
SR 0.45± 0.13

(c)
Video (n = 5, 5× 5) (n = 11, 11× 11)

Car 0.38± 0.03 0.272± 0.003
Matrix 0.60± 0.03 0.45± 0.02
Skater 0.45± 0.13 0.35± 0.05

Table 1: MI on (a) the “skater” video, given the models of Fig. 1
(S=stability, R=reality, X̄=not X); (b) different blurring plans (SR);
(c) different videos, number of features n, filter sizes κ× κ.

gether with other measurements on the internal state of sys-
tems.

Temporal regularities. When evaluating the temporal reg-
ularities, the cognitive action is composed by the entropy-
based and parsimony terms only, and we experiment four in-
stances of the set of parameters {α, β, γ, k}. Each instance
is characterized by the roots of the characteristic polynomial
that lead to stable or not-stable configurations, and with only
real or also imaginary parts, keeping the roots close to zero,
and fulfilling the conditions of Eq. (7) when stability and re-
ality are needed. These configurations are all based on values
of k ∈ [10−19, 10−3], while θ = 10−4. We performed exper-
iments on the “skater” video clip, setting n = 5 features, and
chose filters of size 5× 5. Results are reported in Fig. 1. The
plots indicate that there is an initial oscillation that is due to
the effects of the blurring factor, that vanish after about 10k
frames. The Mutual Information (MI) (I) portion of the cog-
nitive action correctly increases over time , and it is pushed
toward larger values in the two extreme cases of “no-stability,
reality” and “no-stability, no-reality”. The latter shows more
evident oscillations in the frame-by-frame MI value, due to
the roots with imaginary part. The norm of q changes over
time with different speeds, due to the small values of k, while
the frequency of reset operations is larger in the “no-stability,
no-reality” case, as expected. We evaluated the quality of
the developed features by freezing the final q of Fig. 1 and
computing the MI index over a single repetition of the whole
video clip, reporting the results in Tab. 1 (a). This is the
procedure we will follow in the rest of the paper when re-
porting numerical results in all the tables. We notice that,
while in Fig. 1 we compute the MI on a frame-by-frame ba-
sis, here we compute it over the whole frames of the video at
once, thus in a batch-mode setting. The result confirms that
the two extreme configurations “no-stability, reality” and “no-
stability, no-reality” show better results, on average. These
performances are obtained thanks to the effect of the reset
mechanism, that allows even such unstable configurations to
develop good solutions. When the reset operations are dis-
abled, we easily incurred into numerical errors due to strong
oscillations, while for example, the “stability” cases were less

1 2 3 4
Frame 104

100

200

300

400

500

600

C
A

car
matrix
skater

1 2 3 4
Frame 104

500

1000

1500

2000

C
A

car
matrix
skater

1 2 3 4
Frame 104

0

0.1

0.2

0.3

0.4

0.5

C
A:

 M
I

car
matrix
skater

1 2 3 4
Frame 104

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
A:

 M
I

car
matrix
skater

1 2 3 4
Frame 104

1

2

3

4

5

6

R
es

et
s

10-3

car
matrix
skater

1 2 3 4
Frame 104

2

3

4

5

6

R
es

et
s

10-3

car
matrix
skater

Figure 2: Different number of features and filter sizes (1st column:
n = 5, size = 5 × 5; 2nd column: n = 11, size = 11 × 11) in 3
videos. See Fig. 1 for a description of the plots.
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Figure 3: Three different blurring plans (n = 11 and filters of size
11 × 11).

affected by this phenomenon. We also compared the dynam-
ics of the system on multiple video clips and using different
filter sizes (5×5 and 11×11) and number of features (n = 5
and n = 11) in Fig 2. We selected the “stability, reality”
configuration of Fig. 1, that fulfils the conditions of Eq. (7).
Changing the video clip does not change the considerations
we did so far, while increasing the filter size and number of
features can lead to smaller MI index values, mostly due to
the need of a better balancing the two entropy terms to cope
with the larger number of features. The MI of Tab. 1 (c) con-
firms this point. Interestingly, the best results are obtained in
the longer video clip (“The Matrix”) that requires less rep-
etitions of the video, being closer to the real online setting.
Figure 3 and Tab. 1 (b) show the results we obtain when us-
ing different blurring plans (“skater” clip), that is, different
values of η that lead to the blurring factors reported in the
first graph of Fig. 3. These results suggest that a gradual in-
troduction of the video signal helps the system to find better

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2013



λM = 0 10−8 10−6 10−4 10−2 1 102

Sk
at

er ` = 1 .61±.11 .54± .11 .52± .07 .53± .08 .69± .07 .53± 0 .01± 0
` = 2 .53± .12 .62± .15 .60± .11 .43± .06 .48± .06 .1± .1 .03± .01
` = 3 .56± .17 .58± .20 .62± .10 .18± .16 .16± .17 .04± .02 .03± .02

C
ar

` = 1 .49± .05 .44± .02 .46± .04 .47± .04 .66± .10 .60± .02 .01± 0
` = 2 .25± .26 .54± .10 .65± .08 .46± .03 .63± .11 .18± .32 .03± .01
` = 3 .26± .34 .45± .22 .51± .11 .38± .20 .24± .20 .09± .12 .04± .02

M
at

ri
x ` = 1 .66± .01 .66± .02 .67± .01 .63± .05 .59± .03 .44± 0 .23± .02

` = 2 .55± .13 .56± .14 .43± 0 .45± .04 .62± .02 .35± .19 .13± .08
` = 3 .64± .03 .54± .11 .35± .07 .40± .01 .21± .07 .06± .03 .04± .02

Table 2: MI in different videos, up to 3 layers (` = 1, 2, 3), and for multiple λM of the motion-based term. All layers share the same λM .

λM = 0 10−8 10−6 10−4 10−2 1 102

M
at

ri
x

C
ar

Sk
at

er ` = 2 .38± .34 .53± .12 .50± .1 .47± .1 .41± .02 .33± .17 .21± .2
` = 3 .55± .12 .62± .11 .55± .13 .42± .01 .36± .09 .2± .18 .39± .22

` = 2 .48± .1 .59± .17 .59± .18 .55± .12 .41± .01 .01± 0 .64± .01
` = 3 .67± .01 .60± .12 .73± .09 .36± .05 .33± .11 .27± .14 .73± .01

` = 2 .55± .13 .56± .14 .43± 0 .45± .04 .62± .02 .35± .19 .13± .08
` = 3 .55± .12 .53± .12 .82± .14 .35± .05 .35± .31 .02± .01 .01± 0

Table 3: Same structure of Tab. 2. The model with the best λM is used as basis to activate a new layer (layer ` = 1 is the same as Tab. 2).

solutions, but also that a too-slow process is not beneficial.
The cognitive action has a big bump when no-plans are used,
while this effect is more controlled and reduced in the case of
both the slow and fast plans.

Effects of motion. In order to study the effect of motion
in multi-layer architectures (up to 3 layers), we still kept the
most stable configuration (“stability, reality”, 5 × 5 filters, 5
features), and introduced the motion-related term in the cog-
nitive action. Our multi-layer architecture is composed of a
stack of computational models developed accordingly to (3).
A new layer ` is activated whenever layer `−1 has processed
a large number of frames (≈ 45k), and the parameters of layer
` − 1 are not updated anymore. We initially considered the
case in which all the layers ` = 1, . . . , 3 share the same value
λM that weighs the motion-based term. Tab. 2 shows the MI
we get for different weighting schemes. Introducing motion
helps in almost all the cases (for appropriate λM - the smallest
values of λM are a good choice on average), and, as expected,
a too strong enforcement of the motion-related term leads to
degenerate solutions with small MI. We repeated these exper-
iments also in a different setting. In detail, after having eval-
uated layer ` for all the values of λM , we selected the model
with the largest MI and started evaluating layer `+1 on top of
it. Tab. 3 reports the outcome of this experience. We clearly
see that motion plays an important role in increasing the av-
erage MI. In the case of “car”, we also obtained two (uncom-
mon) positive results when strongly weighing λM . They are
due to very frequent reset operations, that avoided the system
to alter the filters when the motion-based term was leading to
very large derivatives. This is an interesting behaviour that,
however, was not common in the other cases we reported.

5 Conclusions

In this paper we have introduced a new approach to learning
visual features according to the principle of least cognitive
action. The experiments indicate the remarkable difference
coming from the incorporation of motion invariance, with re-
spect to the features only driven by information-based prin-
ciples, which also results in the improvement of the mutual
information from the video to the features. The theory is co-
herent with the different role of the ventral stream and dorsal
stream [Goodale and Milner, 1992] that has been observed in
humans. The enforcement of motion invariance is conceived
for extracting features that are useful for object recognition
to assolve the “what” task (ventral stream), whereas “dor-
sal neurons”, that are involved for where/how environmental
interactions are expected not to use motion invariance. The
model behind the learning of the filters indicates the need to
access to velocity estimation, which is consistent with neu-
roanatomical evidence. Although the experimental results re-
ported in the paper assume a uniform probability distribution
in the spatial domain, the given formulation in the framework
of the principle of least cognitive action suggests that the op-
timization must take place in areas of high saliency. In this
case, the reformulation of the Euler equations given in this
paper leads to identify the crucial role of eye movements in
animals with foveal eyes. In future work we will also study
the problem of building higher-level motion-based object pre-
dictors on top of the motion-invariant features described in
this paper, with the same goal of giving a clear theoretical
foundation to the development of such predictors.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2014



References
[Anderson and Rosenfeld, 1988] J.A. Anderson and

E. Rosenfeld, editors. Neurocomputing: Foundations of
Research. MIT Press, Cambridge, 1988.

[Baker et al., 2011] Simon Baker, Daniel Scharstein, J. P.
Lewis, Stefan Roth, Michael J. Black, and Richard
Szeliski. A database and evaluation methodology for opti-
cal flow. Int. J. Comput. Vision, 92(1):1–31, March 2011.

[Betti and Gori, 2016] Alessandro Betti and Marco Gori.
The principle of least cognitive action. Theor. Comput.
Sci., 633:83–99, 2016.

[Deng et al., 2009] J. Deng, W. Dong, R. Socher, L.-J. Li,
K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierar-
chical Image Database. In CVPR09, pages 248–255, 2009.

[Goodale and Milner, 1992] Melvyn A. Goodale and
A. David. Milner. Separate visual pathways for perception
and action. Trends in Neurosciences, 15(1):20–25, 1992.

[Gori et al., 2012] Marco Gori, Stefano Melacci, Marco
Lippi, and Marco Maggini. Information theoretic learn-
ing for pixel-based visual agents. In European Conference
on Computer Vision, pages 864–875. Springer, 2012.

[Gori et al., 2016] Marco Gori, Marco Lippi, Marco Mag-
gini, and Stefano Melacci. Semantic video labeling by
developmental visual agents. Computer Vision and Image
Understanding, 146:9–26, 2016.

[Horn and Schunck, 1981] B. K.P. Horn and B.G. Schunck.
Determining optical flow. Artificial Intelligence, 17(1-
3):185–203, 1981.

[Huang et al., 2007] Fu Jie Huang, Y-Lan Boureau, Yann
LeCun, et al. Unsupervised learning of invariant feature hi-
erarchies with applications to object recognition. In Com-
puter Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on, pages 1–8. IEEE, 2007.

[Kavukcuoglu et al., 2010] Koray Kavukcuoglu, Pierre Ser-
manet, Y lan Boureau, Karol Gregor, Michael Mathieu,
and Yann L. Cun. Learning convolutional feature hierar-
chies for visual recognition. In J. D. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Sys-
tems 23, pages 1090–1098. Curran Associates, Inc., 2010.

[Li et al., 2016] Yin Li, Manohar Paluri, James M Rehg, and
Piotr Dollár. Unsupervised learning of edges. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1619–1627, 2016.

[Lowe, 2004] D. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of Com-
puter Vision, 60(2):91–110, 2004.

[Marr, 1982] D. Marr. Vision. Freeman, San Francisco,
1982. Partially reprinted in [Anderson and Rosenfeld,
1988].

[Marszałek et al., 2009] Marcin Marszałek, Ivan Laptev, and
Cordelia Schmid. Actions in context. In IEEE Conference
on Computer Vision & Pattern Recognition, pages 2929–
2936, 2009.

[Melacci and Gori, 2012] Stefano Melacci and Marco Gori.
Unsupervised learning by minimal entropy encoding.
IEEE Trans. Neural Netw. Learning Syst., 23(12):1849–
1861, 2012.

[Pathak et al., 2017] Deepak Pathak, Ross B Girshick, Piotr
Dollár, Trevor Darrell, and Bharath Hariharan. Learning
features by watching objects move. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2701–2710, 2017.

[Poggio and Anselmi, 2016] Tomaso A. Poggio and Fabio
Anselmi. Visual Cortex and Deep Networks: Learning In-
variant Representations. The MIT Press, 1st edition, 2016.

[Sun et al., 2014] Lin Sun, Kui Jia, Tsung-Han Chan,
Yuqiang Fang, Gang Wang, and Shuicheng Yan. Dl-sfa:
deeply-learned slow feature analysis for action recogni-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2625–2632, 2014.

[Wang and Gupta, 2015] Xiaolong Wang and Abhinav
Gupta. Unsupervised learning of visual representations
using videos. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2794–2802, 2015.

[Wiskott and Sejnowski, 2002] Laurenz Wiskott and Ter-
rence J Sejnowski. Slow feature analysis: Unsupervised
learning of invariances. Neural computation, 14(4):715–
770, 2002.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2015


