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Abstract

Optimal Transport (OT) formulates a powerful
framework by comparing probability distribution-
s, and it has increasingly attracted great attention
within the machine learning community. However,
it suffers from severe computational burden, due to
the intractable objective with respect to the distri-
butions of interest. Especially, there still exist very
few attempts for continuous OT, i.e., OT for com-
paring continuous densities. To this end, we devel-
op a novel continuous OT method, namely Copula
OT (Cop-OT). The basic idea is to transform the
primal objective of continuous OT into a tractable
form with respect to the copula parameter, which
can be efficiently solved by stochastic optimization
with less time and memory requirements. Empir-
ical results on real applications of image retrieval
and synthetic data demonstrate that our Cop-OT
can gain more accurate approximations to contin-
uous OT values than the state-of-the-art baselines.

1 Introduction
Optimal Transport (OT), a powerful distance for compar-
ing probability distributions, has recently attracted great at-
tention in machine learning area [Rubner et al., 2000; Pele
and Werman, 2009; Ni et al., 2009; Courty et al., 2017;
Arjovsky et al., 2017; Wang et al., 2018; Li et al., 2019].
In contrast to other popular distances of distributions, e.g.,
KL-divergence, (1) OT is more effective to describe the ge-
ometry of distributions by considering the spatial location of
the distribution modes [Villani, 2003]; (2) it has also gained
the superior performance in real applications, such as image
retrieval [Pele and Werman, 2009], image segmentation [Ni
et al., 2009] and generative adversarial network [Arjovsky et
al., 2017] etc.

The motivation of OT begins with the Monge problem
[Monge, 1781]. That is, for any twoD-dimensional probabil-
ity distributions, denoted as p(x) and q(y) over metric spaces
X and Y , it consists of finding an optimal map f(x): X → Y
that transports the mass of p(x) to q(y) with minimum cost
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given a predefined cost function c(x, y): X × Y → R+:

min
f

∫
X
c(x, f(x))dp(x)

s.t. f(x) ∼ y

One concern of the Monge’s problem is that the map f(x)
that satisfies the constraint may not always exist, e.g., when
p(x) is a discrete distribution. To achieve a more feasible
solution, the Kantorovich problem [Kantorovitch, 1942], a
relaxed version of the Monge problem, has been proposed. It
transforms the optimal map problem into finding an optimal
joint distribution π(x, y) with marginals p(x) and q(y), i.e.,
an cheapest transport plan from p(x) to q(y):

min
π∈Π(p,q)

∫
Y

∫
X
π(x, y)c(x, y)dxdy

s.t. x ∼ p(x), y ∼ q(y), (1)

where Π(p, q) is the set of all joint distributions with
marginals p(x) and q(y). For our case, we focus on the Kan-
torovich problem due to its feasibility, and claim OT for this
problem in the subsequent sections of the paper.

Generally speaking, the primal objective of OT, i.e., Eq.1,
is intractable to compute, since it involves the optimization
about the distributions of interest. A mainstream methodol-
ogy is to formulate its dual problem with regularizers, e.g.,
entropic and `2-norm penalization [Cuturi, 2013; Ferradan-
s et al., 2014; Genevay et al., 2016; Seguy et al., 2018;
Blondel et al., 2018], leading to approximate but easier solved
objectives with respect to dual variables. For example, the
representative work proposed in [Cuturi, 2013] incorporates
an entropic regularization term into the dual OT problem of
two discrete distributions, so as to achieve a convex objective,
which can be solved by the Sinkhorn’s algorithm. Naturally,
they have been successfully applied to approximately com-
puting OT values in many real applications [Kusner et al.,
2015].

The above existing methods, however, mainly focus on the
discrete distributions, and cannot cope with continuous OT,
i.e., OT for comparing continuous densities. To the best of our
knowledge, rarely few works [Genevay et al., 2016; Seguy et
al., 2018] attempt to fill this gap for continuous OT. A typical
method [Genevay et al., 2016], referred to as Kernel Optimal
Transport (K-OT), parameterizes the dual variables by kernel
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Method Primal objective Time complexity Space complexity

K-OT [Genevay et al., 2016] × O(T 3S3D) O(TSD + fk(D))

NN-OT [Seguy et al., 2018] × O(TS2D) O(SD + fn(D))

Cop-OT (Ours)
√

O(TSD2) O(SD +D2)

Table 1: A brief summary of methods for continuous OT

functions, so as to transform the regularized dual objective
into an expectation form with respect to p(x)q(y), and then
it can be solved through stochastic optimization by drawing
Monte Carlo samples from p(x)q(y).

However, since at each iteration the update process has
to recycle the samples of previous iterations, K-OT suf-
fers from higher costs of O(T 3S3D) time complexity and
O(TSD + fk(D)) memory space, where S and T are sam-
ple numbers of per-iteration and the total number of itera-
tions, and fk(D) specifies the memory cost of kernel func-
tions. [Seguy et al., 2018] utilizes neural networks to param-
eterize the dual variables, instead of kernel functions, lead-
ing to another candidate method of continuous OT, namely
Neural Network Optimal Transport (NN-OT). That requires
O(TS2D) time and O(SD + fn(D)) space, where fn(D)
specifies the memory cost of neural networks. However, one
salient problem remains: their target is to find the optima of
the regularized dual objective, rather than the primal objec-
tive of OT, i.e., Eq.1, theoretically introducing biases. An-
other problem is that they are empirically insensitive to the
regularization parameters, making them less practical.

Our contributions. In this work, we attempt to further con-
tribute on this challenging topic of continuous OT. Compared
with the prior arts of K-OT and NN-OT under in Table 1,
our motivation is to directly optimize the primal objective of
continuous OT, i.e., Eq.1, instead of its regularized dual ver-
sions, so as to achieve more accurate approximations. Our
basic idea is to formulate the joint distribution π(x, y) using
the well-established copula [Sklar, 1959], and then transform
the primal objective with respect to distributions of interest
into a tractable form with respect to the copula parameter, en-
abling to be efficiently solved by stochastic optimization. Fol-
lowing this, a novel continuous OT method, namely Copula
Optimal Transport (Cop-OT), was developed. We first pro-
pose the Cop-OT for comparing 1-D continuous densities,
and then extend it to high dimensional ones, i.e., D ≥ 2,
with requirements of time, i.e., O(TSD2), and memory, i.e.,
O(SD + D2). Referring to Table 1, Cop-OT is more effi-
cient than K-OT, and practically more efficient than NN-OT
due to the expensive computational cost on neural networks.
Empirical studies on synthetic data and real applications of
image retrieval demonstrate that Cop-OT can gain more ac-
curate approximations to continuous OT values than the state-
of-the-art baselines of K-OT and NN-OT.

Related work. The existing works on OT mainly focus on
comparing discrete distributions. In this setting, OT is ac-
tually equivalent to the linear programming problem, which
can be solved in cubic complexity. Some attempts inves-

tigate approximate but more efficient methods. The main-
stream methodology is built on the idea of formulating regu-
larized dual objectives [Cuturi, 2013; Benamou et al., 2015;
Genevay et al., 2016; Seguy et al., 2018], and solving
them using the commonly used optimization schemes, e.g.,
the Sinkhorn’s algorithm and stochastic optimization. Be-
sides, there are some works [Aurenhammer et al., 1998;
Genevay et al., 2016; Lévy and Schwindt, 2018; Seguy et
al., 2018] on the semi-discrete OT, i.e., OT for comparing
a continuous density and a discrete distribution. They em-
ploy the machinery of c-transforms to eliminate one dual
variable, and then obtain convex finite dimensional optimiza-
tions, solved by the Newton method [Lévy and Schwindt,
2018] and stochastic optimization [Genevay et al., 2016;
Seguy et al., 2018]. To the best of our knowledge, only very
few works on continuous-OT, which is still an open problem
we attempt to tackle in this paper.

2 Proposed Method
Our goal on the problem is for the computation of OT be-
tween continuous densities p(x) and q(y), i.e., continuous
OT. However, it is intractable to compute, since its target, i.e.,
its objective of Eq.1, is to minimize the transport cost by find-
ing an optimal joint distribution π(x, y) from an unknown set
of distributions with marginals p(x) and q(y). To effectively
solve the continuous OT, we propose a novel method, name-
ly Copula Optimal Transport (Cop-OT). The basic idea is to
re-parameterize the joint distribution π(x, y) with the well-
established copula [Sklar, 1959] on p(x)q(y), so as to trans-
form the primal objective of continuous OT into a tractable
objective with respect to the copula parameter, referring to
as the copula objective. We directly derive its gradient to
an expectation form with respect to p(x)q(y), therefore we
can efficiently solve it following the spirit of stochastic op-
timization, where we iteratively update the copula parameter
by forming noisy gradients using Monte Carlo samples drawn
from p(x)q(y).

For the rest of this section, we briefly review the concept
of copula, and then describe the Cop-OT for 1-D continu-
ous densities and the extension to high dimensional ones, i.e.,
D ≥ 2.

2.1 Copula

The story of copula begins with the theorem of Sklar [Sklar,
1959]: For any continuous joint distribution π(x, y), x, y ∈
RD, its Cumulative Distribution Function (CDF), denoted
as F (·), can be represented by a copula with respect to the
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marginal CDFs Fi(·) as follows:

F (x, y) =

COP (F1(x1), · · · , FD(xD), FD+1(y1), · · · , F2D(yD)|η) ,

where η is the copula parameter. Then, one can directly derive
the following equation of π(x, y):

π(x, y) =
∏D

i=1
pi(xi)qi(yi)

cop (F1(x1), · · · , FD(xD), FD+1(y1), · · · , F2D(yD)|η) ,(2)

where cop(·) denotes the copula density; pi(·) and qi(·) are
the marginals of p(x) and q(y), respectively. For brevity, we
omit the notation of CDF, i.e., F (·), enabling to re-write Eq.2
as follows:

π(x, y) =
∏D

i=1
pi(xi)qi(yi)cop(x1, y1, · · · , xD, yD|η)

(3)
In practice, there are many well-established families of

copulas, including Gaussian, Clayton, Frank, Gumbel, Joe
and Student-t copulas [Dissmann et al., 2013]. Given these
copulas, one can describe any continuous joint distribution
via a copula-related form parameterized by η.

2.2 Cop-OT for 1-D Continuous Densities
We are now ready to propose the Cop-OT for 1-D contin-
uous densities, where both p(x) and q(y) are 1-dimensional
densities. Under this situation, referring to Eq.3, the joint dis-
tribution π(x, y) can be directly represented by the following
form with the copula density:

π(x, y) = p(x)q(y)cop(x, y|η), (4)

Combining Eq.4 with the primal objective of Eq.1, we can
equivalently transform it into a tractable copula objective with
respect to η:

min
η
L(η)

∆
=

∫
Y

∫
X
p(x)q(y)cop(x, y|η)c(x, y)dxdy

s.t. x ∼ p(x), y ∼ q(y), (5)

Given pre-defined copula cop(x, y|η) and cost function
c(x, y), we can iteratively optimize the objective L(η) by
gradient-based methods, so as to derive its gradient to an ex-
pectation form with p(x)q(y)1:

∇ηL = ∇η
∫
Y

∫
X
p(x)q(y)cop(x, y|η)c(x, y)dxdy

=

∫
Y

∫
X
p(x)q(y)∇ηcop(x, y|η)c(x, y)dxdy

= Ep(x)q(y)[∇ηcop(x, y|η)c(x, y)] (6)

Therefore, we can directly form a noisy gradient using the
Monte Carlo samples drawn from p(x)q(y), to simultaneous-
ly satisfy the constraints in Eq.5:

∇ηL ≈
1

S

∑S

s=1
∇ηcop(x(s), y(s)|η)c(x(s), y(s))

x(s) ∼ p(x), y(s) ∼ q(y), (7)
1There exist many off-the-shelf copula libraries, e.g., VineCopu-

la, which can compute the gradients of copulas, i.e.,∇ηcop(x, y|η).

where S is the number of Monte Carlo samples. Then, at
each iteration t, the parameter of interest η can be updated as
follows:

ηt ← ηt−1 − ρt∇ηL, (8)
where ρt is the learning rate.

Note that this optimization process strictly follows the spir-
it of stochastic optimization [Robbins and Monro, 1951],
where the expectation of the noisy gradient used, i.e., Eq.7,
is equivalent to the true gradient, i.e., Eq.6. Therefore it guar-
antees to converge to a local optimum, if the learning rate
satisfies the Robbins-Monro condition:∑∞

t=1
ρt =∞,

∑∞

t=1
ρ2
t <∞

Variance Reduction by Reparameterization
Such noisy gradient of Eq.7, formed by using Monte Carlo
samples, often suffers from high variance, resulting in slow-
er convergence and even worse performance [Paisley et al.,
2012; Li et al., 2018]. To alleviate this, we use the reparam-
eterization trick [Kingma and Welling, 2013], an empirically
effective method for variance reduction. The basic idea is to
use a transformation of a simple random variable by a differ-
entiable mapping function, and then form the noisy gradient
using Monte Carlo samples drawn from the distribution of
this simple random variable. Inspired by this, we re-write the
noisy gradient of Eq.7 with reparameterization as follows:

∇ηL ≈
1

S

∑S

s=1
∇ηcop(fx(u(s)), fy(v(s))|η)c(fx(u(s)), fy(v(s)))

u(s) ∼ p̂(u), v(s) ∼ q̂(v), (9)

where u and v are the corresponding simple random variables
for x and y, respectively, and p̂(u) and q̂(v) are their distribu-
tions; fx(·) and fy(·) are the mapping functions for x and y,
respectively.

For clarity, we illustrate an example: If p(x) is an Gaussian
with mean µ and variance σ2, i.e., x ∼ N (µ, σ2), the corre-
sponding distribution p̂(u) of the simple random variable can
be the standard Gaussian, i.e., u ∼ N (0, 1), and the mapping
function is fx(u) = µ+ uσ.

Learning Rate Setting
The stochastic optimization of Cop-OT may be sensitive to
the learning rate ρt. To address this, we use the Adam method
[Kingma and Ba, 2015] to adaptively adjust the optimization
process, which guarantees the convergence. For clarity, we
briefly review this method.

The Adam method is built on the first and second moments
of the gradients, requiring to compute exponential moving
averages of the gradient mt and the squared gradient rt.

mt = β1mt−1 + (1− β1)∇ηL,

rt = β2rt−1 + (1− β2)∇ηL2,

where β1 and β1 control the decay rates of these moving av-
erages; and∇ηL2 is the elementwise square of the gradient.

Then, at each iteration t, we can update η using the follow-
ing equation:

ηt ← ηt−1 − α
mt

rt
, (10)
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where α is the step size in the Adam method. Following [K-
ingma and Ba, 2015], in this work we empirically fixed the
parameters of Adam as follows: β1 = 0.9, β2 = 0.999 and
α = 0.001.

2.3 Extension to High-dimensional Densities
In this section, we extend Cop-OT to high-dimensional con-
tinuous densities p(x) and q(y), x, y ∈ RD, D ≥ 2.

Be analogous to the 1-D problem setting, we can also
achieve a high-dimensional copula objective, however, it suf-
fers from a severe problem: Since the copula formulation of
π(x, y), i.e., Eq.3, refers to all marginals, we can only form
noisy gradients using Monte Carlo samples drawn from the
marginals of p(x) and q(y), rather than samples from p(x)
and q(y). This doesn’t satisfy the constraints of OT, i.e.,
x ∼ p(x) and y ∼ q(y).

To resolve this, we resort to a novel form of π(x, y) that
refers to p(x) and q(y) using the D-vine method [Dissmann
et al., 2013], which decomposes a high-dimensional copula
into a set of conditional bivariate copulas. After some simple
algebra2, we propose the following form with the product of
D2 conditional bivariate copulas between each component of
x and y:

π(x, y) = p(x)q(y)
∏D

i,j
copxy(xi, yj |D(eij), η

xy
ij ), (11)

whereD(eij) denotes the variable conditioning set of the pair
(xi, yj).

Applying Eq.11 to the primal objective of the above cop-
ula objective, we achieve a copula objective of OT for high-
dimensional densities:

min
ηxy

L(ηxy)
∆
=∫

Y

∫
X
p(x)q(y)

∏D

i,j
copxy(xi, yj |D(eij), η

xy
ij )c(x, y)dxdy

s.t. x ∼ p(x), y ∼ q(y) (12)

Be analogous to Eq.6, the gradient of Eq.12 can be also rep-
resented by an expectation form with respect to p(x)q(y):

∇ηxy
ij
L =

Ep(x)q(y)

[
∇ηxy

ij

∏D

i,j
copxy(xi, yj |D(eij), η

xy
ij )c(x, y)

]
(13)

We propose a noisy gradient using Monte Carlo samples from
p(x)q(y), which naturally satisfies the constraints in Eq.12.
However, we actually need a further approximation, since ev-
ery conditional bivariate copula copxy(·) refers to the condi-
tional marginals pi(xi|D(eij)) and qi(yi|D(eij)), rather than
p(x) and q(y), so that the samples from these conditional
marginals are also needed to compute copxy(·). Since the
conditional marginals are commonly intractable to compute,
we use the corresponding marginals to replace them to further
simplify the computation. Then, we approximate the noisy

2The derivation details of Eq.11 can be found at
https://github.com/jinjinchi/Approximate-Optimal-Transport-
for-Continuous-Densities-with-Copulas.

Algorithm 1 Optimization of Cop-OT

1: Input: Continuous densities p(x), q(y), x, y ∈ RD
2: Setting: (1) Choose the cost function c(·); (2) construc-

t distributions p̂(u) and q̂(v) for reparameterization; (3)
choose the bivariate copula function cop(·|η), and ini-
tialize η randomly

3: For s = 1 to S
4: Draw u(s) ∼ p̂(u)
5: Draw v(s) ∼ p̂(v)
6: End For
7: If D ≥ 2
8: For s = 1 to S && i = 1 to D
9: Draw u

(s)
i ∼ p̂i(ui)

10: Draw v
(s)
i ∼ q̂i(vi)

11: End For
12: Repeat
13: Form the noisy gradient using Eq.9, If D = 1
14: Form the noisy gradient using Eq.15, If D ≥ 2
15: Update η or ηxy using the Adam method.
16: Until Convergence
17: Output: OT between p(x) and q(y) approximated by

Cop-OT

gradient using Monte Carlo samples from both p(x)q(y) and
their marginals:

∇ηxy
ij
L ≈

1

S

∑S

s=1
∇ηxy

ij

∏D

i,j
copxy(x

(s)
i , y

(s)
j |η

xy
ij )c(x(s), y(s))

x(s) ∼ p(x), y(s) ∼ q(y)

x
(s)
i ∼ pi(xi), y

(s)
j ∼ qj(yj) (14)

For variance reduction, we also apply the reparameteriza-
tion trick, so as to re-write the gradient of Eq.14 as follows:

∇ηxy
ij
L ≈ 1

S

S∑
s=1

∇ηxy
ij

D∏
i,j

copxy(fxi
(u

(s)
i ), fyj (v

(s)
j )|ηxyij )

× c(fx(u(s)), fy(v(s)))

u(s) ∼ p̂(u), v(s) ∼ q̂(v)

u
(s)
i ∼ p̂i(ui), v

(s)
j ∼ q̂j(vj), (15)

where ui and vj are the components of u and v, respectively;
p̂i(ui) and q̂j(vj) are the marginals of p̂(u) and q̂(v), respec-
tively. Given these noisy gradients, the parameter of interest,
i.e., ηxy , can be finally updated using the Adam method.

Full algorithm. In summary, we outline the full optimiza-
tion process of Cop-OT in Algorithm 1.

Discussion. We discuss some crucial details of Cop-OT: (1)
Referring to Eqs.9 and 15, at each iteration, Cop-OT com-
putes the noisy gradients using samples from the same dis-
tributions, i.e., p̂(x), q̂(y) and their marginals. Therefore, we
only need to draw samples once and iteratively re-use them as
indicated in Algorithm 1. (2) For high-dimensional Cop-OT,
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Figure 1: Error rate of 1-D Gaussians with different means and variances. Each sub-figure presents the results of different pairs of {µx, µy}:
(a) {21, 23}; (b) {21, 25}; (c) {21, 27}; (d) {23, 25}; (e) {23, 27}; (f) {25, 27}.

its noisy gradient of Eq.15 doesn’t strictly satisfy the conver-
gence condition of stochastic optimization, since its expec-
tation only approximates the true gradient of Eq.13. Fortu-
nately, it can empirically converge fast to achieve competi-
tive results. We show more details of results in the Section of
experiment.

Complexity analysis. We discuss the complexity of Cop-
OT. Reviewing Eq.12, the copula objective actually involves
D2 bivariate copulas between each pair of xi and yj , leading
to D2 copula parameters of interest. Therefore, reviewing E-
q.15, Cop-OT needs to form the noisy gradient for each copu-
la parameter using 2S samples, requiringO(TSD2) time and
O(SD+D2) memory, where T is the total iteration number.
Besides, we would like to notice that the 1-D setting can be
considered as a special case of D = 1, requiring O(TS) time
and O(S) memory.

3 Empirical Study
In this section, we empirically evaluate Cop-OT on both syn-
thetic and real data.

3.1 Experimental Setup
Our aim is to examine whether Cop-OT can accurately ap-
proximate the continuous OT. To this end, we evaluate the
OT with the squared Euclidean cost, i.e., c(x, y) = ‖x −
y‖22, x, y ∈ RD, between two Gaussian distributions with
means µx, µy ∈ RD and covariance matrices Σx,Σy ∈

RD×D, i.e., p(x) = N (µx,Σx), q(y) = N (µy,Σy), which
has a Closed-Form Solution (CFS) [Givens et al., 1984] com-
puted by:

W ∗xy(p(x), q(y))

=

√
‖µx − µy‖22 + Tr

(
Σx + Σy − 2(Σ

1/2
y ΣxΣ

1/2
y )1/2

)
,(16)

where Tr(·) denotes the trace of a matrix.
We compare Cop-OT against two baseline methods of K-

OT3 [Genevay et al., 2016] and NN-OT4 [Seguy et al., 2018].
For both baselines, we implemented in-house codes based on
their demo codes of the semi-continuous versions provided
by their authors.

For K-OT and NN-OT, we adjust the regularization param-
eter over the set [10−3, 10−2, · · · , 103] and report the best
results. For Cop-OT, we employ the family of Gaussian cop-
ula function, and use the standard Gaussians as the mapping
distribution in the reparameterization trick. For all methods.
the sample number S is set to 200, and we report the average
results of five independent runs.

Besides, in our early experiments, we have examined var-
ious copula families, e.g., Clayton, Frank, Gumbel, Joe and
Student-t copulas, and found that the Gaussian copula per-
formed the best in most settings.

3https://github.com/audeg/StochasticOT
4https://github.com/vivienseguy/Large-Scale-OT
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Figure 2: Error rate results of high-dimensional Gaussians: (a) D =
2; (b) D = 8.

Method CFS K-OT NN-OT Cop-OT

Accuracy 0.47 0.44 0.39 0.46

Table 2: Empirical results of image retrieval

3.2 Evaluation on Synthetic Data
Results of 1-D Gaussians
We now evaluate on 1-D Gaussians of N (µx, σ

2
x) and

N (µy, σ
2
y). The means and variances vary over the sets

{21, 23, 25, 27} and {22, 24, 26, 28}, respectively. We exam-
ine the performance of the OT methods by measuring whether
their approximations, denoted by Ŵxy , approach the CFS
values, i.e., W ∗xy computed by Eq.16. To this end, we de-
fine an evaluation metric of Error rate computed as follows:

ErrorRate(Ŵxy) =
Ŵxy −W ∗xy

W ∗xy
,

The results are shown in Fig.1, where the error rates of
Cop-OT are significantly lower than those of NN-OT in most
settings, and Cop-OT performs very competitive with K-OT.
These results imply that Cop-OT can compute more accurate
approximations to CFS.

Results of High-dimensional Gaussians
We further evaluate the high-dimensional Gaussians (D = 2
and 8) with mean zero and different covariance matrices
drawn from inverse-Wishart distributions. For each dimen-
sion, we draw three relatively sparse Σs and dense Σd from
W−1(I, D+ 2) andW−1(10I, D+ 2), leading to three pairs
of Gaussians, denoted by {ps1, ps2}, {pd1, ps3} and {pd2, pd3},
where psi = N (0,Σsi ) and pdi = N (0,Σdi ).

We show the results in Fig.2, where Cop-OT outperforms
K-OT and NN-OT in most cases. This empirically indicates
that Cop-OT works well on comparing high-dimensional
densities, even it follows a further approximation to its noisy
gradients during optimization. Besides, we observe that the
error rates of high-dimensional Gaussians seem less stable
than those of 1-D densities.

Convergence
We discuss the convergence of OT methods on two pairs of
1-D Gaussians. Fig.3 presents the convergence curves of al-

Figure 3: Convergence curves of the OT methods: (a)
{N (21, 22),N (23, 28)}; (b) {N (21, 22),N (25, 28)}.

l methods within 25 seconds. We can observe that Cop-OT
converges faster than the baseline methods of K-OT and NN-
OT. Surprisingly, NN-OT is converged slower than K-OT.
The possible reason is that the neural network of NN-OT is
computationally expensive due to its relatively complex struc-
ture.

3.3 Evaluation on Real Data
We evaluate Cop-OT on image retrieval. The MINST5, a
dataset of handwritten digits from zero to nine, is used. We
randomly select 10,000 images as the database and 150 im-
ages for texting. We refer to each image as a Gaussian es-
timated by its pixels. Following [Li et al., 2013], we find
the nearest 10 images of test images measured by OT, and
compute the accuracy by counting how many nearest images
belong to the same digit number of the test images.

The results are shown in Table 2. First, we observe that
the accuracy scores of Cop-OT are higher than those of K-
OT and NN-OT. Since image retrieval is factually a problem
of finding nearest neighboring images for test inputs, the per-
formance gain of Cop-OT indicates that it can better maintain
the relative distances among images. Besides, we can see that
the accuracy gap between Cop-OT and CFS is not obvious.
This further indicates the effectiveness of Cop-OT.

4 Conclusion
We develop a novel Cop-OT method for continuous OT. It
formulates the joint distribution with the copula function, and
then transforms the primal objective of OT into a copula ob-
jective with respect to the copula parameter, solved by s-
tochastic optimization with the reparameterization trick. Both
Cop-OT with 1-D and high-dimensional model are proposed.
Empirical studies on both real and synthetic data demonstrate
the effectiveness of Cop-OT.
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