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Abstract
Heterogeneous network embedding (HNE) is a chal-
lenging task due to the diverse node types and/or
diverse relationships between nodes. Existing HNE
methods are typically unsupervised. To maximize
the profit of utilizing the rare and valuable super-
vised information in HNEs, we develop a novel
Active Heterogeneous Network Embedding (Ac-
tiveHNE) framework, which includes two compo-
nents: Discriminative Heterogeneous Network Em-
bedding (DHNE) and Active Query in Heteroge-
neous Networks (AQHN). In DHNE, we introduce
a novel semi-supervised heterogeneous network em-
bedding method based on graph convolutional neu-
ral networks. In AQHN, we first introduce three
active selection strategies based on uncertainty and
representativeness, and then derive a batch selec-
tion method that assembles these strategies using a
multi-armed bandit mechanism. ActiveHNE aims at
improving the performance of HNE by feeding the
most valuable supervision obtained by AQHN into
DHNE. Experiments on public datasets demonstrate
the effectiveness of ActiveHNE and its advantage
on reducing the query cost.

1 Introduction
Networks are pervasive in a wide variety of real-world scenar-
ios, ranging from popular social networks, to citation graphs
and gene regulatory networks. Network embedding (NE), al-
so known as network representation learning (NRL), enables
us to capture the intrinsic information of the network data
by embedding it into a low-dimensional space. Effective NE
approaches can facilitate downstream network analysis tasks,
such as node classification, community discovery, and link
prediction [Cai et al., 2017b].

Heterogeneous information networks (HINs), which in-
volve diverse node types and/or diverse relationships between
nodes, are ubiquitous in real-world scenarios [Shi et al.,
2017]. Although NE for homogeneous networks, with a s-
ingle type of nodes and a single type of relationships has
been extensively studied [Tang et al., 2015; Wang et al., 2016;
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Figure 1: The architecture of ActiveHNE. ActiveHNE consists of t-
wo components: Discriminative Heterogeneous Network Embedding
(DHNE) and Active Query in Heterogeneous Networks (AQHN).
In each iteration, once a network embedding is obtained by DHNE,
AQHN selects the most valuable nodes to be queried, and then up-
dates DHNE with the new labels.

Cai et al., 2017b; Goyal and Emilio, 2018], the rich struc-
ture of HINs presents a major challenge for heterogeneous
network embedding (HNE), since nodes of different types
should be treated differently (Challenge 1) [Chang et al., 2015;
Fu et al., 2017; Dong et al., 2017; Shi et al., 2018b;
Chen et al., 2018].

Most of the current HNE approaches are unsupervised. One
can improve the performance of HNE by properly leverag-
ing supervised information (Challenge 2). However, label
acquisition is usually difficult and expensive due to the in-
volvement of human experts (Challenge 3). For Challenge 3,
active learning (AL), a technique widely used to acquire labels
of nodes during learning, can be adopted to save cost. The se-
lection of labeled data for model training can have significant
influence on the prediction stage. AL is expected to find the
most valuable nodes to label with reduced query cost [Settles,
2009]. However, since nodes in a heterogeneous network are
not independently and identically distributed (non-i.i.d.), but
connected with links, AL with networks should account for
data dependency. In addition, for HINs, the different node
types should also be considered.

Based on the high efficiency of graph convolution network-
s (GCNs) [Kipf and Welling, 2017] in utilizing label infor-
mation, we propose a novel Active Heterogeneous Network
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Embedding framework (called ActiveHNE) to address the
above three challenges. ActiveHNE includes two components,
Discriminative Heterogeneous Network Embedding (DHNE)
and Active Query in Heterogeneous Networks (AQHN), as
illustrated in Figure 1, and described below.

• In DHNE, we introduce a semi-supervised discrimina-
tive heterogeneous network embedding method based
on graph convolutional neural networks. Since differ-
ent types of nodes and relationships should be treated
differently, we first decompose the original HIN into ho-
mogeneous networks and bipartite networks. For each
convolutional layer, DHNE separately learns the deep
semantic meanings of nodes in each obtained network,
and then concatenates the output vectors of each node
from all networks.

• In AQHN, besides the network centrality, we introduce
two active selection strategies, namely convolutional in-
formation entropy and convolutional information density
for HINs with respect to uncertainty and representative-
ness. In particular, these strategies take advantage of
the dependency among nodes and the heterogeneity of
HINs by local convolution, whose filter parameters are
defined by the node importance (meassured by the num-
ber of node types of neighbors and the degree). Then,
we iteratively query the most valuable batch of nodes
by combining the three strategies using the multi-armed
bandit mechanism [Sutton and Barto, 1998].

This work makes the following contributions. (i) We for-
malize the active heterogeneous network embedding problem,
whose objective is to seek the most valuable nodes to query
and to improve the performance of HNE using the queried
labels. (ii) We present a novel heterogeneous graph convolu-
tional neural network model for node embedding and node
classification. (iii) Considering the data dependency among
nodes and the heterogeneity of networks, we propose a new ac-
tive learning method to select the most valuable nodes to label
by leveraging local convolution and the multi-armed bandit
mechanism. Our experimental study on three real-world HINs
demonstrates the effectiveness of ActiveHNE on embedding
HINs, and on saving the query cost.

2 Related Work
Most of the previous approaches on HNE are unsuper-
vised [Shi et al., 2018b; Chang et al., 2015; Gui et al.,
2017]. Recently, methods have been proposed to leverage
meta-paths, either specified by users or derived from ad-
ditional supervision [Fu et al., 2017; Dong et al., 2017;
Shi et al., 2018a]. However, the choice of meta-paths strongly
depends on the task at hands, thus limiting their ability of
generalization [Shi et al., 2018b]. In addition, they enrich the
neighborhood of nodes, resulting in a denser network and in
higher training costs [Perozzi et al., 2014].

Graph neural networks (GNNs) are another widely studied
approach to leverage supervision [Zhou et al., 2018]. GNNs
have the ability to extract multi-scale localized spatial fea-
tures, and compose them to construct highly expressive rep-
resentations. Among all GNN approaches, graph convolution

networks (GCNs) play a central role in capturing structural
dependencies [Wu et al., 2019; Kipf and Welling, 2017]. A
comprehensive survey of the literature shows that the majority
of current GNNs are designed for homogeneous networks only.
GNNs are rarely explored for heterogeneous networks [Zhang
et al., 2018], and they are trained based on discretionary su-
pervision.

One can improve the embedding performance by acquiring
the labels of the most valuable nodes via AL. However, AL
on non-i.i.d. network data is seldom studied. In addition, the
diversity of node types in HINs makes the query criterion of
AL even harder to design. Although attempts have been made
to improve the embedding performance by incorporating AL,
they ignore the effect of classifiers’ outputs on the importance
of nodes and the dependence between nodes [Xin et al., 2018],
or neither consider the dependence between nodes, nor the
heterogeneity of networks [Zhang et al., 2017; Cai et al.,
2017a; Li et al., 2018].

3 The ActiveHNE Framework
In this section, we present our Active Heterogeneous Network
Embedding framework, called ActiveHNE. The architecture
of ActiveHNE is given in Figure 1. ActiveHNE consists of two
components: Discriminative Heterogeneous Network Embed-
ding (DHNE) and Active Query in Heterogeneous Networks
(AQHN), which are presented in the following.

3.1 Discriminative Heterogeneous Network
Embedding (DHNE)

It’s difficult to perform convolutions on networks due to the
lack of an Euclidean representation space. In addition, HINs
involve different types of nodes and relationships, each requir-
ing its own processing, and further increasing the challenge
of computing convolutions. To address this issue, we first
divide the original HIN into homogeneous networks and bipar-
tite networks (the latter involving two types of nodes). After
this, for each convolutional layer in a layer-wise convolutional
neural network, we separately convolve and learn the deep se-
mantic meanings of nodes in each obtained network, and then
concatenate the output vectors of each node from all networks.

Let {Gt|t = 1, 2, · · · , T} be the collection of obtained ho-
mogeneous networks and bipartite networks, and let {At|t =
1, 2, · · · , T} denote the adjacency matrices corresponding to
{Gt}. The spectral graph convolution theorem defines the con-
volution in the Fourier domain based on the normalized graph
Laplacian Lt = It −D

− 1
2

t AtD
− 1

2
t = D

− 1
2

t (Dt −At)D
− 1

2
t ,

where It is the identity matrix and Dt = diag(
∑
i At(i, j))

denotes the degree matrix [Kipf and Welling, 2017; Wang et
al., 2018].

Since the nodes’ degree distribution in an HIN may vary
greatly, and the interaction between two connected nodes may
be directed, an asymmetric matrix Pt = D−1

t At, instead
of the symmetric Lt, is more suitable to define the Fourier
domain. Pt is the transition probability matrix.

In this paper, we separately convolve on each obtained
network using the transition probability matrix Pt as Fourier
basis. Specifically, let Pt = ΦtΛtΦ

−1
t , where Λt and Φt are

the eigenvector matrix and the diagonal matrix of eigenvalues
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of Pt, respectively. The convolution on each obtained network
is defined as follows:

gθt ?Xt = gθt(Pt)Xt = gθt(ΦtΛtΦ
−1
t )Xt

= Φtgθt(Λt)Φ
−1
t Xt

(1)

where Xt ∈ RNt×D is the input signal of the network Gt (Nt
and D denote the number of nodes and the number of features
of each node in Gt, respectively). gθt ?Xt gives the product
of the signal Xt with a filter gθt in the graph Fourier domain,
which denotes the output of graph convolution. Φ−1

t Xt is
the Fourier transform of signal Xt. More details about the
spectral graph convolution in the Fourier domain can be found
in [Wang et al., 2018].

To convolve the local neighbors of the target node, we define
gθt(Λt) as a polynomial filter up to order K [Defferrard et al.,
2016; Zhang et al., 2018] as follows:

gθt(Λt) =
K∑
k=1

θtkΛ
k (2)

where θt ∈ RK is a vector of polynomial coefficients. Thus,
we have:

gθt ?Xt = Φt(
K∑
k=1

θtkΛ
k
t )Φ−1

t Xt =
K∑
k=1

θtkP
k
tXt (3)

From Eq. (3), the convolution on Gt only depends on the
nodes that are at most K steps away from the target node. In
other words, the output signals after the convolution operations
are defined by a K-order approximation of localized spectral
filters on networks. The filter parameters θtk can be shared
over the whole network Gt. Moreover, we generalize Eq. (3)
to D × d filters for feature maps, i.e., we map the original
feature dimension D to d. Thus, the convolution operation on
the network Gt is formalized as follows:

Ht = σ(
K∑
k=1

Pk
tXtΘt) (4)

where Θt ∈ RD×d and Ht ∈ RNt×d denote the matrix of fil-
ter parameters (the trainable weight matrix) and the convolved
signal matrix (output signals), respectively. We use ReLU(·)
for σ(·) as the activation function.

So far, we have performed the convolutions separately on
each individual network. To leverage both the homologous
and heterogeneous information of HINs for embedding, we
then concatenate in order the vectors of the convoluted signals
to obtain the final output signals for each node, according to
the network it belongs to. For a node that is not an element of
a network, we use a zero vector to represent the corresponding
output signals. Let Zt denote the concatenated convoluted
signals of nodes in Gt, we define the layer-wise convolution
on Gt as follows:

H
(l)
t = σ(

K∑
k=1

Pk
tZ

(l)
t Θ

(l)
t ), l = 0, 1, 2, ... (5)

where Z
(l)
t ∈ RNt×Td(l−1)

, Θ
(l)
t ∈ RTd(l−1)×d(l)

, and H
(l)
t ∈

RNt×d(l)

denote the activations (input signals), the matrix of

filter parameters (the trainable weight matrix), and the con-
volved signal matrix (output signals) in the l-th layer, respec-
tively. d(l) is the embedding dimension of the l-th layer, and
T is the number of networks. Specifically, Z

(0)
t = Xt and

Θ
(0)
t ∈ RD×d(1)

. Eq. (5) indicates the layer-wise propagation
rule in layer-wise convolutional neural networks. Although
we performed the convolutions separately on each individual
network, both the homologous and heterogeneous information
of HINs are used for the embedding thanks to the layer-wise
concatenation operators.

After β layers of convolutions and concatenations, we ob-
tain the final output vectors of all nodes as E = Zβ ∈
RN×Td(β)

. To obtain a discriminative embedding, we leverage
supervision (i.e., label information) by adding a fully connect-
ed layer to predict the labels of nodes as follows:

F = σ(EΘpre) (6)

where Θpre ∈ RTd(β)×C is the hidden-to-output weight ma-
trix. F ∈ RN×C , and Fic stores the probability that the
i-th node belongs to class c. The activation function σ(·) in
the last layer is the softmax function, which is defined as
softmax(Fic) = exp(Fic)∑C

c′=1
exp(Fic′ )

. Finally, the supervised
loss function is defined as the cross-entropy error over all
labeled nodes as follows:

loss = −
L∑
i=1

C∑
c=1

YiclnFic (7)

where Y ∈ {0, 1}N×C stores the ground-truth labels of nodes.
If the i-th node is associated with the c-th label, Yic = 1. Oth-
erwise, Yic = 0. The neural network weight parameters Θ

(l)
t

and Θpre are optimized using gradient descent to minimize
Eq. (7). As such, Eqs. (6) and (7) enable a semi-supervised
model for discriminative node embedding. The label of the
i-th node can be predicted as yi = arg maxc Fic.

3.2 Active Query in Heterogeneous Networks
(AQHN)

In DHNE, we perform a semi-supervised heterogeneous net-
work embedding, which requires the participation of label
information. However, label acquisition is usually difficult
and expensive due to the involvement of human experts. More
importantly, different supervision may lead to different em-
bedding performance. To train a more effective DHNE, we
propose an active query component, AQHN, to acquire the
most valuable supervision within a given budget (e.g., the
allowed maximum number of queries).

Uncertainty and representativeness are widely used criteria
to select samples for query in AL. Uncertainty selects the sam-
ple that the current classification model is least certain, while
representativeness selects the sample that can well represent
the overall input patterns of unlabeled data. Empirical studies
have shown that combining the two criteria can make more effi-
cient selection strategies [Huang et al., 2014]. In the following,
we first introduce three active selection strategies (Network
Centrality, Convolutional Information Entropy, and Convo-
lutional Information Density) for HINs based on uncertainty
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and representativeness. Then, we propose a novel method to
combine these strategies to adaptively and iteratively select
the most valuable batch of nodes to query, by leveraging the
multi-armed bandit mechanism [Sutton and Barto, 1998].

Selection Strategy
Network centrality (NC). NC (e.g., degree centrality and
closeness centrality) [Freeman, 1978] is an effective measure
to evaluate the representativeness of nodes. In this paper, we
simply use degree centrality, which is defined as φnc(vi) =
|Ni|, to evaluate the centrality of nodes. Ni includes all the
direct neighbors of vi. Other measures of network centrality
in HINs will be studied later.

Nodes in a HIN are non-i.i.d. and are connected by links,
which reflect the dependency among nodes. Inspired by the
idea of spectral graph convolution that defines the convoluted
signal as a linear weighted sum of its neighbor signals, we
propose two novel active strategies to select nodes for query in
HINs based on a convolution of neighbors. We first define the
convolution parameters (i.e., weight parameters) and then the
selection strategies. Let wi = tanh(niN + mi

VT
) ∈ [0, 1) be the

weight that quantifies the importance of node vi. tanh(·) is
the hyperbolic tangent function. Here ni and mi represent the
number of neighbor nodes of vi and the number of node types
of these neighbors. N and VT are the total number of nodes
and node types in the whole network, respectively. A larger
value of ni or mi implies that more complex information is
conveyed by vi, and thus vi may be more important to its
neighbor nodes. In the following, we use wi as the weight
parameters for convolving neighbors.
Convolutional Information Entropy (CIE). Information
Entropy (IE) is a widely used metric to evaluate uncertainty.
In this paper, we evaluate the uncertainty of node vi using CIE
as follows:

φcie(vi) =
∑

vj∈{vi
⋃
Ni}

wj(−
C∑
c=1

Fjc log Fjc) (8)

The uncertainty of vi is a weighted sum of the uncertainties of
its neighbors and itself.
Convolutional Information Density (CID). The represen-
tativeness of nodes in the embedding space is also crucial to
measure the value of nodes. We apply k-means clustering on
the embedding to calculate the information density (ID) of
nodes, due to its high efficiency. The number of clusters for
k-means is simply set to the number of class labels. CID of vi
based on its neighbors is quantified as follows:

φcid(vi) =
∑

vj∈{vi
⋃
Ni}

wj
1

1 + dis(Ej , ϕ(vj))
(9)

where dis(·) is the distance metric (i.e., Euclidean distance) in
the embedding space, ϕ(vi) is the center vector of the cluster
to which vi belongs. Ej is the embedding of the j-th node.
ϕ(vj) and Ej belong to the same space. The proposed CIE
and CID measure the value (uncertainty or representativeness)
of a node based on the node itself and its neighbors, while IE
and ID are based on the node only. Since nodes in networks
are connected by links, CIE and CID are more appropriate
than IE and ID. We demonstrate this in Section 4.3.

Multi-Armed Bandit for Active Node Selection
We select the most valuable nodes by leveraging the above
three selection strategies. In particular, we study the batch
mode setting, in which b nodes are queried in each iteration.
First, we select top b nodes with the highest φnc, φcie, and
φcid scores as the initial candidates of each selection strategy,
respectively. To jointly select the most valuable b nodes from
all selection strategies, one can evaluate the score of each node
by using the weighted sum of scores of each strategy, where
the weights capture the importance of corresponding strategies.
Then, the problem of active node selection is transformed into
the estimation of the importance of each strategy. But the
importance of each strategy is time-sensitive and thus difficult
to be specified [Cai et al., 2017a]. We introduce a novel
method to adaptively learn the dynamic weight parameters
based on the multi-armed bandit mechanism. The well-known
multi-armed bandit (MAB) problem is a simplified version of
the reinforcement learning problem [Sutton and Barto, 1998],
which explores what a player should do given a bandit machine
with Λ arms and a budget of iterations. In each iteration,
an agent plays one of the Λ arms to receive a reward. The
objective is to maximize the cumulative reward. Combinatorial
MAB (CMAB) [Chen et al., 2013], an extension of MAB,
allows to play multiple arms in each iteration.

Based on the idea of the CMAB, we can view each selection
strategy as an arm, and approximate the importance of each
strategy by estimating the expected reward (i.e., utility) of the
corresponding arm. Let Cλr be the initial candidate set of arm
λ in iteration r, and Qr be the actually queried set of nodes
in that iteration. Intuitively, the actual reward of arm λ can be
defined as:

µr(λ) = ψ(fLr
⋃
Qλr )− ψ(fLr ) (10)

where Lr is the available labeled set of nodes in iteration r.
Qλr = Cλr

⋂
Qr is the set of queried nodes that are dominated

by arm λ in iteration r. fLr is the classifier trained on Lr, and
ψ(fLr ) is the classification performance of fLr . We observe
that µr(λ) for the current iteration can’t be computed since
the ground-truth of Qλr is unavailable. The empirical reward
is typically used to estimate the expected reward of arms. But
computing the empirical µr(λ) of each arm in each iteration
is very time-consuming; as such, we estimate the empirical
reward of each arm using the local embedding changes of
nodes caused by the arm.

We first define the local embedding changes caused by arm
λ in iteration r as follows:

∆r(λ) =
∑
vi∈Qλr

∑
vj∈N (vi)

dis(Er
j ,E

r−1
j ) (11)

where dis(·) is the distance metric (e.g., Euclidean distance),
N (vi) is the neighbors of vi, and Er

j is the node embedding of
vj in iteration r. Eq. (11) measures the empirical reward of ar-
m λ in iteration r using the local embedding changes of nodes
caused by the arm λ, which equates to the embedding changes
of neighbor nodes of the nodes dominated by arm λ (or Qλr ).
This AL strategy aims to select nodes that result in the greatest
change to the embeddings when their labels are available. The
intuition is that one can view the magnitude of the resultant
change of embeddings as the value of purchasing the labels. If

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2126



this magnitude of change is small, then the labels do not pro-
vide much new information and have a low value. To achieve
a fair comparison and avoid bias, the empirical reward of arm
λ in iteration r is estimated as µ̂r(λ) = ∆r(λ)

∆r(
⋃Λ
λ=1 λ)

, where

∆r(
⋃Λ
λ=1 λ) denotes the local embedding changes caused by

all arms (or Qr). Due to the fact that the importance of each
selection strategy changes over time, we use the average of
the last two empirical rewards to estimate the current expected
reward as follows:

µ̄r(λ) =
µ̂r−2(λ) + µ̂r−1(λ)

2
(12)

To mitigate the exploration-exploitation dilemma of CMAB,
the combinatorial upper confidence bound algorithm [Chen et
al., 2013] estimates expected rewards based on the empirical
rewards and the number of times an arm is explored. In the

same way, we adjust µ̄r(λ) as µ̃r(λ) = µr(λ)+
√

3lnr
2nλ

, where
nλ denotes the total number of nodes queried by arm λ. This
adjustment can boost the expected reward of under-explored
arms to avoid dismissing a potentially optimal strategy without
sufficient evidence.

After this, to avoid selecting highly controversial nodes,
we estimate the expected reward of un-queried nodes vi ∈⋃Λ
λ=1 Cλr in iteration r using the weighted Borda count as

follows:

µ̃∗r(vi) =
Λ∑
λ=1

µ̃r(λ)(b− rankλr (vi)) (13)

where rankλr (vi) ∈ [1, b] is the rank order of node vi in arm
λ in iteration r (sorted in descending order of scores). Finally,
the top b nodes (from

⋃Λ
λ=1 Cλr ) with the highest µ̃∗r(vi) are

selected as the query batch Qr in iteration r.

4 Experiments
4.1 Experimental Setup
Datasets. We evaluate ActiveHNE on three real-world HINs
extracted from DBLP1, Cora2, and MovieLens3. The extracted
DBLP consists of 14K papers, 20 conferences, 14K authors,
and 9K terms, with a total of 171K links. The extracted Movie-
Lens includes 9.7K movies, 12K writers, 4.9K directors, 0.6K
users, and 1.5K tags, with a total of 140K links. The extracted
Cora has 25K authors, 19K papers, and 12K terms, with 146K
links. We evaluate the performance of network embedding
using the Accuracy of node classification task. More details
of the task can be found in the supplemental file.
Baselines. we compare ActiveHNE against the following
state-of-the-art methods and a variant of ActiveHNE that ran-
domly selects nodes to query (in a kind of naive AL setting):
• GCN [Kipf and Welling, 2017]: a semi-supervised net-

work embedding model, with no consideration of net-
works heterogeneity. To adapt GCN in AL settings, n-
odes are randomly selected for query in each iteration
(naive AL setting).

1https://dblp.uni-trier.de/db/
2http://web.cs.ucla.edu/ yzsun/data/
3https://grouplens.org/datasets/movielens/

• metapath2vec [Dong et al., 2017] and HHNE [Wang et
al., 2019]: two unsupervised HNE methods also adapted
in the naive AL setting.

• AGE [Cai et al., 2017a] and ANRMAB [Li et al., 2018]:
two active network embedding methods without consider-
ing the dependence between nodes and the heterogeneity
of networks.

• DHNE: a variant of ActiveHNE that randomly selects
nodes to query in the naive AL setting.

For the proposed DHNE and ActiveHNE, we simply set
K = 1 for comparative evaluation, and leave the investigation
onK in the supplemental file. We train DHNE using a network
with two convolutional layers and one fully connected layer
as described in Section 3.1, with a maximum of 200 epochs
(training iterations) using Adam. The dimensionality of the
two convolutional filters is 16 and C, respectively. We use an
L2 regularization factor for all the three layers. The remaining
parameters are fixed as in GCN [Kipf and Welling, 2017].
For metapath2vec and HHNE, we apply the commonly used
meta-path schemes “APA” and “APCPA” on DBLP and Cora,
and we use “DMTMD” and “DMUMD” on MovieLens to
guide metapath-based random walks. The walk length and the
number of walks per node are set to 80 and 40 as in HHNE,
respectively.

Following the experimental settings in [Kipf and Welling,
2017], we randomly divide the labeled nodes into three parts:
the training set (25% of the labeled nodes), the validation set
(25% of the labeled nodes for hyperparameter optimization in
DHNE), and the remaining as the testing set. For AL settings,
the training set is used as the unlabeled pool (U). All the
comparing methods in AL settings iteratively query the labels
of the selected batch of nodes from U , and then add these
queried nodes with labels into L (the set of labeled training
nodes). For a fair comparison, we use the proposed DHNE as
the basic embedding and classification method for all active
learning methods (AGE and ANRMAB) in the experiments.
The non-AL methods (i.e., DHNE, GCN, metapath2vec, and
HHNE), randomly select the nodes to label in each iteration
of AL. To evaluate the classification performance of metap-
ath2vec and HNNE, we train a logistic regression classifier
using the respective embedding of nodes. In the following, we
run each method ten times and report the average results.

4.2 Comparison against State-of-the-art Methods
The goal of ActiveHNE is to improve classification perfor-
mance with as few queried nodes as possible. Figure 2 shows
the accuracy of all the comparing methods on the three dataset-
s, as a function of the number of iterations. One iteration
corresponds to b queried nodes. We set the batch size b = 20
for Cora and MovieLens, and b = 5 for DBLP, to display the
difference in accuracy with respect to the number of iterations.
From Figure 2, we can make the following observations:
(i) Active vs. naive-active: ActiveHNE, an active method that
combines DHNE and AHQN, significantly outperforms naive-
active methods (DHNE, GCN, HHNE, and metapath2vec),
which randomly select nodes for query. This shows that AL is
conducive to improving embeddings for classification.
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Figure 2: Accuracy vs. number of iterations for all methods on the three datasets.

1 10 20 30 40
0.35

0.45

0.55

0.65

Ac
cu

ra
cy

The number of iterations

 

 

ActiveHNE
ActiveHNE−nc
ActiveHNE−id
ActiveHNE−cid
ActiveHNE−ie
ActiveHNE−cie

(a) MovieLens

1 10 20 30 40
0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

The number of iterations

 

 

ActiveHNE
ActiveHNE−nc
ActiveHNE−id
ActiveHNE−cid
ActiveHNE−ie
ActiveHNE−cie

(b) Cora

Figure 3: Accuracy vs. number of iterations: ActiveHNE against its
four variants on MovieLens and Cora.

(ii) ActiveHNE vs. other active methods: ActiveHNE outper-
forms the other AL-assisted methods (ANRMAB and AGE)
on MovieLens and Cora, and has comparable performance
to ANRMAB on DBLP. Since these three methods use the
same embedding module and only differ on the active learning
strategy, the superior performance of ActiveHNE validates the
effectiveness of our designed active query strategy. ANRMAB
and AGE lose to DHNE in most cases. This is because they
don’t consider the heterogeneity and dependency of nodes
in HINs. These results demonstrate the effectiveness of our
proposed AQHN for DHNE.
(iii) DHNE vs. other network embedding methods: DHNE
significantly outperforms the three representative network em-
bedding methods (GCN, HHNE, and metapath2vec), when
they all use the naive-AL setting. This observation shows the
superiority of DHNE in embedding HINs for nodes’ classi-
fication, and it also justifies the rationality of dividing HINs
into homologous networks and bipartite networks. The poor
performance of HHNE and metapath2vec may be caused by
the improper meta-path schemes and by the sensibility of
parameters in metapath-based random walks.

4.3 Effectiveness of Individual Selection Strategy
In Section 3.2, we use three node selection strategies: NC,
CIE, and CID. The latter two are our proposed novel strategies.
To validate their effectiveness, we introduce five variants:

• ActiveHNE-nc only uses NC φnc;

• ActiveHNE-cie only uses CIE φcie in Eq. (8);

• ActiveHNE-ie only uses the original information entropy
φie(vi) = −

∑C
c=1 Fic log Fic;

• ActiveHNE-cid only uses CID φcid in Eq. (9);
• ActiveHNE-id only uses the original information density
φid(vi) = 1

1+dis(Ei,ϕ(vi))
.

The same settings as in Figure 2 are used, and the results
are shown in Figure 3. From Figure 3, we can conclude the
following:
(i) ActiveHNE achieves the best accuracy among its variants.
Although ActiveHNE-cie obtains an accuracy comparable to
ActiveHNE on Cora, it significantly loses to ActiveHNE on
MovieLens. These results demonstrate the effectiveness of
ActiveHNE in combining three active selection strategies, s-
ince one single strategy cannot fit all datasets.
(ii) ActiveHNE-cie and ActiveHNE-cid achieve a better accu-
racy than ActiveHNE-ie and ActiveHNE-id, respectively. This
result corroborates the effectiveness of our proposed CIE and
CID in selecting the most uncertain and most representative
nodes.

5 Conclusion
In this paper, we studied how to achieve active discriminative
heterogeneous network embedding by optimally acquiring
and using labels of network nodes. The proposed framework
ActiveHNE extends graph convolution networks to heteroge-
neous networks by dividing the given network into multiple
homogeneous and bipartite sub-networks, and performing con-
volutions on these networks. Three different query strategies
are combined to query the labels of the most valuable nodes,
which are fed back for the next round of discriminative net-
work embedding. ActiveHNE achieves a superior or compa-
rable performance to other methods. More extensive perfor-
mance evaluation of ActiveHNE is given in the supplemental
file. The code and supplemental file of ActiveHNE are avail-
able at http://mlda.swu.edu.cn/codes.php?name=ActiveHNE.
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