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Abstract

We consider the stochastic multi-armed bandit
problem and the contextual bandit problem with
historical observations and pre-clustered arms. The
historical observations can contain any number of
instances for each arm, and the pre-clustering in-
formation is a fixed clustering of arms provided as
part of the input. We develop a variety of algo-
rithms which incorporate this offline information
effectively during the online exploration phase and
derive their regret bounds. In particular, we develop
the META algorithm which effectively hedges be-
tween two other algorithms: one which uses both
historical observations and clustering, and another
which uses only the historical observations. The
former outperforms the latter when the clustering
quality is good, and vice-versa. Extensive ex-
periments on synthetic and real world datasets on
Warafin drug dosage and web server selection for
latency minimization validate our theoretical in-
sights and demonstrate that META is a robust strat-
egy for optimally exploiting the pre-clustering in-
formation.

1 Introduction

Many sequential decision problems ranging from clinical tri-
als to online ad placement can be modeled as multi-armed
bandit problems (classical bandit) [Li ef al., 2010]. At each
time step, the algorithm chooses one of several possible ac-
tions and observes its reward with the goal of maximizing the
cumulative reward over time. A useful extension to classical
bandit is the contextual multi-arm bandit problem, where be-
fore choosing an arm, the algorithm observes a context vector
in each iteration [Langford and Zhang, 2007]. In the conven-
tional formulation of these problems, arms are assumed to
be unrelated to each other and no prior knowledge about the
arms exist. However, applications can often provide historical
observations about arms and also similarity information be-
tween them prior to the start of the online exploration phase.
In this work, we assume that similarity between the arms is
given in the form of a fixed pre-clustering of arms and we de-
sign algorithms which exploit the historical information and
the clustering information opportunistically. In particular, we

seek algorithms which satisfy the following property: if the
quality of clustering is good, the algorithm should quickly
learn to use this information aggressively during online ex-
ploration; however, if the quality of clustering is poor, the al-
gorithm should ignore this information. We note at the outset
that it is possible to consider alternative formulations of the
bandit problem in the presence of history and clustering infor-
mation. For instance, one alternative is to use clustering met-
rics such as Dunn or Dunn-like indices [Liu et al., 2010] to
decide if the clustering information should be used during on-
line exploration. However, in general, cluster validation met-
rics are tightly coupled with specific classes of clustering al-
gorithms (e.g., distance vs. density based clustering); hence,
we focus on bandit algorithms which are agnostic to specific
clustering metrics and work with any given clustering of the
arms. Other alternatives include the design of algorithms for
optimal pre-clustering of arms prior to online exploration, as
well as incrementally modifying the clustering of the arms
during online exploration. These are both valuable refine-
ments to the problem we study but are beyond the scope of
the current work. In this paper, we focus on the problem of
optimal exploitation of the clustering information given as
part of the input. For example, in clinical trials it is often
the case that one knows that patients belong to clusters with
certain characteristics, in algorithm selection it is known that
groups of algorithms behave similarly on given inputs, and in
advertisement one often has relevant historical ad placement
data available. A real-world motivation for our work is the
problem of dosing the drug Warfarin [Sharabiani ez al., 2015].
Correctly dosing Warfarin is a significant challenge since it is
dependent on the patient’s clinical, demographic and genetic
information. In the contextual bandit setting, this informa-
tion can be modeled as the context vector and the bandit arms
model the various dosage levels. The dosage levels are further
grouped into distinct clusters (15 arms and 3 clusters in our
dataset). Historical treatment responses for various dosage
levels as well as clustering information derived from medical
domain knowledge is available as part this problem instance.
Another motivating application is web server selection for la-
tency minimization in content distribution networks (CDNs).
A CDN can choose mirrored content from several distributed
web servers. The latencies of these servers are correlated and
vary widely due to geography and network traffic conditions.
This domain can be modeled as the classical bandit problem
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with the bandit arms representing various web servers, and
latency being the negative reward. The web servers are fur-
ther grouped into clusters based on their historical latencies
(700 arms and 5 clusters in our dataset). These problem do-
mains share the characteristics of the availability of historical
observations to seed the online phase and grouping of arms
into clusters either through domain knowledge or through the
use of clustering algorithms.

2 Related Work

Both the classical multi-armed bandit and the contextual ban-
dit problems have been studied extensively along with their
variants [Lai and Robbins, 1985; Auer et al., 2002; Lin et al.,
2018; Maillard and Mannor, 2014; Balakrishnan et al., 2019;
Nguyen and Lauw, 2014; Korda et al, 2016; Gentile et
al., 2017; Bouneffouf and Rish, 2019; Pandey et al., 2007;
Shivaswamy and Joachims, 2012; Noothigattu et al., 2018;
Bouneffouf et al., 2017]. The works which are closely re-
lated to ours are [Pandey ef al., 2007] and [Shivaswamy and
Joachims, 2012]. [Pandey er al., 2007, Wang et al., 2018]
study the classical bandit problem under the same model
of arm clustering as in this work, and [Shivaswamy and
Joachims, 2012] studies the classical bandit problem under
the same model of historical observations as in this work.
In contrast to [Pandey et al., 2007; Wang et al., 2018;
Shivaswamy and Joachims, 2012], our work provides 1) al-
gorithms which simultaneously incorporate historical obser-
vations and clustering information in the classical bandit set-
ting, 2) regret guarantees under tight and adversarial cluster-
ing for this setting, 3) algorithms which simultaneously in-
corporate historical observations and clustering information
in the contextual bandit setting; we also provide regret guar-
antees for our classical bandit algorithm which uses history;
prior to this work, we are not aware of such extensions for the
contextual bandit setting, and 4) the META algorithm which
effectively hedges between the strategy that uses both clus-
tering and historical observations vs. the strategy which uses
only the historical observations and not the clustering infor-
mation.

3 Problem Setting

In this section, we define two new types of a bandit problems.

3.1 Classical Bandit

The classical bandit problem is defined as exploring the re-
sponse of K arms within 7T trials. Playing an arm yields an
immediate, independent stochastic reward according to some
fixed unknown distribution associated with the arm whose
support is in (0, 1). The task is to find the reward-maximizing
policy. We adapt this scenario by assuming that the arms
are grouped into C' clusters with arm k assigned to cluster
c¢(k). Unlike the classical setting, we also wish to incorporate
historical observations which may be available for the arms.
Specifically, for ¢t € {1,2,...,T}, let r4(¢) denote the online
reward from arm £ at time ¢. For notational convencience, we
set it to 0 if k& was not played at time ¢.! Let r}() denote

IThis is purely for notational convenience, and does not affect
the mean rewards computed per arm.
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the historical reward for the #*" instance of playing arm k in

history. H}, is the number of historical instances available for
arm k, and H is defined as H := Zszl Hy.. For each arm,
the historical rewards are drawn independently from the same
distribution as the online rewards. Let 65 denote the expected
reward for arm k. The goal is to maximize the expected total

reward during 7T iterations E {Zthl Gk(t)] , where k(t) is the

arm played in step ¢, and the expectation is over the random
choices of k(t) made by the algorithm. An equivalent per-
formance measure is the expected total regret, which is the
amount of total reward lost by a specific algorithm compared
to an oracle which plays the (unknown) optimal arm during
each step. The expected total regret is defined as:

T
E[R(T) ZE Z (0 - Gk(t))‘| = Z Ay E[ng(T)] (D)
=1 K

with 6* défmax;c 0, Ai &f g _ 0k, and ny(t) denotes the

number of times arm k has been played until ¢.

3.2 Contextual Bandit

The contextual bandit with history and pre-clustered arms is
defined as follows: At each step ¢ € {1, ..., T}, the player is
presented with a context (feature vector) ¥, € R before play-
ing an arm from the set A = {1,..., N} that are grouped
into C known clusters. Let 74 (t) denote the reward which
the player can obtain by playing arm k at time ¢ given con-
text Z;. As in [Chu et al., 2011], we will primarily focus on
bandits where the expected reward of an arm is linearly de-
pendent on the context. Specifically, Vk,¢ : r(t) € [0,1]
and E[r(t)|Z:] = 0/ % where 0, € R? is an unknown
coefficient vector associated with the arm k& which needs to
be learned from data. To incorporate historical information
about rewards of the arms in a principled manner, we assume
that each arm & is associated with a matrix H;, € R%*¢ which
records covariance information about the contexts played in
history during times ¢ with 1 < ¢ < Hy. Hy is computed
using all observed context Z; so that:

Hy(t) = Hy(t — 1) + &7, Hy(0) = 1, Hy = Hy(Hy)

Here, I is the identity matrix of dimension d. The arm is also
associated with a vector parameter bZ which is the weighted
sum of historical contexts, where the weights are the respec-
tive rewards:

D) = l(t— 1)+ rh(0)F,  bL(0)=0

The role of the covariance matrix in HLINUCBC is analogous
to its role in LINUCB which in turn is analogous to its role in
least squares linear regression.

4 HUCBC for Classical Bandit

One solution for the classical bandit problem is the well
known Upper Confidence Bound (UCB) algorithm [Auer et
al., 2002]. This algorithm plays the current best arm at every
time step, where the best arm is defined as one which maxi-
mizes the sum of observed mean rewards and an uncertainty
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term. We adapt UCB for our new setting such that it can in-
corporate both clustering and historical information. Our al-
gorithm incorporates the historical observations by utilizing
it both in the computation of the observed mean rewards and
the uncertainty term. Our algorithm incorporates the clus-
tering information by playing at two levels: first picking a
cluster using a UCB-like strategy at each time step, and sub-
sequently picking an arm within the cluster, again using a
UCB-like strategy.

The pseudocode for HUCBC is presented in Algorithm 1
and the mean reward for arm k is defined in (2).

g (1) = Zrea k() + Ty ()
k H, + nk(t)

@)

2log(t + Hy)
ng(t) + Hy
At each time step ¢ of the exploration, HUCBC computes
the quantity HUCBC(t) for arm k using (3). HUCBCy ()
represents an optimistic estimate of the reward attainable by
playing arm k: this estimate incorporates the mean reward
observed for the arm so far including the plays of the arm
in history and an upper confidence term to account for the
possibility of underestimation due to randomness in the re-

wards. In a similar manner, HUCBC also computes 0/¢(t)
and HUCBC; () for each cluster i:

H t
gy et + 2 ()
Hf +ng(t)

HUCBC(t) = 00'(t) + 3)

oo (t) = (4)

2log(t + HY)

HUCBCS(¢) = §he
UCBCI() = 600+ \| ey T i

®)
Note that 67<(t) is the mean reward observed for cluster i in-
cluding plays of the cluster in history and HUCBC(¢) repre-
sents an optimistic estimate of the reward attainable by play-
ing cluster i. The quantities 77¢(¢), r¢(t), né(t), and Hf in
(4) and (5) are the per-cluster analogues of the correspond-
ing quantities defined per-arm. Also note that, while the per-
cluster quantities carry a superscript ¢ as part of their no-
tation, the per-arm quantities do not. At each time step ¢,
HUCBC first picks the cluster which maximizes HUCBC (¢)
and then picks the arm within this cluster which maximizes
HUCBC(t).

Algorithm 1 The HUCBC algorithm

At time ¢, select cluster ¢ that maximizes HUCBC () in
(5) and play arm k in cluster 4 that maximizes HUCBCy(¢)
in (3)

4.1 Regret Analysis

We upper-bound the expected number of plays of a sub opti-
mal cluster under tight clustering of arms. Let ¢* denote the
cluster containing the best arm. Arms are said to be tightly
clustered if: 1) for each cluster ¢, there exists an interval
[l;,u;] which contains the expected reward of every arm in
cluster 4, and 2) for i # i*, the intervals [I;, u;] and [/, u;~]
are disjoint. For any cluster ¢ # ¢*, define §; = l;» — u;.

2018

Theorem 1 (Tight Clustering). The expected regret E[R(T))
at any time horizon T under tight clustering of the arms in
HUCBC is at most the following:

72(1 + 6HY)
1+ 6 i
2 ( Tl 6(H: +1)2 T

m2(1 4 6HE.)
6(2HS +1)2

i
w*(1+6Hy) | 7(1+6Hy)
144
+kc%w ( TSR, 1) R + 1)“')

(6)
Here, {{ = max (O, %;Hf) — Hf)
£, = max (0, %{Hh) — Hk) and k* = arg maxy, 0.
All Proofs can be found in the supplemental material 2.

Intuition Behind Theorem 1

First, the cumulative regret up to time 7" is logarithmic in 7'.
Second, as the separation between clusters increases result-
ing in increased Ay values, the regret decreases. Third and a
somewhat subtle aspect of this regret bound is that the num-
ber of terms in the summation equals the number of arms in
the optimal cluster + the number of sub-optimal clusters. This
number is always upper bound by the total number of arms.
In fact, the difference between them can be pronounced when
the clustering is well balanced — for example, when there are
\/n clusters with y/n arms each, the total number of terms
in the summation is 2y/n while the total number of arms is
n. When the quality of clustering is good, this is exactly
the aspect of the regret bound which tilts the scales in fa-
vor of HUCBC compared to UCB or HUCB. We now upper-
bound the expected number of plays of a sub optimal clus-
ter where an adversary is free to cluster the arms in order to
elicit the worst case behavior from HUCBC. For ease of anal-
ysis, we will analyze a variant of HUCBC which we denote
as HUC BC'’, which plays UCB at the inter-cluster level and
plays HUCB at the intra-cluster level.

Theorem 2 (Adversarial Clustering). The expected regret
at any time horizon T under any clustering of the arms in
HUCBC' satisfies the following:

16rlogT 4 9s 4 T
e s+ —
(Ar/2)? 3

72(1 + 6 Hy-)
6(2H)- +1)2

E[R(T)] < max

St ek =i
+

7T2(1 + 6Hk)
6(2Hy, +1)2
klo(k)=i* (2Hx +1)

(1+€k+

)

Here, r, s are constants and ly, and k* are defined as in The-
orem 1.

Comparing Theorems 1 and 2

Both these theorems share important similarities. First, the
regret is O(log T'). Second, as the distance between clusters
increase, the regret decreases. Third, the number of terms in

2All proofs are available in the arXiv version, in the following
link https://arxiv.org/abs/1906.03979
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the summation equals the number of arms in the optimal clus-
ter + the number of sub-optimal clusters. However, there are
significant differences. First, the distance between two clus-
ters in Theorem 2 is measured differently: it is now the differ-
ence between the mean rewards of the best arms in the clus-
ters. Second and more importantly, the constants involved
in the bound of Theorem 2 arise from the results of [Kocsis
and Szepesviri, 2006] and are significantly bigger than those
involved in the bound of Theorem 1. We emphasize that The-
orem 2 establishes only an upper bound on the regret: the
actual regret for typical instances that arise in practice can be
a lot smaller than this upper bound. The proof of this theorem
leverages the martingale concentration inequality derived as
part of Theorem 1. This is a key part of the drift condition
which needs to be satisfied in order for us to use the result of
[Kocsis and Szepesviri, 2006] for bounding the performance
of UCB in non-stationary environments.

5 HLINUCBC for Contextual Bandit

A well known solution for the contextual bandit with linear
payoffs is LINUCB [Li et al., 2010] where the key idea is to
apply online ridge regression to the training data to estimate
the coefficients 6. We propose HLINUCBC (Algorithm 2)
which extends this idea with both historical and clustering
information.

5.1 Clustering Information

HLINUCBC deals with arms that are clustered; it applies on-
line ridge regression at the per-cluster level to obtain an es-
timate of the coefficients éf for each cluster (Line 7), plays
the best cluster and then applies online ridge regression to the
arms within the chosen cluster to obtain an estimate of the
coefficients 8}, for each arm (Line 6). To find the best cluster,
at each trial ¢, HLINUCBC computes the quantities:

pis e 0T+ a\/m (8)
pek 4 O v + a\/m 9)

For each cluster ¢ and selects the cluster with the highest value
of pf, (Line 4). This quantity encapsulates the estimated re-
ward from this cluster, along with an uncertainty term. Then,
HLINUCBC finds the best arm within this cluster by comput-
ing for each arm k in this cluster, the quantity (9) and selects
the arm with the highest value p; ;, (Line 5).

5.2 Historical Information

HLINUCBC applies online ridge regression to the historical
data at both per-cluster and per-arm levels. The aim is to col-
lect enough information about how the context vectors and
rewards relate to each other for each cluster and arm using
the historical data, so that it can jump-start the algorithm by
achieving a low number of errors at the early stages of the
online exploration. At the initialization step, HLINUCBC is
seeded with HY and H;, which are respectively the history
matrices for the clusters and arms. This is in contrast to LIN-
UCB, where the initialization is done using an identity matrix.
It is also seeded with the vectors bfc and bZ, which record the

weighted sum of historical contexts, with the weight being the
rewards. In contrast, in LINUCB, this quantity is initialized
to 0.

Algorithm 2 HLINUCBC
Input: ¢« € Ry, history matrices Hf for each i €
{1,...,C},Hy foreach k € {1, ..., K}, weighted sum
of contexts b/ and b
1: forarm k € {1,..., K} do Ay + Hy, by + bk
: for clusteri € {1,...,C} do AS « HE, b¢ « bhe
3 fort e {1,...,T} do
4  Choose cluster i(t) = arg max; pf ;
5: Play arm k(t) = arg maxy.(x)=z) Pt,k
6 Agr) < Ak + zixl, by < by + T ()1
Ory — Ay bi
7: AC() +— Ac(t) + 2], by < by + i) ()T,

9 % Az(t) b?(t)

5.3 Regret Analysis

Theorem 3 shows that the HLINUCB upper bound has

log(ffett((A ))) under the square root whereas LINUCB has

log(det(A;). Recall from [Abbasi-Yadkori et al., 2011] that
LINUCB has a regret guarantee which is almost the same as
the one in Theorem 3 except for the det(H) term.

Theorem 3. With probability 1 — §, where 0 < 6 < 1, the
upper bound on the R(T) for the HLINUCB in the contextual
bandit problem, K arms and d features (context size) is as
follows:

det(An) Y | 1]
Hh=e Wdlog (Featiyr) * v >

det(AT)
T1 —_—
\/8 ©8 ( det(H)
with ||zt|l2 < Land ¢ € R

We demonstrate in the following that d”((‘;’ ) < det(Ay)
and thereby show that HLINUCB has a provably better guar-
antee than LINUCB. The matrix H can be written as I 4+ Dy,
where I is the identity matrix and Dj is the design ma-
trix constructed using the contexts in history. Both I and
Dy, are real symmetric and hence Hermitian matrices. Fur-
ther, Dj, is positive semi-definite since D; = ZZ xix?,
where the x; are the historical contexts; to see this, note that
Yy, y"Dpy = >,y aialTy = 3, (xTy)? > 0. Since all
the eigenvalues of I equal 1 and since all the eigenvalues
of Dj, are non-negative, by Weyl’s inequality in matrix the-
ory for perturbation of Hermitian matrices [Thompson and
Freede, 1971], the eigenvalues of H are lower-bounded by 1.
Hence det(H) which is the product of the eigenvalues of H

is lower-bounded by 1 which proves our claim.

6 META Algorithm

Intuitively, HUCBC can be expected to outperform HUCB
when the quality of clustering is good. However, when the

2019



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

clustering quality is poor, this is far less likely to be the case.
In order to choose between these two strategies correctly, we
employ the META algorithm. Specifically, for the classical
bandit problem, META uses UCB to decide between HUCBC
and HUCB at each iteration. For the contextual bandit prob-
lem, META uses UCB to decide between HLINUCBC and
HLINUCSB at each iteration. The basic idea is that if the clus-
tering quality is poor, the fraction of the time when META
plays the strategy with both clustering and history will be-
come vanishingly small, leading to the desired behavior.

Theorem 4. The META algorithm is asymptotically optimal
for the classical bandit problem under the assumption that
the drift conditions of [Kocsis and Szepesvdri, 2006] hold for
HUCBC.

Theorem 4 uses the assumption that HUCBC also satisfies
the drift conditions like HUCB. In Theorem 1, we show that
HUCB satisfies the drift conditions; this provides some ev-
idence to support the assumption that HUCBC also satisfies
them.

7 Experimental Evaluation

In this section, we present the experimental evaluation of our
algorithms with synthetic and real world datasets.

7.1 Experiments with Synthetic Classical Bandit

We compare our proposed strategies HUCBC (Section 4)
and META (Section 6) to the state-of-the-art competitors
UCB [Auer et al., 2002], HUCB [Shivaswamy and Joachims,
2012], and UCBC [Pandey et al., 2007]. HUCB is the degen-
erate version of HUCBC where all arms belong to the same
cluster, i.e., no use of clustering information is made only his-
torical data is employed. In contrast, UCBC is the degenerate
version which uses the clustering information but no histori-
cal data. Our synthetically generated data assumes 10 clusters
and 100 arms. A random permutation assigns each arm k to
a cluster c(k), where the centroid of cluster ¢ is defined as
A(@) = & (u; + 1) and u; ~ U(0,1). The reward obtained
when arm k is played is sampled from (0, 2a;A(c(k))),
where oy, is a arm dependent constant. Thus, the expected
reward for cluster ¢ is A(¢). The historical data is generated
as follows: for 25% we generate data playing them X times
where X is sampled from a Poisson distribution with param-
eter 10. We report the results of 20 trials in in Figure 1a. Each
trial consisted of 10* rounds and we plot the the number of
rounds per-round-reward (cumulative reward until that round
/ number of rounds). The error bars correspond to the inter-
val of £1 standard deviation around the mean. Clearly, the
per-round-reward of HUCBC is the fastest to converge to that
of the best arm. Interestingly, while historical data improves
the performance of HUCB over UCB only to a small degree
(possibly due to asymmetry in history), combining this infor-
mation with the clustering information improves the perfor-
mance of HUCBC over UCBC to a significantly larger de-
gree. This is an effect of the fact that even though historical
data is sparse and asymmetric at the arm level, combining
this information at the cluster level is more impactful. META
converges rather quickly to the correct choice (HUCBC) in
this setting.
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7.2 Experiments with Synthetic Contextual Bandit

We will now compare our proposed contextual bandits HLIN-
UCBC (Section 5) and the META algorithm selection to LIN-
UCB [Li ef al., 2010], HLINUCB and LINUCBC. Similarly
to HUCB and UCBC, HLINUCB and LINUCBC are degen-
erated versions of HLINUCBC using either only the historical
data or the clustering information.

The synthetic data was created by assuming 10 clusters and
100 arms. Again, a random permutation assigns each arm
k to a cluster ¢(k). The centroid 6¢ of cluster 4 is sampled
from N (0, I5). The coefficient 8 of arm & is defined as
0r = 6¢ + evy, where v, is sampled independently at ran-
dom from N0, I5). The reward for playing arm % in context
x is sampled from 2/(0, 20, x). Thus, our synthetically gen-
erated problem is linear in the input and the expected distance
between clusters is v/5e. By varying €, we control the tight-
ness of the clusters and can observe the impact of clustering
information with varying quality of clusters. Contexts in each
round of a trial are drawn i.i.d from the multivariate normal
distribution A/(0, I5). We created asymmetric historical data
for arms by playing an arm X times with X distinct contexts,
where X ~ Poisson(10).

We report the results for e = 0.1 in Figure 1b. As in
the case of classical bandits, we repeat the experiment 20
times, where each trial consists of 10,000 rounds. The er-
ror bars correspond to the interval of +1 standard devia-
tion around the mean. HLINUCBC is clearly outperforming
its competitors and META is able to identify HLINUCBC
as the stronger method over HLINUCB. In this set up, his-
torical data and clustering are equally important such that
HLINUCB and LINUCBC provide similar results. LINUCB
clearly provides the worst results. We also compare the per-
formance of HLINUCBC vs. LINUCBC under different val-
ues of e € {0.1,0.8,3.2}. We normalize the rewards in these
three distinct settings to enable a meaningful comparison. We
present the results in Figure lc. Since HLINUCBC utilizes
historical data in addition to the clustering information, we
can see that it improves upon the performance of LINUCBC
for every setting of e.

7.3 Experiments with Real-World Data

We compare our bandit algorithms on two different real-
world problems. The classical bandits are compared on the
task of web server selection while the contextual bandits are
analyzed for the Warfarin drug dosage problem.

Web Server Selection

We evaluate the classical bandits on the problem which is
commonly known as the Content Distribution Network. Es-
sentially one needs to decide from what source one should
pull content available at multiple sources while minimizing
the cumulative latency for successive retrievals. Similar to
[Vermorel and Mohri, 2005], we assume that only a single re-
source can be picked at a time. The university web page data
set’ features more than 700 sources with about 1300 response
times each. In order to facilitate our clustering approach in
this setting, we perform two types of clustering: 1) split the

*https://sourceforge.net/projects/bandit/
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Figure 1: (a) HUCBC outperforms its competitors. META quickly learns to follow HUCBC (b) HLINUCBC outperforms its competitors.
META quickly learns to follow HLINUCBC (c) Rewards for the different cluster-based methods under different cluster radii e. HLINUCBC
benefits from historical data in all cases. (d) HUCBC provides significantly better rewards than competitors when clustering is good. Meta
learns to follow HUCBC (e) HUCB outperforms HUCBC when clustering is poor and META learns to follow HUCB (f) HLINUCBC

outperforms competitors and META learns to follow this

resources based on average latencies into five categories rang-
ing from ‘fast’ to ‘slow’, 2) based on domain names into 17
clusters. Historical data was generated by choosing 200 ob-
servations in total at random. In Figures 1d and le we show
the mean cumulative reward for the UCB, UCB with his-
tory (HUCB), UCB with clustering (UCBC), UCB with both
(HUCBC), and META over 10 repetitions. Before each ex-
periment, the data has been shuffled. We can observe a clear
impact of employing clustering and history and the combi-
nation of both, and the type of clustering. The first type of
clustering achieves an effective grouping of arms while the
second one does not. Confirming our observations on the syn-
thetic data, only clustering information provides better results
than only historic data when clustering is of good quality. The
two kinds of clustering also highlight the usefulness of our
META approach that in both cases converges to the correct
approach.

Warfarin Drug Dosage

The Warfarin problem data set is concerned with determining
the correct initial dosage of the drug Warfarin for a given pa-
tient. Correct dosage is variable due to patient’s clinical, de-
mographic and genetic context. We select this benchmark be-
cause it enables us to compare the different algorithms since
this problem allows us to create a hierarchical classification
data set. Originally, the data set was converted to a classifica-
tion data set with three classes using the nominal feedback of
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the patient. We create a hierarchy as follows. We divide each
of the original three classes into five more granular classes.
Bandit methods which do not use hierarchy will simply tackle
this problem as a classification task with 15 classes. Others
will first assign instances to one of the three classes and fi-
nally decide to choose one of the final five options. The order
of the patients is shuffled, 1500 of them are chosen as his-
torical data. We report the mean and standard deviation of
10 runs in Figure 1f. HLINUCBC is outperforming all com-
petitor methods and also META is able to successfully detect
that HLINUCBC is the dominating method. For this problem
HLINUCSB provides better results than LINUCBC, indicating
that historic data is worth more than clustering information.

8 Conclusions

We introduced a variety of algorithms for classical and con-
textual bandits which incorporate historical observations and
pre-clustering information between arms in a principled man-
ner. We demonstrated their effectiveness and robustness both
through rigorous regret analysis as well as extensive experi-
ments on synthetic and real world datasets. Two interesting
open problems emerge from this work: 1) Are there instance
independent regret bounds for HUCBC which depend only
on the total number of clusters and the number of arms in the
optimal cluster? 2) What are the upper and lower bounds on
the regret of HLINUCBC?
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