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Abstract

We propose the Ornstein auto-encoder (OAE), a
representation learning model for correlated data.
In many interesting applications, data have nested
structures. Examples include the VGGFace and
MNIST datasets. We view such data consist of
i.i.d. copies of a stationary random process, and
seek a latent space representation of the observed
sequences. This viewpoint necessitates a distance
measure between two random processes. We pro-
pose to use Orstein’s d-bar distance, a process ex-
tension of Wasserstein’s distance. We first show
that the theorem by Bousquet et al. (2017) for
Wasserstein auto-encoders extends to stationary
random processes. This result, however, requires
both encoder and decoder to map an entire se-
quence to another. We then show that, when ex-
changeability within a process, valid for VGGFace
and MNIST, is assumed, these maps reduce to uni-
variate ones, resulting in a much simpler, tractable
optimization problem. Our experiments show that
OAEs successfully separate individual sequences in
the latent space, and can generate new variations of
unknown, as well as known, identity. The latter has
not been possible with other existing methods.

1 Introduction
Most machine learning algorithms implicitly or explicitly as-
sume that samples in the training and test datasets are drawn
independently and identically from an unknown data distri-
bution. However, this i.i.d. assumption is violated in many
real-world tasks with nested data structures, i.e., when data
were collected from grouped observational units.

As a concrete example, consider the VGGFace2 dataset
[Cao et al., 2018], an expansion of the famous VGGFace
dataset [Parkhi et al., 2015]. VGGFace2 is a large-scale face
dataset containing 3.31 million images of 9131 identities. For
each person, it contains 362.6 images on average, with mini-
mum of 30 and maximum of 843. These portraits are highly
correlated within a single person, violating the i.i.d. assump-
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tion. A similar issue arises in classification. The images of the
MNIST dataset show strong correlations within a digit.

When the categories are fixed like the MNIST data, a pop-
ular approach is to model the data distribution with a finite
mixture model or class-conditional models. However, if the
number of categories (classes) is too large or not even fixed,
the use of these models may not be desirable. For example, in
the VGGFace2 data the number of classes is 9,131. Since the
identities are randomly sampled, any model trained with this
dataset must deal with the increasing number of classes for
generalizability. Even with fixed categories, class imbalance
is a big problem in learning with these models.

Random effects models [Diggle et al., 2002; Fitzmaurice
et al., 2012] provide a flexible framework for handling both
regimes. Applying those models is a standard approach in
statistics when there are correlations among observational
units within a group or subject. As an example, consider the
random intercept model (with no slope):

yij = µ0 + bi + εij , εij
iid∼ N (0, σ2

0),

bi
iid∼ N (0, τ20 ), bi ⊥⊥ εij ,

where yij represent the jth observation within subject i. Note
due to the presence of the random intercept bi, the sequence
of observations {yij}

ni
j=1 in subject i are correlated with corre-

lation coefficient τ20 /(σ
2
0 + τ20 ). This is the simplest example

of linear mixed effects models. In machine learning, Dundar
et al. [2007] show that classifiers with a linear mixed effects
model allow us to explicitly model the dependence in non-
i.i.d. data. Differing number of samples between groups is
naturally handled.

The reader may have noticed that the random intercept
model defines an infinite exchangeable random process. Let
Y = (. . . , Y−1, Y0, Y1, . . . ) be a (doubly) infinite sequence
with coordinates Yj’s are conditionally independent given B.

If B ∼ N (0, τ20 ) and Yj |{B = b} iid∼ N (µ0 + b, σ2
0), then

{yij}∞j=−∞ is a realization of the ith i.i.d. copy of the random
process Y . On the other hand, both VGGFace2 and MNIST
data consist of exchangeable sequences nested within sub-
jects or classes: the order of portraits of any given person does
not affect any conceivable learning task.

The goal of this paper is to bring the nested data structure
that arises from various applications down to generative la-
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tent variable modeling. If the latent variables share the nested
structure of the observed variables, then the generative power
of the latent space representation is likely to increase. As dis-
cussed above, this nesting often translates to i.i.d. observa-
tions of a correlated random process. Our main contributions
are as follows:

• We introduce Ornstein’s d-bar distance to the commu-
nity, which is an optimal transport distance between ran-
dom processes.

• We show that the theorem by [Bousquet et al., 2017] ex-
tends to stationary processes and propose the Ornstein
auto-encoder (OAE), which can be thought of as a sta-
tionary random process version of the Wasserstain auto-
encoder (WAE) [Tolstikhin et al., 2018].

• When exchangeability is assumed, we show that the op-
timization problem for OAE greatly reduces to almost
the same as that of WAE, enabling a simple algorithm.

• We empirically show that the generative power of OAE
surpasses state-of-the-arts. Importantly, OAE is robust
to data imbalance and can generate new variations of
unknown, out-of-training-set subjects, which has been
impossible with other methods.

• We demonstrate that OAE can provide disentangled rep-
resentations, i.e., latent variables are well-clustered by
subjects. This capability has a potential applications in
classification and recognition.

In the next section, we provide a necessary background.
Section 3 introduces Ornstein’s d-bar distance and develop
OAE for stationary and exchangeable processes, respectively.
In Section 4 we demonstrate the power of OAE using VG-
GFace2 and MNIST data. We conclude the paper in Sec-
tion 5. Proofs, additional examples, and details of imple-
mentation are given in the Online Supplement available at
https://tinyurl.com/y5x6ufuj.

2 Preliminaries
2.1 Notation
The space of observable variables is denoted by X . The space
of latent variables is denoted by Z . We assume that both X
and Z are standard measurable spaces so that conditional
probability distributions are well-defined. Unless necessary,
the associated event spaces BX and BZ are suppressed. We
also assume that X is a complete, separable metric space
equipped with metric d. Its Cartesian product space is de-
noted by Xn for n = 1, 2, . . . ; n = ∞ is allowed. Both
random variables and random processes are represented by
capital letters (e.g., X), and their realizations by lower case
letters (e.g., x). A random process is always two-sided. An
i.i.d. copy of X for subject i is denoted by superscript Xi.
If Xi is a random process, its coordinate random variable is
written using a subscript, e.g., Xi

j . The probability distribu-
tion of random variable or process X is denoted by PX . The
joint distribution of X and Y is denoted by PXY ; conditional
distributions are written as PX|Y . A finite-length random vec-
tor induced by random process X is written as X1:n etc.

2.2 Generative Latent Variable Models
Generative latent variable models (LVMs) are a family of
parametric models trained to transform samples drawn from
an unknown distribution PX on X to latent variables in a
lower dimensional space Z . In many real-world data, espe-
cially images, we cannot estimate the density of PX , which
may not exist because the distribution is supported by low di-
mensional manifolds. To overcome this problem, LVMs de-
fine a latent random variable Z ∈ Z with a prior distribu-
tion PZ such as the standard Gaussian, and learn a “decoder”
QX̂|Z , or a conditional distribution of the reconstructed input

X̂ ∈ X given Z. The marginal distribution of the reconstruc-
tion X̂ is given by PX̂ =

∫
QX̂|ZdPZ , and we learn the de-

coder QX̂|Z by solving the following optimization problem

inf
QX̂|Z

D(PX , PX̂) (1)

for some “distance” measure D between the data and recon-
struction distributions, with a possible addition of a regular-
ization term. Different choices of D and regularizer yield
different model. For example, Wasserstein auto-encoders
(WAE) [Tolstikhin et al., 2018] utilizes the p-Wasserstein dis-
tance between X and X̂ on the metric space (X , d) [Villani,
2008]

d̄p(PX , PX̂) ,

(
inf

π∈P(PX ,PX̂)
Eπd

p(X, X̂)

)min(1,1/p)

(2)

but the pth power of d̄p:

DWAE(PX , PX̂) , inf
π∈P(PX ,PX̂)

Eπd
p(X, X̂). (3)

when p ≥ 1; P(PX , PX̂) is the set of joint distributions on
(X, X̂) whose marginals on X and X̂ are PX and PX̂ , re-
spectively. Tolstikhin et al. [2018] use Theorem 1 of Bousquet
et al. [2017] to reparametrize (3) in terms of probabilistic en-
coder QZ|X . Write QZ =

∫
QZ|XdPX . Then we have

DWAE(PX , PX̂) = inf
QZ|X :QZ=PZ

EPX
EQZ|Xd

p(X, g(Z)),

(4)
when the decoder is deterministic, i.e., QX̂|Z(·|z) is a Dirac
measure on g(z) for all z ∈ Z . In practice, the resulting con-
strained optimization problem is relaxed to an unconstrained
one:

inf
g

inf
QZ|X

EPX
EQZ|Xd

p(X, g(Z)) + λDZ(PZ , QZ) (5)

for some divergence measure DZ and λ > 0.
Relaxation (5) of WAE is equivalent to the adversarial

auto-encoders (AAE) [Makhzani et al., 2016] if p = 2, X
is Euclidean, d(x, y) = ‖x − y‖ is the standard Euclidean
norm, and DZ is

DGAN(PX , PX̂) , sup
f∈F

EPX
log f(X)+EPZ

log(1−f(g(Z)))

where f : X → (0, 1) is the “discriminator” [Bousquet et al.,
2017]. In addition, the conditional AAE (cAAE) minimizes a
class-conditional version of AAE.
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3 The Ornstein auto-encoder (OAE)
3.1 From Ornstein’s d-bar Distance to OAE
In order to extend WAE to random processes, we need
a distance metric between two random sequences X =
(. . . , X−1, X0, X1, . . . ) and Y = (. . . , Y−1, Y0, Y1, . . . ),
both defined in X∞. Let

ρn(xn, yn) ,
n∑
j=1

dp(xj , yj),

where d is a metric on X and p ≥ 0; d0 denotes the 0-1 loss.
A possible distance measure between the latter two is

ρ̄n(PX1:n , PY1:n) , inf
π∈P(PX1:n

,PY1:n
)
Eπρn(X1:n, Y1:n).

Then a process distance between PX and PY is defined by

ρ̄(PX , PY ) , sup
n

1

n
ρ̄n(PX1:n , PY1:n).

It is known that d̄p(PX , PY ) , ρ̄min(1,1/p)(PX , PY ) is a met-
ric on the space of all possible stationary processes in X , so
d̄p is a true distance. The d̄p or d-bar distance for random
processes was introduced by Ornstein [1973] for the special
case of p = 0 and discrete X , and was extended to p ≥ 0
with more general X by Gray, Neuhoff, and Shields [1975].
Furthermore, if PX and PY are stationary, then we have

ρ̄(PX , PY ) = inf
π∈Ps(PX ,PY )

Eπd
p(X0, Y0), (6)

where Ps(PX , PY ) is the set of all jointly stationary distri-
butions on (X,Y ) ∈ X∞ × X∞ having PX and PY as
marginals [Gray et al., 1975].

From the resemblance of equation (6) to the finite-
dimensional Wasserstein metric (2), a reparametrization sim-
ilar to (4) can be made:
Theorem 1. Assume process distributions PX on X∞ and
PZ on Z∞ are both stationary. Also assume that QX̂|Z(·|z)

is the Dirac measure on g(z) for all z, i.e., X̂ = g(Z) with
probability 1 for g : Z∞ → X∞ that maps a stationary
sequence to a stationary sequence. Then,

ρ̄(PX , PX̂) = inf
QZ|X∈QZ|X

EPX
EQZ|Xd

p(X0, g(Z)0),

where PX̂ =
∫
QX̂|ZdPZ and QZ|X is the set of encoders

QZ|X such that QZ|XPX is jointly stationary in (X,Z) and∫
QZ|XdPX = PZ .
By defining

DOAE(PX , PX̂) = inf
QZ|X∈QZ|X

EPX
EQZ|Xd

p(X0, g(Z)0)

and minimizing it over g, we obtain the OAE model. Similar
to relaxation (5), we may solve an unconstrained problem

inf
g

inf
QZ|X

EPX
EQZ|Xd

p(X0, g(Z)0) + λDZ(PZ , QZ), (7)

where QZ =
∫
QZ|XdPX . The additional constraint of

QZ|XPX being stationary can be satisfied by restricting
QZ|X to be stationary (the latter implies the former).

Despite the apparent similarity to WAE (5), problem (7)
has two practical issues. First, the decoder g for OAE needs to
map an infinite sequence to another infinite sequence. Learn-
ing such a map with infinite memory may face computational
challenges. Second, since PZ and QZ are both process dis-
tributions, computing the divergence DZ may also run into
trouble.

3.2 OAE for Exchangeable Data
If we can assume that the pair process {(Xj , Yj)} is ex-
changeable, then computation of ρ̃(PX , PY ) amounts to that
of WAE (4), a great simplification:
Theorem 2. Assume pair process {(Xj , Yj)} in X∞ × X∞
is exchangeable. Let PX and PY denote its marginal distri-
butions on {Xj} and {Yj}, respectively. Then
ρ̄(PX , PX̂) = ρ̄1(PX0

, PY0
) = inf

π∈P(PX0
,PY0

)
Eπd

p(X0, Y0).

Exchangeability of the pair process is valid for our ap-
plications, because the jth observation Xi

j of subject i and
its reconstruction X̂i

j must be exchangeable with the kth
observation-reconstruction pair (Xi

k, X̂
i
k) of the same sub-

ject.
Theorem 2 ensures an alternative parametrization (cf. (4))

ρ̄(PX , PY ) = inf
QZ0|X0

:QZ0
=PZ0

EPX0
EQZ0|X0

dp(X0, g(Z0)),

and the optimization problem of the form (5). Here the de-
coder g only takes a single coordinate of the latent process Z
as input and outputs a single coordinate of Y .

We explicitly model exchangeability in the latent space
by introducing a random variable B and conditioning Zj
on B: PZ1:n

=
∫ ∏n

j=1 PZ0|BdPB for all n. The proba-
bilistic encoder is a pair (QZ0|B,X0

, QB|X0
). Constraining∫

QZ0|B,X0
dPX0

= PZ0|B and
∫
QB|X0

dPX = PB ensures
QZ = PZ . A relaxation like (5) yields

inf
g

inf
QZ0|B,X0

inf
Qb|X0

[
EPX0

EQZ0|B,X0
EQB|X0

dp(X0, g(Z0))

+ λ1DZ0|B(PZ0|B , QZ0|B) + λ2DB(PB , QB)
]
, (8)

where QZ0|B =
∫
QZ0|B,X0

dPX0
= PZ0|B and QB =∫

QB|X0
dPX = PB , for appropriate choices of divergence

measures DZ0|B and DB .
If we use DZ0|B = DGAN and DB = DMMD,κ where

DMMD,κ(PB , QB) = ‖EPB
κ(·, B)− EQB

κ(·, B)‖2H
is the maximum mean discrepancy (MMD) [Gretton et al.,
2012] for a positive definite kernel κ : Z × Z → R that
induces a reproducing kernel Hilbert space H equipped with
the norm ‖·‖H, then we obtain a training algorithm described
in Algorithm 1, based on the sample estimates of the terms in
(8).

Lines 6 and 7 of Algorithm 1 need some explanation. Since
the encoder QB|X0

takes only a single coordinate as its in-
put, it yields b̃ij ∼ QB|X0

(·|xij) for each j = 1, . . . ,mi.
In order to obtain a single sample, we aggregate b̃ij’s so that
b̃i = 1

mi

∑mi

j=1 b̃
i
j , as used in Line 6. In Line 7, we sample z̃ij

independently from QZ|B,X0
(·|b̃i, xij) given this b̃i and the

data xij , for j = 1, . . . ,mi.
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Algorithm 1 Ornstein Auto-Encoder for Exchangeable Data
Input: Exchangeable sequences (xi1, ..., x

i
ni

) for i = 1, ..., L
Output: Encoder pair (QZ|B,X0

, QB|X0
) and decoder g

Require: Latent variable distributions PB , PZ0|B , regulariza-
tion coefficients λ1, λ2, positive definite kernel κ

1: Initialize: parameters of (QZ|B,X0
, QB|X0

), g, and dis-
criminator f

2: while QZ|B,X0
, QB|X0

, f , g not converged do
3: Sample subjects i = 1, . . . , n and sequence

(xi1, . . . , x
i
mi

) for each subject i from the training set
4: Sample bi from PB for i = 1, . . . , n
5: Sample (zi1, . . . , z

i
mi

) from PZ0|B given bi for i =
1, . . . , n

6: Sample b̃i from QB|X0
given (xi1, · · · , ximi

) for i =
1, . . . , n.

7: Sample (z̃i1, · · · , z̃imi
) from QZ|B,X0

given b̃i and
(xi1, · · · , ximi

) for i = 1, ..., n.
8: Update QZ|B,X , QB|X , and g by descending:

1
n

n∑
i=1

1
mi

mi∑
j=1

dp(xij , g(z̃ij))− λ1

n

n∑
i=1

1
mi

mi∑
j=1

log f(z̃ij)+

λ2

n(n−1)
(∑
i6=l

κ(bi, bl) +
∑
i6=l

κ(b̃i, b̃l)
)
− 2λ2

n2

∑
i,l

κ(bi, b̃l)

9: Update f by ascending:
n∑
i=1

mi∑
j=1

log f(zij) + log(1− f(z̃ij))

10: end while

3.3 Generating Variations of Unknown Subjects
A trained OAE can be used to generate a sequence of vari-
ations for a new, unknown subject out of the training exam-
ples. Suppose one or few input(s) (xnew

1 , . . . , xnew
mnew

) from a
new subject are given to OAE. Then we sample bnew

j from
QB|X0

(·|xnew
j ) for j = 1, 2, . . . , get bnew = 1

mnew

∑mnew
j=1 b

new
j ,

and sample znew
j from PZ0|B(·|bnew). Then new variations

(x̂new
1 , x̂new

2 , . . . ) are obtained by passing (znew
1 , znew

2 , . . . )
through the trained decoder g. Fine control on the variations is
possible if further assumptions on the encoder are made; see
§4. Generating new variations of a known, in-training subject
can also be conducted in the same fashion.

Note that generating images from an unknown subject is
impossible for the existing conditional LVMs, e.g., cAAE,
because they require a fixed number of conditional distribu-
tions. When data imbalance is present, OAE has an advantage
over conditional LVMs because the latter have to train all the
conditional encoders, which is hard for minority groups with
small sample sizes. OAE handles this problem by sharing a
variance component.

4 Experiments
4.1 Implementation
In all the experiments in the following, we assumed X and
Z are Euclidean spaces with dimensions dx and dz , respec-

tively; accompanied Euclidean metric d(x, x′) = ‖x − x′‖2
on X and p = 2 were used. We set the prior distribution PZ
of the latent variable Z as a random intercept model:

Zij |{Bi = bi} iid∼ N (µ01 + bi, σ2
0I), Bi

iid∼ N (0, τ20 I).

The encoder pair (QZ|B,X0
, QB|X0

) was designed to be an-
other random intercept model:

Zij |{Bi = b̃i, Xi
j = xij}

iid∼ N (µ(xij) + b̃i, σ2(xij)I)

Bi|{Xi
j = xij}

iid∼ N (ν(xij), τ
2I),

(9)

where the mean functions µ : X → Z , ν : X → X , and
the variance function σ2 : X → R++ were parameterized by
deep neural networks. The hyperparameter τ was kept small.
Although Gaussian encoders are suboptimal to our optimiza-
tion problem (8) due to the restricted search space, Ruben-
stein et al. [2018] has shown empirically that such a restric-
tion produces better outcomes when the appropriate number
of dimensions for the latent space is not known. The decoder
g was also parameterized by deep neural networks.

Interpreting each subject as a class, we compared OAE
with cAAE with conditional Gaussian latent variables:

Zij |{Y i = k} iid∼ N (µ0k1, σ
2
0kI),

where C is the number of subjects, and µ0k, σ2
0k are pre-

specified for k = 1, . . . , C . Similar to OAE, we used a Gaus-
sian encoder for QZ|Y,X :

Zi|{Xi = xi, Y i = k} ∼ N
(
µk(xi), σ2

k(xi)
)
,

where µk : X → X , σ2
k : X → R++ are parameterized by

deep neural networks for k = 1, . . . , C .
For optimization, we used the Adam [Kingma and Ba,

2014] optimizer with β1 = 0.5 for updating the first moment
estimate and β2 = 0.999 for updating the second moment
estimate. When generating new variations of a given subject
from the test dataset, we used one image per subject. For all
convolutional layers, we used the batch normalization [Ioffe
and Szegedy, 2015], padding, and truncated normal initializa-
tion.

4.2 A Toy Model
To see if OAE can learn a known low dimensional distribu-
tion embeded in a higher dimension, we generated training
samples Zij = bi + εij from the two-dimensional latent space
for i = 1, 2, ..., 100, j = 1, 2, ..., 5000 with

εij ∼ N
([

0
0

]
,
[
0.009 0

0 0.007

])
, bi ∼ N

([
0.2
−0.4

]
,
[
1.018 0.12
0.12 0.745

])
,

and embedded them into four-dimensional Euclidean space
by Xi

j = AZij with

A =

[
0.027 0.171 0.084 0.290
0.252 0.388 0.248 0.371

]T
.

For learning the representation, we misspecified the two-
dimensional latent variable for i = 1, 2, ..., n, j = 1, 2, ..., ni
as

Zij ∼ bi + εij , εij ∼ N
(
0, 0.01I

)
, bi ∼ N

(
0, I
)
.
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and trained the OAE with a simple architectures with 4.8k
parameters. We used the linear decoder to restrict the gener-
ated sample distribution to be normal. The model was trained
for 50 epochs with mini-batch size 3000, λ1 = 10, λ2 = 10
and the learning rates of 0.01 for the encoder-decoder and
0.005 for the discriminator. After training, we generated sam-
ples through the decoder with n = 100 and ni = 500, and
measured the error between the samples and the true mo-
ments. The root-mean squared error (RMSE) of the mean
Ebi [E[X̂ij |bi]] was 0.0233, and the RMSE of the covariance
matrix Ebi [cov[X̂ij |bi]] was 0.0001. This result shows that
the OAE works well on this toy but informative model.

4.3 VGGFace2 Dataset
Recall that in the VGGFace2 dataset the portraits of each in-
dividual are highly correlated and exchangeable. It is also
highly imbalanced, with number of portraits per person vary-
ing from 30 to 843. The goal of this experiment is to examine
the capability of OAE in generating new variation of portraits
of both known and unknown subjects in the presence of many
subjects (classes) and data imbalance. As emphasized in the
previous section, generating images from an unknown subject
is impossible with existing (conditional) LVMs, e.g., cAAE.
For known subjects, we compared the sample quality of OAE
with that of cAAE. For unknown subject, cAAE cannot gen-
erate samples, and we compare the quality of the generated
samples with WAE, which ignores the subject information.

Algorithm Parameters. We chose dz = 128 as the latent
space dimension, and used hyperparameters µ0 = 0, σ2

0 = 1,
τ20 = 100. The encoder-decoder architecture had 13.6M pa-
rameters and the discriminator had 12.8M parameters. We set
λ1 = 10, λ2 = 10 for OAE, and λ = 10 for WAE and cAAE.
All models were trained for 100 epochs with a constant learn-
ing rate of 0.0005 for the encoder and decoder, and 0.001 for
the discriminator. We used mini-batches of size 200.

Training. As a pre-processing, we cropped the faces and
rescaled them to a common size of 64 by 64. We constructed
a training set of 146,519 images from 500 randomly cho-
sen subjects. Since the number of subjects far exceeded the
mini-batch size and the dataset is highly imbalanced, we used
importance sampling to limit both the number of subjects
and the maximum number of variations per mini-batch in
early training epochs. For data augmentation, we either added
white Gaussian noise to or vertically flipped randomly chosen
images in a mini-batch.

Evaluation Measures. The quality of reconstruction of a
given image was measured by the mean squared error (MSE).
The quality of generated samples was quantified by the sharp-
ness using the Laplace filter [Rubenstein et al., 2018], and the
Frechet inception distance (FID) between image distributions
[Heusel et al., 2017]. Both are commonly used in the LVM
literature. For FID, we picked 100 images from the generated
samples and the test dataset.

Generating New Portraits of Known Subjects. We con-
structed a test dataset (Testset 1) with 11,250 images of 49
subjects from training dataset. We generated 100 new varia-
tions for each subject using OAE and cAAE. Table 1 suggests

Known subjects (Testset 1) Unknown subjects (Testset 2)

MSE FID Sharpness MSE FID Sharpness

OAE 28.551 151.994 1× 10−4 34.492 156.935 1× 10−4

cAAE 46.020 152.077 1× 10−4 - - -
WAE - - - 33.469 163.612 1× 10−4

Testset - - 4× 10−3 - - 3× 10−3

Table 1: VGGFace2 evaluation. MSE (lower is better), FID (lower
is better), sharpness (similar to testset is better).

Figure 1: Generated new variations from unknown subjects of VG-
GFace2. Each row corresponds to a subject. Columns 1 and 2 show
randomly chosen test images from the person. Column 3 shows gen-
erated images from the estimated random intercept. Columns 4 and
on represent the generated images using common variations.

that OAE could generate quality variations for known identi-
ties better than cAAE.
Generating New Portraits of Unknown Subjects. We
constructed another test dataset (Testset 2) with 11,250 im-
ages of 49 subjects from randomly chosen 500 subjects not
used for training. We generated 100 new variations for each
subject from OAE, and 4,900 images from WAE, in which
subject identity cannot be used. Table 1 shows that OAE can
generate new variations for given but unknown identities with
sample quality comparable to WAE, which can only generate
random identities. Figure 1 presents some generated varia-
tions of unknown subjects.
Vector Arithmetic. The random intercept modeling of the
encoder (9) allows an additional advantage of performing
vector arithmetic on the portraits. Suppose an image xi0 of
person i is given and we want to generate a variation simi-
lar to the lth image of another person k. If b̃i is the intercept
of person i in the latent space obtained by applying encoder
QB|X0

to xi0, and (zkl , b̃
k), (zi0, b̃

i) and (zkl , b̃
k) are the encod-

ing of xi0 and xkl , then zkl − b̃k + b̃i exchange the mean of zk

to the mean of zi. Hence decoding

x̂il = g(zkl − b̃k + b̃i)

amounts to switching the identity of xkl to that of person i.
Figure 2 demonstrates some results when both target and base
persons are chosen from unknown subjects. This generaliz-
ability is unique to OAE, and suggests that OAE can be a
useful data augmentation tool for many applications such as
face recognition in the presence of high imbalance.
Subject-level Disentanglement in Representation. An-
other benefit of our random process modeling is that subjects
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Figure 2: Vector arithmetic results for VGGFace2. Row 1, images
of the base person. Row 2, reconstruction of Row 1. Row 3, input
(highlighted) and generated images using vector arithmetic (rest).

Figure 3: t-SNE map of the encoded images from VGGFace2. (a)
known subjects. (b) unknown subjects. (c) WAE. Each color repre-
sents a single preson.

can be well-separated in the latent space. Figure 3 shows t-
SNE maps [Maaten and Hinton, 2008] of the latent space rep-
resentation of randomly selected 225 images of 10 subjects,
known or unknown. For known subjects, clustering by subject
is clear. Unknown subjects are also separated well, judged
by visual inspection and by the ratio of within-group sum
of squares (SSW) to between-group sum of squares (SSB);
SSW/SSB is less than 1 for both cases. By design, WAE could
not separate subjects at all.

4.4 MNIST Dataset
The goal of this experiment is to see how well OAE performs
when the number of subjects is given and fixed. With bal-
anced data, conditional methods such as cAAE are expected
to perform well. In the presence of class imbalance, however,
random process-based OAE has an advantage due to its gen-
eralizability.
Algorithm Parameters. We chose dz = 8 as the latent
space dimension, and used hyperparameters µ0 = 0, σ2

0 = 1,
τ20 = 100. The encoder-decoder architecture had 6.1M pa-
rameters and the discriminator had 265k parameters. We set
λ1 = 10, λ2 = 10, and λ = 10. All models were trained
for 100 epochs with mini-batch size 100, with learning rates
of 0.01 for the encoder-decoder and 0.005 for the discrimina-
tor which were manually halved at the 30th and 50th epochs.
The network architectures for cAAE and WAE were mostly
the same as OAE except for the random intercept part.
Evaluation Measures. Similar to the VGGFace2 experi-
ment, we evaluated the MSE of the reconstruction of given
images and measured the sharpness of generated images. To
compare the class-conditional generation quality, we gener-
ated class-conditional samples from OAE and cAAE, than
calculated the classification accuracy of the generated dig-
its, measured by a pre-trained deep MNIST digit classi-
fier with 99.2% accuracy. Additionally, we compared the

Balanced training data Imbalanced training data

MSE Accuracy SSIM MSE Accuracy SSIM

OAE 0.793 0.992 0.318 0.977 0.972 0.320
cAAE 0.572 0.877 0.224 0.661 0.839 0.190
WAE 0.646 - - 0.759 - -

Testset - 0.999 0.235 - 0.999 0.235

Table 2: MNIST evaluation. MSE (lower is better), accuracy (larger
is better), sharpness (similar to testset is better), SSIM (similar to
testset is better).

diversity of the generated samples per class by evaluating
the structural similarity (SSIM), which is a perceptual sim-
ilarity metric range between 0 and 1 [Wang et al., 2004;
Odena et al., 2017]. We evaluated the mean SSIM score of
50 randomly chosen image pairs conditioned on each digit,
and took the average of the digit-wise mean SSIM scores.
Balanced Training Data. We used a balanced training data
with 10 classes of 56,000 images and a balanced test data
with 10 classes of 1,000 images. We also generated 10 classes
of 1,000 images from cAAE and OAE, and 10,000 images
from WAE ignoring classes. The accuracy shown in Table 2
suggests that OAE mostly generated correct digits whereas
cAAE sometimes failed. The slightly higher reconstruction
error did not harm the classifier. The diversity of generated
samples were similar.
Imbalanced Training Data. In order to create an imbal-
anced dataset, we dropped 90% of images in randomly cho-
sen three classes (digits of 0, 3, and 4) from the balanced
training set. The resulting set had 10 classes, 40,933 images.
Table 2 reveals that the accuracy gap between OAE and cAAE
for the generated samples widened in the imbalanced setting.
Additional Examples. Online Supplementary Material
https://tinyurl.com/y3ghw3yp contains additional visualiza-
tions for generating new variations of digits and disentangle-
ment in the representation space.

5 Conclusion
In this work we paid attention to the nested data structure
of common machine learning datasets, which led us to view
the data as a collection of i.i.d. observations of exchangeable
random processes. We then introduced the optimal transport
distance between stationary random processes. Using this, we
proposed the Ornstein auto-encoder, which, under exchange-
ability inherently residing in the data, reduces to a tractable
optimization problem. Our random process approach allowed
us to generate correlated samples for the unknown subjects
never used in training, which has been impossible for previ-
ous works on generative latent variable models.

In the future, we plan to expand this work to non-
exchangeable stationary random processes. Another helpful
direction would be latent variable modeling of multilevel
data, which often arise in biomedical applications.
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