
Extensible Cross-Modal Hashing
Tian-yi Chen1 , Lan Zhang1,2 ∗ , Shi-cong Zhang1 , Zi-long Li3 and Bai-chuan Huang4

1School of Computer Science and Technology, University of Science and Technology of China, China
2School of Data Science, University of Science and Technology of China, China
3School of Information Science and Engineering, Northeastern University, China

4Department of Physics, University of California Berkeley, USA
wandero@mail.ustc.edu.cn, zhanglan@ustc.edu.cn, zsc2016@mail.ustc.edu.cn,

longzili@stumail.neu.edu.cn, huangbc1998@gmail.com

Abstract
Cross-modal hashing (CMH) models are intro-
duced to significantly reduce the cost of large-scale
cross-modal data retrieval systems. In many real-
world applications, however, data of new categories
arrive continuously, which requires the model has
good extensibility. That is the model should be up-
dated to accommodate data of new categories but
still retain good performance for the old categories
with minimum computation cost. Unfortunately,
existing CMH methods fail to satisfy the extensibil-
ity requirements. In this work, we propose a novel
extensible cross-modal hashing (ECMH) to enable
highly efficient and low-cost model extension. Our
proposed ECMH has several desired features: 1) it
has good forward compatibility, so there is no need
to update old hash codes; 2) the ECMH model is
extended to support new data categories using only
new data by a well-designed “weak constraint in-
cremental learning” algorithm, which saves up to
91% time cost comparing with retraining the model
with both new and old data; 3) the extended model
achieves high precision and recall on both old and
new tasks. Our extensive experiments show the ef-
fectiveness of our design.

1 Introduction
With the rapid development of the Internet and smart devices,
large amounts of data, such as texts, images and videos, are
constantly being produced. Facing massive multi-modal data,
efficient cross-modal information retrieval is badly needed
in various big data applications. The main challenge of
cross-modal retrieval is to solve the “media gap”, since every
modality has its distinct feature space. To address this issue, a
popular solution is to learn a correspondence which maps data
of different modalities to vector representations in an interme-
diate common space and expresses the similarity among these
data by their distances in the common space. Traditional sta-
tistical correlation analysis based methods, e.g., Canonical
Correlation Analysis (CCA), map data from different modal-
ities to a subspace where pairwise correlations between two
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modalities will be maximized. Those methods, however, in-
cur high computation and storage cost because of the high-
dimensional float number vectors and the calculation of pair-
wise Euclidean distances. Recently, researchers introduce
Cross-Modal Hashing (CMH) to significantly reduce the cost
while retaining retrieval performance for large-scale cross-
modal data [Bronstein et al., 2010; Zhen and Yeung, 2012;
Wu et al., 2015; Lin et al., 2015]. It maps data into a com-
mon Hamming space and uses Hamming distance instead of
Euclidean distance. The common space can be learned by a
Deep Neural Network (DNN), which acts as a non-linear ex-
tension of CCA, in supervised manners [Chen et al., 2018;
Zhang et al., 2014] or unsupervised manners [Shen et al.,
2015; Wu et al., 2018]. CMH is now widely adopted for
cross-modal data retrieval [Wang et al., 2016; Baltrusaitis et
al., 2018].

CMH models achieve good performance in cross-modal re-
trieval tasks; however, in many real-world applications, new
data of new categories comes continuously, which requires
the system has extensibility. So the model should be up-
dated to accommodate data of new categories but still re-
tain good performance for the old categories, and the sys-
tem should still be compatible with old hash codes. Unfortu-
nately, existing CMH models lack extensibility. Fine-tuning
the model using only new data suffers from a catastrophic
forgetting that results in an accuracy decrease on old tasks
[Li and Hoiem, 2018]. Retraining the whole model with both
old and new data incurs an ever increasing large computa-
tion cost for training and updating the hash codes for all ex-
isting data, as well as a large storage cost for all old data,
There are some incremental learning methods consider the
extensibility problem [Joshi and Kulkarni, 2012], but most of
which focus on classification tasks [Cortes and Vapnik, 1995;
Guo et al., 2010]. The main techniques include adding new
output dimensions for new tasks [Razavian et al., 2014] and
applying regularization for old tasks [Hinton et al., 2015].
Those method cannot resolve the cross-modal hashing prob-
lem, since they continuously increase the dimension of the
common feature space, thus the length of the hash code,
whenever data of a new category comes.

In this work, we propose a novel extensible cross-modal
hashing (ECMH) to empower the CMH models with good
extensibility. To the best of our knowledge, this is the first
work addressing the extensible cross-modal hashing problem.
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Figure 1: ECMH framework.

Our proposed ECMH has several desired features for large-
scale cross-modal retrieval systems: 1) it is compatible with
old hash codes, there is no need to increase the dimension of
hash code or update old hash codes; 2) ECMH is extended
to support new categories using only the new data by a well-
designed “weak constraint incremental learning” algorithm;
3) the extended model achieves high precision and recall in
both old and new tasks, and the hash codes generated by the
extended model has good forward compatibility with the old
hash codes. These features of ECMH enables highly efficient
and low-cost cross-modal data system extension.

2 ECMH
2.1 Problem Definition
In a typical cross-modal data retrieval application, suppose
we already have an old dataset with No cross-modal data
pairs, e.g., image-text pairs, which can be represented by
Do = {(xi

o, y
i
o), 0 < i ≤ No} here the subscript “o” is the

abbreviation for “old.” With this dataset, through cross-modal
hashing we can train a deep hash function h(D; θo) with pa-
rameters θo for old tasks (e.g., image-text pairs of animals),
that hashes two-modal data into a set of unified hash codes
Co|θo = {−1,+1}M×L. Here L is the length of the hash
code, and M is the number of instances. When there comes
a set of new cross-modal data pairs Dn = {(xi

n, y
i
n), 0 <

i ≤ Nn} for new tasks (e.g., image-text pairs of scenes),
where the subscript “n” is the abbreviation for “new”, ECMH
mainly focuses on the extensibility issue of the hash func-
tion. Specifically, ECMH aims to update parameters θo to
new parameters θn to satisfy the following requirements: 1)
we don’t need to update old codes Co; 2) we don’t need to in-
crease the hash code length L; 3) we update the hash function
h(D; θo) using only the new dataset Dn; 4) the hash codes
Cn|θn of the new dataset generated by the updated hash func-

tion h(D; θn) achieve good performance on both old and new
tasks. These features of ECMH enables highly efficient and
low-cost cross-modal data system extension with a precision
guarantee.

2.2 Design Overview
As shown in Figure 1, the model of ECMH consists of two
deep hashing networks for images and texts, named INet and
TNet respectively. With the old dataset Do, we can train the

model to obtain old parameters θo. When the new dataset
Dn comes, the process of updating parameters to θn includes
three stages. Stage 1 is warm-up that initializes new word
vectors of new tasks; Stage 2 is generating codes Cn|θo for
the new dataset using the old parameters θo; Stage 3 updates
the model using the new dataset according to our proposed
objective function Eq.(1).

2.3 Deep Feature Learning and Warm-up
Most existing deep hashing networks for texts support only
fixed vocabulary size, which makes them incompetent to han-
dle out-of-vocabulary (OOV) words in the newly arriving
data. To address this issue, we adopt Deep Averaging Net-
work (DAN) [Iyyer et al., 2015]as TNet, and initialize new
word vectors of new tasks in Stage 1. Specifically, we freeze
all old parameters except those of the embedding layer of
TNet and then fine-tune the embedding layer for new word
vectors. Through TNet, each raw text yi is firstly encoded
into a 2000-dimensional sentence vector and then embed-
ded into an L-dimensional hash code. INet can be any deep
hashing network for images. In our implementation, INet is
adapted from VGG-19 [Simonyan and Zisserman, 2015] by
only modifying the number of hidden units in the last FC
layers to generate L-dimensional hash codes Moreover, for
both INet and TNet we apply the hyperbolic tangent function
(tanh) to normalize output to (−1, 1) range to accelerate the
model convergence. Let hx(X; θ) denote INet, and hy(Y ; θ)
denote TNet. INet/TNet produces a deep representation for
each image/text. Thus, given a cross-modal dataset, the ma-
trices of deep representations of images and texts are F and
G respectively. The generated hash code C = sign(F + G).
Since ECMH will update the old parameters θo to θn, there
will be two versions of F and G. We use a subscript n|θo to
indicate the deep representations of data for new task gener-
ated with old parameters θo, and so on.

2.4 Objective Function of ECMH
It is nontrivial to accommodate the new parameters θn to both
new and old tasks in a way satisfying the aforementioned re-
quirements. A traditional fine-tuning method using only data
for new tasks suffers the catastrophic forgetting effect, lead-
ing to deteriorating performance on old tasks. The core idea
of ECMH is performing selective learning considering the
cross-modal agreement of both deep representations gener-
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ated with old parameters (in Step 2) and new parameters (in
Step 3). Specifically, if the generated deep representations of
an image-text pair have the same values on some dimensions,
these “agreed” dimensions should be excluded from updat-
ing. The objective function of ECMH is designed to find
“agreement” that does not need to change and keep it, mean-
while find “disagreement” and try to reach “agreement.” As
the following equation, the objective function is composed of
three loss functions:

min
C,θx

t ,θ
y
t

L = Ld + Lc + Lh

s.t. C ∈ {−1, 1}M×L
(1)

The novel self-taught distillation loss Ld is proposed to keep
those “agreed” dimensions unchanged according to deep rep-
resentations generated with old parameters, which ensures the
performance of the updated model on old tasks. The com-
mon space learning loss Lc and hash function learning loss
Lh work together to minimize “disagreement” of deep repre-
sentations generated with updated parameters, which improve
the performance of the updated model on new tasks. In the
rest of this section, we introduce the detailed design of three
loss functions.

Agreement Matrix and Similarity Matrix.
First, we introduce two measurement matrices. Aα is the
Agreement Matrix with a threshold α, which records the
cross-modal agreement of Fn|θo and Gn|θo , i.e., matrices
of deep representations generated with old parameters. Aα

could be defined as:

Aα[i, j] =

⎧⎪⎪⎨
⎪⎪⎩
1,

sign(Fn|θo [i, j]) = sign(Gn|θo [i, j]),
|Fn|θo [i, j]| > α, |Gn|θo [i, j]| > α

0, others
(2)

The threshold α ensures the agreement is not too weak since a
small absolute value of the representation indicates low con-
fidence and mutability.

The Similarity matrix S is defined as:

S[i, j] =

{
1, di shares at least one label with dj
0, di, dj don’t share label.

(3)

where d∗ represents an image or a text in the dataset.

Self-taught Distillation Loss.
The novel self-taught distillation loss is to maintain the per-
formance of the updated model on old tasks. The underlying
assumption is that if the output with θn and θo follow a similar
probability distribution, the models with θn and θo have sim-
ilar performance. Given a cross-modal data pair, the agree-
ment matrix Aα acts as a selector that samples the dimensions
which should be unchanged within its output for this input
data, while (1 − Aα) samples the dimensions that should be
changed. Then utilizing the old representations Fn|θo , Gn|θo ,
the self-taught distillation loss is defined as

Ld =λd(||Aα ◦ (Fn|θn − Fn|θo
) ||2F

+ ||Aα ◦ (Gn|θn −Gn|θo
) ||2F ). (4)

||·||F is the Frobenius norm of a matrix, and ◦ is the Hadamard
product. Suppose Fn ∈ R

M×L, then λd = 1
M×L2 serves as

the scaling factor.

Common Space Learning.
The common space learning loss Lc is utilized to construct
the common space by forcing the model to generate similar
hash codes for semantically similar instances and vice versa.
The similarity of instances is defined as Eq. (3), and the sim-
ilarity of deep representations is defined as:

Δ = ((1−Aα) ◦ Fn|θn)G
T
n|θn

s.t.Fn|θn , Gn|θn ∈ R
M×L

(5)

As mentioned above, (1−Aα) samples the disagreed dimen-
sions and then we can calculate the similarity of deep repre-
sentations on these disagreed dimensions. We define || · ||S to
represent the sum of all elements in a matrix for simplicity.
By minimizing the term ||(1 − S) ◦ Δ||S , we can reduce the
similarity between dissimilar instances. Minimizing the term
||S ◦ (log(1 + eΔ)−Δ)||S maximizes the similarity between
similar instances. Combining both terms as below, we get the
loss function for common space learning:

Lc = λc(||(1−S) ◦Δ||S + ||S ◦ (log(1+ eΔ)−Δ)||S). (6)

Here the scaling factor λc is 1
M2×L . There could be other

possible choices of Lc, as long as they obey the core idea.

Hash Functions Learning.
The hash function learning loss is defined as:

Lh = λh(||(1−A)◦(βC − Fn|θn)||2F
+ ||(1−A)◦(βC −Gn|θn)||2F )

(7)

The scaling factor λh is 1
M2×L . This loss is similar to that of

previous work like DCMH [Jiang and Li, 2017] and SSAH
[Li et al., 2018], except for the hash code smoothing factor β.
Since the output of TNet and INet are rescaled to the range
(−1, 1) by tanh, the C ∈ {−1, 1}M×L will be too intense
to be the targeted hash codes. In practice, we observe that
this issue results in a great disparity between the average of
Fn|θn and Gn|θn . Some efforts assign weights to each modal-
ity and partially solve the problem. Rather than tweaking the
weights, our solution smoothes the targeted hash code C with
β to reduce the difference significantly. This design helps
prevent overfitting when training the old model.

2.5 Optimization
The optimization process of ECMH including the following
steps: training old model for old tasks, warm up the TNet
for new vocabulary and extending the model for new tasks.
Like most previous solutions, we adopt an alternating strat-
egy in every step to solve the non-convex objective function
iteratively.

As presented in Algorithm 1, the core algorithm is de-
signed to train the model according to the objective function
defined in Eq. 1. Firstly, we fix parameter θy of TNet and
hash codes C. A mini-batch of images is sampled from the
whole train set to update θx. Then θx and C are fixed. A
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Algorithm 1 Core Algorithm

Require: Image set X , text set Y , similarity matrix S, agree-
ment matrix Aα, old representations Fn|θo , Gn|θo , old pa-
rameters θxo , θ

y
o , mini-batch size m, learning rate μ.

Ensure: Parameters θxn, θ
y
n of INet and TNet.

1: Initialize: iter ← �Sizeof(X)/m�, (θxn, θ
y
n) ← (θxo , θ

y
o)

2: repeat
3: for 1, ..., iter do
4: Sample a mini-batch M with m images from X .
5: F ← hx(M; θxn)
6: Update θxn by SGD with BP:
7: θxn ← θxn − μ∇θx

n
(Ld(Fn|θn , Fn|θo) +

Lc(Fn|θn , Gn|θn , S)+Lh(Fn|θn , C))
8: end for
9: for 1, ..., iter do

10: Sample a mini-batch M with m images from Y .
11: G ← hy(M; θyn)
12: Update θyn by SGD with BP:
13: θyn ← θyn − μ∇θy

n
(Ld(Gn|θn , Gn|θo) +

Lc(Gn|θn , Fn|θn , S)+Lh(Gn|θn , C))
14: end for
15: Update C by Eq. (8).
16: until Convergence

Algorithm 2 Extending Model for New Tasks

Require: Image set Xn and text set Yn for new tasks, sim-
ilarity Matrix S, mini-batch size m, learning rate μ, pa-
rameters θxo , θ

y
o of the to-be-extended model.

Ensure: Parameters θxn, θ
y
n of INet and TNet.

1: Initialize: iter ← �Sizeof(X)/m�, (θxn, θ
y
n) ← (θxo , θ

y
o)

2: Freeze θxn,θ
y
n except for the embedding layer. � Warm-up

3: Fn|θo ← hx(Xn; θ
x
o )

4: Learn θyn by the Core Algorithm.
5: Unfreeze θxn, θ

y
n except for CNN layers. � Extending

6: Calculate Aα by the Eq. (2).
7: Gn|θo ← hy(Yn; θ

y
o)

8: Learn θxn, θ
y
n by the Core Algorithm.

mini-batch of texts is sampled to update θy . These first two
steps utilize the stochastic gradient descent (SGD) [Bottou,
2010] with the back-propagation (BP) algorithm to update the
network parameters. Finally, we fix θx and θy and update C
through the following equation:

C = sign(F +G) (8)

Leveraging the core algorithm as the main component, we
train the model for old tasks and extend the model for new
tasks as follows. We can easily adapt the core algorithm to
train the model for old tasks by setting Aα to an all-zero ma-
trix since we have no pre-knowledge of the agreement matrix
and no dimension needs to stay unchanged when training a
model from scratch. In extending a model, the first thing is to
”warm-up” the new word vectors on the new tasks. We freeze
all parameters but the embedding layer in TNet and train the
network using the core algorithm. Then, we unfreeze all FC
layers and start extending. The process is in Algorithm 2.

3 Experiment
3.1 Datasets and Experiment Setting
In our experiments, we adopt two popular datasets with
image-text pairs. The MIRFLICKR-25k dataset [Huiskes
and Lew, 2008] contains 25,000 image-text pairs collected
from Flickr. For a fair comparison, we reduce the number of
instances to 20,015 following the experiment protocols given
in DCMH [Jiang and Li, 2017]. Each text is represented by a
1386-dimensional BoW vector and the corresponding image
is rescaled to a (224, 224, 3) RGB tensor. We also adopt the
MSCOCO-2014 dataset [Lin et al., 2014] for its high-quality
annotations. There are 55% of the images in MSCOCO la-
beled with “person”, which makes the new tasks too simi-
lar to the original ones. In this case, all methods perform
well when extending on the original MSCOCO dataset. To
evaluate our design in more general scenarios, we remove all
“person” images and obtain a dataset with 36,869 instances.
Each image is rescaled to (224, 224, 3) and annotated with
at most ten words. Unlike some previous work, we conduct
the evaluation in a more stringent condition that the valida-
tion set does not contain any training data. In experiments
using MIRFLICKR-25k, 10,015 instances are randomly cho-
sen as the train set, and the rest 10000 are used for valida-
tion, namely 2000 for the query and 8000 for the database.
In experiments using MSCOCO, 16,869 randomly chosen in-
stances are used for training, and the rest 5000 and 15000
instances are used as query and database, respectively.

For old tasks and new tasks, further we split each train-
ing/validation dataset into two parts by categories of labels.
There are many ways to divide categories into old and new
ones. Without loss of generality, we consider two extension
cases.

Super-Category Extension. Super-categories, such as
“Animal” and “Vehicle”, contain quite different concepts,
while sub-categories, such as “Dog”, “Cat”, “Bike” and
“Car”, may have similar concepts, which makes extension for
new super-categories is more challenging. In MSCOCO, we
divide data by their super-categories and use about 20,000 in-
stances of super-categories“Animal”, “Appliance”, and “In-
door” as new tasks to extend the model trained by the
data of the rest super-categories. Following the definition
in MSCOCO, in Flickr25k, ”Animal, People, Plant, Water,
Transport, Sky, Food” are super-categories, and the rest are
sub-categories. Similarly, we use about 8,000 instances of
super-categories “People” and “sky” as new tasks.

Sub-Category Extension. In Flickr25k, we randomly se-
lect 6 sub-categories with 8,200 instances as new tasks. In
MSCOCO, 16 sub-categories with 12000 instances are se-
lected as new tasks. All images of new categories will only be
used in the extending stage to make sure that they are totally
new (sharing zero label with the old training images) for the
model.

Implementation Details. We implement ECMH via Py-
torch. We set all learning rate to 1.5 and decrease it by 5%
every 100 steps. α is set to the range of [0.1, 0.15] and β is
set to 0.5. Batch size is fixed to 500. All experiments are
conducted on a server with 4 TITAN X GPUs.
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Flickr Sub Flickr Super COCO Sub COCO Super
T → I I → T T → I I → T T → I I → T T → I I → T

Retrieve Old Codes
Old Model 0.7366 0.7130 0.7605 0.7296 0.4101 0.4099 0.4777 0.4743
Fine-tuning 0.7114 0.6918 0.6960 0.6699 0.3967 0.4055 0.4312 0.4650

ECMH 0.7394 0.7058 0.7557 0.7181 0.4178 0.4342 0.4916 0.4789

Old Tasks

Joint-DCMH 0.6543 0.6644 0.6434 0.6558 0.4004 0.3067 0.4134 0.3155
Joint-SSAH 0.6597 0.6896 0.6579 0.6842 0.4333 0.3810 0.4160 0.3835

Joint-ECMH 0.6712 0.7145 0.6593 0.7043 0.4898 0.4052 0.4808 0.4263
Fine-tuning 0.6284 0.6731 0.5729 0.5984 0.4618 0.3707 0.4002 0.3403

ECMH 0.6557 0.7002 0.6279 0.6763 0.4930 0.4155 0.4450 0.4426

New Tasks

Joint-DCMH 0.7899 0.7384 0.8267 0.7556 0.4016 0.3664 0.3433 0.3328
Joint-SSAH 0.7738 0.7387 0.7837 0.7495 0.4302 0.4295 0.3923 0.4128

Joint-ECMH 0.8051 0.7707 0.8369 0.7922 0.4907 0.4896 0.4402 0.4522
Fine-tuning 0.8067 0.7416 0.8201 0.6781 0.5136 0.5228 0.4426 0.4483

ECMH 0.7958 0.7464 0.7839 0.7190 0.4948 0.4951 0.4221 0.4427

All Tasks

Joint DCMH 0.7414 0.6947 0.7418 0.6939 0.3358 0.3267 0.3363 0.3300
Joint SSAH 0.7322 0.7097 0.7318 0.7091 0.3836 0.3973 0.3858 0.3994

Joint-ECMH 0.7737 0.7375 0.7736 0.7378 0.4274 0.4335 0.4356 0.4403
Fine-tuning 0.7416 0.6975 0.6697 0.6379 0.4165 0.4217 0.3927 0.3955

ECMH 0.7569 0.7191 0.7336 0.6926 0.4437 0.4422 0.4223 0.4334

Table 1: MAP of different methods on different tasks. The best MAP of each task is highlighted in bold.

Figure 3: MAP during train-
ing process.

Figure 4: MAP of ECMH
and Fine-tuning.

3.2 Methods for Comparison
Since there is no existing work directly addressing the exten-
sible cross-modal hashing issue, we compare our proposed
ECMH with two most relevant state-of-the-art cross-modal
hashing methods DCMH [Jiang and Li, 2017] and SSAH [Li
et al., 2018] by extending them in a joint-training manner.
That is, when new data comes, we train ECMH, DCMH and
SSAH using both old and new data and refer to these models
as Joint-ECMH, Joint-DCMH and Joint-SSAH respectively.
They provide the upper bound of precision and recall in all
tasks. We also compare ECMH with a model trained in a
traditional fine-tuning way. That is we first train an ECMH
model using old data then directly fine-tune parameters using
new data without considering agreement of old codes. All
image networks utilize CNN layers of VGG-19 pretrained on
ImageNet dataset. We use identical training set and validation
set for all these methods and report their best results.

In the following experiments, we use the Mean Average
Precision (MAP) and the precision-recall (PR) curve to eval-
uate different methods.

3.3 Training Efficiency
Figure 3 shows the MAP variation during the training phase
of ECMH and DCMH. Due to the tanh activation function
which rescales the output to (−1, 1) and the light-head TNet,
our proposed ECMH achieves an about three times faster con-
vergent speed than DCMH. We further compare the time con-
sumption of ECMH and JointECMH, as shown in Table 2,
ECMH significantly reduces time cost for the model exten-
sion for new tasks. As an example, in Super-Category Ex-

JointECMH ECMH old ECMH new

COCO Super 5507 737 1833
COCO Sub 5117 1010 912
Flickr Super 3416 731 312
Flickr Sub 3605 727 1229

Table 2: Training runtime (sec) for JointECMH and ECMH for old
tasks and new tasks.

tension case, ECMH saves about 91% runtime to extend the
model for new tasks using Flickr dataset and saves about 67%
runtime using the MSCOCO dataset.

3.4 Performance on Different Tasks
We illustrate MAP of different methods in all cases in Table
1 and PR curves using the Flickr dataset in Figure 2. We
omit the PR curves using the MSCOCO dataset due to space
limitation, whose performance is similar to that of the Flickr
dataset. “T→I” indicates “using texts to query images” and
so on.

Forward Compatibility. The forward compatibility is
measured by the effectiveness of retrieving old hash codes
generated by old models using new hash codes generated by
new models. As shown in Table 1, on the Flickr25k dataset,
thanks to the design of our loss functions, ECMH achieves
almost the same MAP (with a less than 1.1% decrease) as
that of directly using the old model. Fine-tuning, however,
suffers from a much larger up to 6.5% decrease. Surprisedly,
on the MSCOCO dataset, our method achieves even better
MAP (up to 2.4% increase) than the old model while Fine-
tuning still has a significant up to 11.3% decrease. The first
column in Figure 2 also presents that our method has simi-
lar PR curves as the old model and significantly outperforms
Fine-tuning. The results reveal that our method can not only
provide good forward computability of hash codes, but also
utilize new data to further improve the performance on old
tasks in some cases.

Current Performance on Old Tasks. In this evaluation,
we use old data as query data and combine old and new data
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(a) I→T: retrieve old code. (b) I→T: old tasks. (c) I→T: new tasks. (d) I→T: all tasks.

(e) T→I: retrieve old code. (f) T→I: old tasks. (g) T→I: new tasks (h) T→I: all tasks.

(i) I→T: retrieve old code. (j) I→T: old tasks. (k) I→T: new tasks. (l) I→T: all tasks.

(m) T→I: retrieve old code. (n) T→I: old tasks. (o) T→I: new tasks. (p) T→I: all tasks.

Figure 2: Precision-recall curve of different methods on different tasks using the Flickr dataset. Figure (a) to Figure (h) are evaluated in the
Sub-Category Extension case, and Figure (i) to Figure (p) are evaluated in the Super-Category Extension case. The code length is 64.

as the database. Table 1 shows that, on the whole, three joint-
training models using both old and new data have better MAP
than ECMH and Fine-tuning using only new data. Among
three joint-training models, joint-ECMH achieves significant
better MAP than joint-DCMH and joint-SSAH in all cases.
When extending models using only new data, ECMH outper-
forms Fine-tuning in all cases. In the worst case, i.e., Super-
Category Extension on Flickr25k, Fine-Tuning has an 11.0%
MAP decrease comparing with Joint-ECMH, while ECMH
only has a 3.0% decrease and still achieves comparable per-
formance to other joint training methods. The first column
in Figure 2 further illustrates that in the worst case, ECMH
has a much better PR curve than Fine-tuning. The result re-
veals that our method significantly relieves the catastrophic
forgetting on old tasks and gets better old-task performance.

Current Performance on New Tasks. In this evaluation,
we use new data as query data and combine new and old data
as the database. The MAP results are in the third row (new
tasks) in Table 1 and PR curves are shown in the third col-
umn in Figure 2. Since Fine-tuning update models only for
new tasks, as expected, it achieves the best performance in
many cases (see both Table 1 and Figure 2). ECMH has a
comparable performance to Fine-tuning with an up to 2.7%
decrease on the MSCOCO dataset. On the Flickr25k dataset,

ECMH even has better performance on the image-query-text
tasks.

The Overall Performance. Combining both new data and
old data as the query data, we evaluate the overall per-
formance of the new model. Both Table 1 and Figure
2 proves that, among three joint-training models, joint-
ECMH achieves significant better MAP than joint-DCMH
and joint-SSAH in all cases; and when using only new data,
ECMH outperforms Fine-tuning in all cases. In the worst
case (Super-Category Extension on Flickr25k), ECMH has
a 6.1% MAP decrease than joint-ECMH, while Fine-tuning
has a 13.5% MAP decrease. In Sub-Category Extension
on MSCOCO, ECMH performs even better than all joint-
training methods. This result indicates that although our
self-taught distillation slightly limits the performance on new
tasks, it preserves the most crucial knowledge which renders
it possible to get a model as good as a jointly trained one.
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