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Abstract

We consider the problem of path inference: given
a path prefix, i.e., a partially observed sequence of
nodes in a graph, we want to predict which nodes
are in the missing suffix. We focus on natural paths
occurring as a by-product of the interaction of an
agent with a network—a driver on the transporta-
tion network, an information seeker in Wikipedia,
or a client in an online shop. Our interest is sparked
by the realization that, in contrast to shortest-path
problems, natural paths are usually not optimal in
any graph-theoretic sense, but might still follow
predictable patterns. Our main contribution is a
graph neural network called GRETEL. Conditioned
on a path prefix, this network can efficiently extrap-
olate path suffixes, evaluate path likelihood, and
sample from the future path distribution. Our ex-
periments with GPS traces on a road network and
user-navigation on Wikipedia confirm that GRETEL
can adapt to graphs with very different properties,
while comparing favorably to previous solutions.

1 Introduction
Can a graph neural network learn to extrapolate paths from
examples? Rather than attempting to connect nodes based
on some graph-theoretic objective function (e.g., by looking
for a shortest path), this work focuses on naturally occurring
paths. Such paths appear whenever an agent tries to reach
a target by moving between adjacent nodes in a graph. The
agent for example may be a driver that is navigating through
a road network or a knowledge seeker browsing Wikipedia
articles. Given the graph and a partial knowledge of the path
our goal is to predict the future position of the agent.

Path inference problems are demanding because natural
paths tend to differ qualitatively from shortest paths. The
choice of the agent at every step may depend on a number
of factors, such as the structural properties of the graph and
the conceptual similarity of nodes as perceived by the agent.
For instance, when looking for information in Wikipedia it
has been observed that seekers’ decisions are correlated with
their perception of article similarity and degree [West et al.,
2009]. At the same time, some form of directionality is in-

volved in path formation, in the sense that an agent’s actions
can be conditioned on the entire history of its trajectory. Mak-
ing a parallel to Euclidean domains, a path can be thought as
‘straight’ when the agent moves towards nodes that are far
from where it was in the past and ‘circular’ when it returns
to its starting position. Contrasting our geometric intuition
however, the space here is non-Euclidean and what is far or
close should be determined in light of the graph structure.

From a deep learning perspective, the main challenge we
face is reconciling graph-based approaches with sequential
data. Graph convolutional networks (GCN) have exhibited a
measure of success at predicting properties of nodes (e.g., the
category of a Wikipedia article or the average traffic flow in a
road network) [Bruna et al., 2014; Defferrard et al., 2016;
Kipf and Welling, 2016] or of the graph as a whole (e.g.,
the solubility of a molecule or the functional similarity of
two proteins) [Hamilton et al., 2017; Xu et al., 2018]. The
isotropic nature of graph convolution however renders it a
poor fit for sequential data. On the other hand, sequence
prediction problems are typically solved with Recurrent Neu-
ral Networks (RNN) [Hochreiter and Schmidhuber, 1997].
These are ideal for pure sequences, such as sentences or time-
series, but do not take into account the graph structure.

With this in mind, the main contribution of this paper is
GRETEL, a graph neural network that acts as a generative
model for paths. We teach our network to modify a graph so
that it encodes the directionality of an observed path prefix.
Candidate suffixes are then generated by a non-backtracking
walk on the modified graph. GRETEL’s simple form comes
with a number of benefits. Inference can be done efficiently
and in closed-form. In addition, the network can be trained to
estimate the true path likelihood from very little data.

We evaluate the validity of our approach in two diverse
tasks: extrapolating GPS traces on a road network and pre-
dicting the Wikipedia article a player is targeting in the game
of Wikispeedia [West et al., 2009]. As confirmed by our ex-
periments, GRETEL is highly anisotropic in its operation, de-
spite being based on graph convolution. It also compares fa-
vorably to state-of-the-art RNN and other baselines that do
not fully exploit the graph structure. GRETEL identifies the
correct path ∼28% more frequently than the best RNN in the
GPS trace experiment and achieves an 8-fold target accuracy
improvement in the Wikispeedia dataset at 3 hops.
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Figure 1: The path inference problem entails predicting a path suffix s = (vt+1, . . . , vt+h) given a graph and a prefix p = (v1, . . . , vt) (left).
In the generalized formulation, a trajectory φ encodes the approximate position of a subset of nodes in the prefix (right).

2 The Path Inference Problem
Suppose that there exists an agent1 that navigates a directed
graph G = (V, E) consisting of n = |V| nodes and m = |E|
edges. The agent occupies a single vertex at a time t and it
may take one step to move between node vi to vj whenever
a directed edge ei→j ∈ E exists. Its position across time is
summarized by the traversed path (v1, v2, . . . , vt), which is
a sequence of nodes that are pairwise adjacent (see Figure 1,
left). We write �et and �et to refer respectively to the edges in
the forward and backward path order: forward edge �et goes
from vt → vt+1, whereas �et traverses the path in the opposite
direction, from vt → vt−1.

Path inference. The problem we consider entails estimat-
ing the likelihood P(s | p,G) of a suffix path s = (vt+1, . . .,
vt+h) given a prefix path p = (v1, . . . , vt) on graph G. The
likelihood may additionally depend on an assortment of avail-
able features relating to nodes, edges, and the agent itself.
Further, since the number of possible paths increases expo-
nentially with the prediction horizon h, it is also important to
find efficient ways of (i) sampling paths, and (ii) identifying
the one that has the maximum likelihood. In certain situa-
tions, one may also be interested in (iii) the marginal likeli-
hood of vt+h, i.e., the probability that the agent reaches vt+h
after h steps.

Generalization. The above formulation assumes that the
path prefix is exactly known—a requirement that may not be
met in practice. To this end, we generalize the path inference
problem in two ways. First, we suppose that we possess only
an approximate idea of the agent’s position. For every t, we
represent our knowledge by a vector xt ∈ Rn≥0, conveniently
normalized to have measure one. The i-th entry of xt is then
interpreted as the likelihood that the agent resides at node vi
at step t. This comes handy also if we try to extrapolate a
path recursively, as subsequent calls take into account the un-
certainty of previous decisions. Second, we posit that only a
subset of the agent’s path, called a trajectory, can be observed.
Let I be a sub-sequence of (1, 2, . . . , t). A trajectory

φ
def
= (xτ : τ ∈ I)

is then a sub-sequence of (x1,x2, . . . ,xt). Since φ is always
defined in terms of I, whenever a function has access to φ in

1Though in some cases an actual agent might not exist, the path
inference problem becomes more intuitive if we pretend that it does.

the following we assume that it also knows I (though this re-
mains implicit in the notation). With this in place, the gener-
alized path inference problem amounts to estimating the like-
lihood P(s |φ,G) of a path suffix s = (vt+1, vt+2, . . . , vt+h)
given a trajectory φ and the graph G.

3 Finding Paths with GRETEL

We wish to construct a generative model for paths. Given an
input trajectory and a horizon the model should be able to
generate candidate suffixes and inform us of their likelihood.

A key challenge in this pursuit lies in capturing direction-
ality. Setting aside the special case of product graphs2, most
graphs are not imbued with a natural notion of direction. This
is also the reason why graph convolution is an isotropic oper-
ation: from a graph-theoretic perspective, there is no consis-
tent way of ordering or grouping the neighbors of any given
node. Fortunately, what we refer to in jest as “curse of direc-
tionality” can be broken if one combines the graph structure
with additional information, such as a path prefix: given a
path of length t, every node becomes capable of separating
its neighbors in up to3 3t groups depending on whether they
are closer, equidistant, or further from each node in the path.

Armed with this intuition, our approach will be to train a
graph neural network fθ called GRETEL to encode all avail-
able information about a path prefix into a latent graph

Φ
def
= (V, E , wφ), with wφ = fθ(G,φ).

Though Φ shares the same vertex and edge sets asG, its edges
are re-weighted so as to point towards the directions the agent
is most likely to follow. We will then approximate the like-
lihood of any suffix s by the graph-dependent model g, as
follows:

P(s |h, φ,G) ' g(s,xt,Φ),

where xt captures the last known position of an agent. The
notation above indicates that the model sees Φ instead of G.
We define the encoder fθ and generator g in the following
sections and represent the end-to-end architecture in Figure 2.

2A product graph can be expressed as the graph product of k sim-
pler graphs. For such graphs, one may define k consistent notions
of direction, each corresponding to one constituent graph. Examples
include the grid and hyper-cube (Cartesian product), Rook’s graph
(Tensor product), and King’s graph (Strong product).

3The exact number depends on the level-sets of the distance func-
tion for every node in the path.
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Figure 2: Extrapolation of a trajectory φ = (x1,x2,x3) (colored from green to blue) on the original graph G. Parametrized encoder fθ
computes the re-weighted latent directional graph Φ = (G,wφ) (a-c) and generator g computes next step distribution x̃4, shown in red (d).

3.1 Capturing Direction
We train a graph neural network fθ(G,φ) to predict the most
likely direction in the vicinity of every node. The network as-
signs a weight to every directed edge by combining available
features with a system of learned pseudo-coordinates (equiv-
alently embeddings), capturing the relation between every
node and observation in the prefix.

The pseudo-coordinate vectors ci = [ci,1, . . . , ci,|φ|] char-
acterizing each node vi are jointly learned by a graph convo-
lutional network (GCN) of k-layers:

ci,τ = [GCN(xτ )]i,: for τ ∈ I.

The GCN computes the τ -th pseudo-coordinate vector in par-
allel for all nodes in a recursive manner:

[Xk]i,: = ReLU

∑
vj∈V

w(ej→i) [Xk−1]j,:Wk

 ,

with X0 = xτ . In practice we noticed that using a univari-
ate non parametrized diffusion gave good result and we set
Wk to 1. Each edge weight is initialized by a multi-layer
perceptron w(ei→j) = MLP(fi, fj , fi→j) taking as input the
features of nodes vi and vj as well as those corresponding to
edge ei→j . Finally, the weight wφ(ei→j) of every directed
edge is decided by a simple network that predicts the most
likely direction. We use once more a multi-layer perceptron

zi→j = MLP(ci, cj , fi, fj , fi→j),

followed by a soft-max over outgoing edges

wφ(ei→j) =
zi→j∑
vl∈V zi→l

.

The latter ensures that the weights of all out-going edges of
each vi can be interpreted as a categorical distribution. Akin
to skip connections in residual networks, we reuse features in
both MLP so as to facilitate training.

3.2 A Generative Model with Short-Term Memory
We opt for a generative model that performs a non-
backtracking walk on the latent graph. Akin to a random
walk, the model assumes that the agent traverses each forward
edge �eτ from vτ to vτ+1 with probability proportional to the

learned edge weight wφ(�eτ ). The main difference is that the
walk cannot return to its previous position (i.e., �eτ 6=�eτ ).

Using a model with short-term memory has two interesting
consequences. First, the graph neural network is encouraged
to find a meaningful latent graph, capturing the directionality
of the path. At the same time, inference can be done in closed-
form (and often efficiently), greatly simplifying training. We
provide three examples in the following:

Suffix likelihood. The likelihood of a path suffix s =
(vt+1, . . . , vt+h) is

g(s,xt,Φ) =
∑
vt∈V

(
t+h−1∏
τ=t

pτ

)
[xt]vt ,

where xt captures the last known position of an agent and the
non-backtracking probabilities pτ are

pτ
def
=


wφ(�eτ ) if τ = t,

wφ(�eτ )

1− wφ(�eτ )
if �eτ 6=�eτ and τ > t,

0 o.w.

It can be seen that the computational complexity grows lin-
early with the support of xt and the horizon h. Hence,
when aiming to extrapolate paths we can efficiently train our
network by minimizing directly the negative log-likelihood
(NLL) of the true suffix.

Target likelihood. Alternatively, we can train our network
to predict the distribution xt+h of the target over a known
horizon. Following [Kempton, 2016], let Pφ be the m ×m
non-backtracking matrix with

[Pφ]ei→j ,ek→l
=


0 if j 6= k or i = l,

wφ(ek→l)

1− wφ(ek→i)
o.w.

Further, define the m × n matrix Bφ, with [Bφ]ei→j ,k = 0
if k 6= i and wφ(ek→j) otherwise. The marginal distribution
x̂t+h of the non-backtracking walk on Φ after h steps can be
written as

x̂t+h = B+
φ P h

φ Bφ xt,
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where due the special sparsity structure of Bφ (its rows have
disjoint support), the pseudo-inverse B+

φ is, up to normaliza-
tion, equal to B>φ . The computational complexity is thus lin-
ear O(mh) w.r.t. the number of edges and horizon. The net-
work can be trained by minimizing the cross entropy between
x̂t+h and xt+h or any other measure between distributions.

Most likely suffix. The maximum likelihood suffix over a
given horizon can be identified by Monte-Carlo sampling or
deterministically. Suppose that the agent resides at node vt
almost surely. Further, let Hφ be the weighted directed graph
whose adjacency matrix is log(Pφ) (the logarithm is applied
only to non-zero entries of Pφ). Since the nodes of Hφ cor-
respond to edges in G, a suffix s can also be seen as a path
(�et, . . . ,

�et+h−1) on Hφ. Moreover, as a consequence of the
transformation, the weight of s in Hφ is the same as its log-
likelihood:

log(g(s, δt,Φ)) = log

(
wφ(�et)

t+h−2∏
τ=t

[Pφ]�eτ ,�eτ+1

)

= log(wφ(�et)) +

t+h−2∑
τ=t

log
(
[Pφ]�eτ ,�eτ+1

)
,

where δt is a dirac centered at vt. The most likely suffix is
therefore identified in a deterministic manner by performing
a best-first traversal starting from vt and searching for the
maximum-weight path of length h. The computational com-
plexity is O(∆h), where ∆ is a bound on the maximum de-
gree in the h-hop neighborhood of vt (this bound is tight for
a perfect ∆-ary tree of depth h with all edge weights being
equal).

4 Experiments
Our goal is two-fold. First, in Section 4.1 we wish to con-
firm that GRETEL can capture the directionality of (straight)
paths in the edges of the latent graph. In addition, we are
interested in evaluating the generality of our approach and
its performance on real data. This is pursued by taking on
two diverse tasks: GPS trace extrapolation in Section 4.2 and
user-navigation on a knowledge network in Section 4.3. In-
formation about the datasets and hyper-parameters are dis-
played in Table 1, code and datasets are publicly available at
https://github.com/jbcdnr/gretel-path-extrapolation.

4.1 Can GRETEL Learn a Straight Path?
We constructed a toy experiment to qualitatively test whether
GRETEL has the capacity to capture directionality in the Eu-
clidean sense. Specifically, we generated straight trajecto-
ries on a random graph built to approximate a plane (by uni-
formly sampling n = 500 points in [0, 1]2 and applying a
10-NN construction). The trajectories were obtained by map-
ping straight lines to the closest nodes and sub-sampling the
resulting path.

Four typical runs of the experiment are shown in Figure 3.
Given a trajectory (disks from blue to green), GRETEL was
trained to predict the target (green circle) by minimizing a
target cross entropy loss. The task is non trivial as GRETEL

Figure 3: Extrapolation of a straight trajectory. The input trajectory
is visualized by disks whose color varies from blue to green. True
target is highlighted by a green circle. GRETEL’s predicted target
distribution is shown with red disks and the maximum likelihood
target with a red circle. Arrows indicate chosen edges at each node,
length represents confidence.

is not given the positions of the nodes. In addition, the graph
differs from a regular grid and does not offer a good approxi-
mation of the underlying Euclidean space.

As seen in Figure 3, most of the probability mass (red
disks) of the predicted distribution x̂t+h is concentrated close
to the target. Moreover, as intended, the direction of the tra-
jectory is encoded into the edge weights of Φ, despite the
sampling irregularity (note that a black arrow indicates the
most significant edge at each node). In the bottom right fig-
ure, due to the existence of a hole between the end of the
trajectory and the target, the graph neural network assigns
small likelihood to the correct target. We hypothesize that the
phenomenon is exaggerated by the graph being dense near the
north hole boundary, which causes the learned distance metric
(implied by the learned pseudo-coordinates) to locally deviate
from the Euclidean distance. It is also intriguing to observe
that, whereas in the leftmost figure GRETEL does not identify
correctly the target, the neural network’s answer presents a
visually plausible alternative.

4.2 GPS Trace Extrapolation

In the GPS trace extrapolation problem, we observe a pre-
fix of ordered GPS locations emitted by a driver moving on
the road network. Two distinct objectives can be addressed:
(i) predict the position of the driver in h seconds, or (ii) pre-
dict the following roads that the driver will follow.

Figure 4 illustrates visually the two scenarios. Two trajec-
tories are shown (blue to green filled circles) along with the
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Figure 4: Two examples of GPS trace extrapolation. Past trajectories
are composed of 5 observations (blue to green). Left: target distri-
bution as red disks, green circle is the true target. Right: sampled
future suffixes in red.

output of GRETEL for each objective (red): the target distri-
bution is on the left and the sampled likely suffixes are on the
right. Larger markers/bolder lines correspond to more likely
targets according to our model. The goal is to predict the true
target (highlighted by a green circle) and extrapolate the tra-
jectory towards it.

Existing solutions. The classical approach to learn patterns
from navigation-traces is to model them by a Markov Deci-
sion Process and learn the transition probabilities from the
observed data. The Markovian property can also be relaxed
by taking into account multiple steps at a time (akin to n-
grams). The main issue with such approaches is their sam-
ple complexity—accurately estimating the probability of rare
state transitions requires prohibitive amount of data as the
number of parameters grows in the best case (i.e., even when
n = 1) linearly with the number of edges. More recently, the
GPS extrapolation problem was solved by a recurrent neural
network (RNN), achieving state-of-the-art performance [Wu
et al., 2017]. The architecture in question resembles a stan-
dard RNN with the main difference that it integrates the
choice restrictions induced by the road network at each step.

Experimental setup. We ran an experiment based on
a small dataset of food deliveries (229 traces) occurring
over the OpenStreetMap4 road network of Lausanne (18156
nodes, 32468 edges). We mapped the GPS coordinates to the
k = 5 closest intersection nodes. The trajectories were pre-
processed to have consecutive observations at least 50 meters
apart. The min/max/median node degree was 1/6/2. Edge
features were speed limit and length. It is important to note

4https://openstreetmap.org

GPS Wikispeedia

# nodes 18’171 4’605
# edges 32’491 119’883
# trajectories 229 28’011
train/test 80% / 20% 80% / 20%
prefix (# observations) 5 4
horizon (# nodes) 9.1± 3.6 1, 2, 3

first edge MLP none 6 - 12 - 1
second edge MLP 12 - 24 - 1 14 - 28 - 1
activation type sigmoid sigmoid
# GCN layers (k) 60 5

Adam learning rate 0.01 0.1
batch size 5 10
# epochs 200 5

Table 1: Dataset information, model and training hyper-parameters.
Code and datasets are publicly available at https://github.com/
jbcdnr/gretel-path-extrapolation.

Model NB Loss Choice acc � P(vt+h) � NLL �

Uniform 31.5 0.035 2.40
Uniform X 48.8 0.133 1.89

GRETEL
target 63.6 ± 2.8 0.110 ± 0.006 1.94 ± 0.08
NLL 65.6 ± 0.8 0.108 ± 0.008 1.87 ± 0.05

GRETEL X
target 74.2 ± 1.4 0.199 ± 0.003 1.28 ± 0.04
NLL 68.8 ± 2.2 0.199 ± 0.004 1.50 ± 0.04

CSSRNN* 50

NLL

73.9 ± 1.6 1.67 ± 0.08
CSSRNN* 4 66.2 ± 2.6 1.57 ± 0.01
LPIRNN* 50 74.2 ± 3.1 1.53 ± 0.06
LPIRNN* 4 75.0 ± 2.3 1.87 ± 0.02

Table 2: Results of GPS trace extrapolation on test dataset. Choice
accuracy (%) is computed at non trivial intersections only (more than
two outgoing roads). We present an ablation of the non-backtracking
(NB) property of GRETEL’s random walk. Target probability is not
given for the RNN. We use an asterisk to indicate which algorithms
have access to the road coordinates.

that a GPS trace corresponds to a sequence of noisy physical
locations and not a sequence of adjacent nodes. Nevertheless,
all methods discussed so far require a path in order to func-
tion properly. Hence, as an extra pre-processing step, for all
baselines the GPS traces were mapped to paths using a Hid-
den Markov Model (HMM) [Newson and Krumm, 2009]. To
test the versatility of our approach, we did not employ the
map-matching algorithm with GRETEL, but provided it with
the raw trajectories as input. We used a non-parametric dif-
fusion in the encoder as a learned GCN did not improve the
performance. We trained the RNN based models from [Wu
et al., 2017] on one jump extrapolation objective instead of
the full suffix so that it is exposed to the same samples as our
method.

Table 2 reports extrapolation accuracy w.r.t. three mea-
sures. First, choice accuracy measures how accurate are the
decisions of an algorithm at each crossroad of the ground-
truth path connecting vt and vt+h, as extracted by the HMM.
We computed the choice accuracy on only nodes whose de-
gree was at least 3, as the decision is trivial otherwise. As
seen by the accuracy of a uniform and non-backtracking
random-walk, most crossroads encountered had degree 3,
leading to a random decision succeeding∼31.5% of the time.
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RNN models [Wu et al., 2017] reached a good choice ac-
curacy on the test set, slightly outperforming GRETEL (the
difference is smaller than the standard-deviation across 5 in-
dependent runs). However, they were less competitive in re-
covering the actual suffix, as measured by the negative log-
likelihood (NLL) measure. We note that choice accuracy is
more lenient with sporadic mistakes as compared to the suf-
fix NLL: the likelihood of a path depends heavily on the worst
decision made, whereas this is not true for the former. To
confirm that the RNN were not affected by overfitting, we
repeated the experiment with a smaller hidden size represen-
tation of 4 (instead of 50 as proposed by the authors). This
brought about only a small improvement to the CSSRNN ar-
chitecture with the NLL dropping from 1.67 to 1.57 and did
not help the LPIRNN.

Despite achieving moderate choice accuracy, GRETEL was
able to guess the correct suffix ∼28% more frequently than
the best RNN: in terms of geometric mean, the two algorithms
assigned 0.278 and 0.216 probability to the correct suffix, re-
spectively. This is surprising as the RNNs were given a com-
petitive advantage by knowing the road coordinates, whereas
GRETEL did not. Interestingly, the best result was attained
when the graph neural network was trained to locate the tar-
get, even when measuring NLL on the test set. Our hypoth-
esis is that choosing a target loss encourages the neural net-
work to explore alternative suffixes towards the target early
on, thus improving training.

Finally, we report the target probability measure P(vt+h)
corresponding to the average chance an algorithm has to find
a node vi with non-zero [xt+h]i (due to the GPS-to-node
mapping procedure, there were five such nodes for each tra-
jectory). We were unable to incorporate this metric for the
RNN, as the implementation provided by the authors does
not support auto-regressive sampling. In our test set, GRETEL
was able to find the target ∼20% of the time, outperforming
simple baselines.

4.3 User Navigation in Wikipedia
In the Wikispeedia game [West et al., 2009], human players
are called to find a path from a source to a target article by
following a sequence of hyperlinks. Since players can only
view the available links locally and guess links on other pages
based on their prior knowledge, most paths taken by play-
ers differ qualitatively from shortest-paths on the graph of
articles [West and Leskovec, 2012]. Therefore, it is intrigu-
ing to determine whether an algorithm can learn to mimic
the human routing logic. In particular, given a path prefix
can we predict towards which article the player is navigating
towards—or perhaps human choices are too unpredictable?

Motivated by this question, we trained GRETEL to pre-
dict the target of a navigation prefix among Wikipedia ar-
ticles. We optimized both objectives, the target probability
cross entropy and the suffix negative log-likelihood. Node
features were the node in/out degrees (to capture the notion
of hubs), while edge feature vectors contained the TF-IDF
similarity between source and destination articles of each hy-
perlink along with the number of times this link was clicked
in the training dataset of paths. We compare to previous work

precision@1 2-targets accuracy

Path length n 5 6 7 5 6 7

Uniform NB 1.9 0.1 0.0 49.6 67.3 58.2
Reweighted 15.9 3.8 0.6 77.1 84.2 79.8
FastText 3.0 ± 0.1 0.7 0.2 68.9 ± 0.5 70.8 ± 0.5 68.2 ± 0.6

West, 2012 80 84 80
GRETEL target 19.5 ± 1.3 6.2 ± 0.3 4.9 ± 0.3 82.2 ± 0.3 89.2 ± 0.3 84.6 ± 0.3

GRETEL NLL 19.0 ± 1.4 6.1 ± 0.4 4.0 ± 1.1 81.6 ± 0.3 88.5 ± 0.2 83.9 ± 2.9

Table 3: Wikispeedia target prediction accuracy (%) given path pre-
fix of 4 articles. Precision@1 is the ratio of true targets that are
assigned the highest probability. 2-targets accuracy is computed on
the classification between the true target and a random article at the
same distance. The length of the suffix is n− 4. Standard-deviation
has been computed on the basis of 5 independent runs.

and baselines which only use article features (e.g. TF-IDF
vectors) and local edge features (e.g. node degrees and prop-
erties of edges in the prefix). On the contrary, our method
sees the entire graph (not only the local connections of nodes
in the suffix), which we will argue is essential to solving this
problem.

Previous work. West and Leskovec [West and Leskovec,
2012] consider two variants of the target prediction task prob-
lem: (i) given a path prefix, the target and a negative target
sampled randomly, predict which one is the true target; and
(ii) given a prefix, rank all the possible targets. The code is
not publicly available, but we report the accuracy of their 2-
targets classifier. They extracted carefully tuned features to
mimic user way finding, considering for example node de-
grees for hubs and semantic similarity improvement over the
path. Their precision metric to evaluate the ranking model
considered sibling articles (same sub-category as the target)
as correct predictions, whereas we were less lenient in our
evaluation and only considered the prediction correct if the
true target was found.

Other baselines. We trained a simple predictor based
on FastText pre-trained word embeddings of dimension
300 [Mikolov et al., 2018]. Article feature vectors fi’s were
the average of their word representations. Given a pre-
fix (v1, . . . , v4), the model computed for each target ŷj =∑4
i=1 f

>
i Wifj , followed by a soft-max to represent a cate-

gorical probability over the nodes. The parameters (i.e., Wi)
were trained using Adam, with the learning rate set to 0.01.
This baseline shows what can be achieved without any knowl-
edge of the graph and using only article semantic similari-
ties. For instance, according to FastText, the closest articles
to “Moon” are “Mercury”, “Venus”, “Earth’s atmosphere”,
“Shackleton crater” and “Mars”. Finally, we compare to two
non-parametric versions of GRETEL: (Uniform NB) a non
backtracking random walk run for the distance of the path
on the random walk graph starting from vt and (Reweighted)
a random walk that has been positively biased towards fol-
lowing frequent links, i.e., those that players favored in the
training set.

Quantitative results. Table 3 reports two metrics: preci-
sion@1 measures how often a classifier recovers the actual
target, whereas 2-targets accuracy tests if a classifier can dis-
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Prefix, true suffix, sampled suffices from GRETEL P(s | p,G)

Lunar eclipse, Sunlight, Electromagnetic radiation, Atom
Nuclear fission, Nuclear power
Chemical element, Periodic table 0.13
Nuclear fission, Nuclear power 0.10
Nuclear fission, Nuclear weapon 0.07

Latvia, Russia, People’s Republic of China, Nepal
Himalayas, Edmund Hillary
Mount Everest, Tenzing Norgay 0.20
Mount Everest, Edmund Hillary 0.12
Himalayas, Yeti 0.06

Lawrencium, Russia, United States, Publishing
Newspaper, The Wall Street Journal
Book, Library 0.20
Book, Novel 0.11
Newspaper, The Wall Street Journal 0.07

Table 4: Handpicked examples of the top-3 most likely suffixes ac-
cording to GRETEL in the Wikispeedia test set.

tinguish the true target from a random article selected from
those in the same shortest path distance as the true target and
given at least once as target (mimicking [West and Leskovec,
2012]). As seen, GRETEL achieves between 4%-and-6% ab-
solute accuracy improvement over state-of-the-art. We at-
tribute this improvement to it considering each path prefix
in light of the full graph between articles: nodes close to
the prefix path can be discarded as possible targets as the
player would probably have found them or stayed in their
close neighborhood. This notion of proximity is not acces-
sible to other methods, while we believe it is crucial in at-
taining good accuracy. The FastText method does incorporate
some knowledge of the world not accessible to other methods.
However, our experiment suggests that the intrinsic meaning
of articles does not suffice to make a good prediction. On the
other hand, re-weighting the edges based on how frequently
they have been used in the training set is a very effective strat-
egy when trying to predict the next article, but suffers for
larger horizons. A case in point, if GRETEL was used to sug-
gest to users the next article to look at, it would match their
choice 1/5.26 of the time for one hop prediction and 1/20.4
of the time for three hops, whereas the Reweighted baseline
would be correct 1/6.28 and 1/166.6 of the time, respectively:
for a horizon of three hops, therefore, our method improves
target accuracy by 8.16×.

Qualitative results. We also report five hand-picked exam-
ples from our test set in Table 4 and visualize one of them in
Figure 5.

5 Related Work
To the extend of our knowledge, this is the first time the gen-
eralized path inference problem has been considered. An in-
teresting relevant work proposed to classify nodes belonging
to the shortest path between a source and a target [Battaglia
et al., 2018], but this is a combinatorial problem optimizing
a well known graph metric, rather than naturally occurring
agents’ paths.

Our refinement of the graph into a latent graph is inspired
from their message passing framework. Other specialized

Figure 5: Visualization of a path (yellow) on a subset of the
Wikipedia graph along with the top three predictions of GRETEL
(red, purple, blue in decreasing likelihood). Aiming to improve vis-
ibility, we display only the one-hop neighbors of the nodes in the
true path. The graph layout selected was the Force-Layout 2 imple-
mented in the gephi software [Bastian et al., 2009]. Small perturba-
tions were introduced to node positions to minimize label occlusion.

graph convolutional network layers, such as Graph Atten-
tion Network [Velickovic et al., 2017], could be also used
to tune the edge weights and allow for anisotropic filtering.
The main difference from these approaches is that we use a
non-backtracking walk as a generative model in order to ex-
trapolate paths.

Random walks on graphs have been used previously in a
deep learning context in order to sample paths from graphs
and extract node representations [Grover and Leskovec, 2016;
Perozzi et al., 2014] using [Mikolov et al., 2013]. We can see
the pseudo-coordinates as node representations with regard to
the observations, but the similarity stops there.

6 Conclusion
This paper focused on the path inference problem and its
generalization to trajectories. We proposed a novel graph
neural network architecture combining a GCN and a non-
backtracking walk generator. Our model refines a graph to
capture directionality by conditioning it on a path prefix. The
simplicity of the latent representation allows us to sample suf-
fixes efficiently and compute path and target likelihoods.

The path inference problem has remained relatively unex-
plored, yet it has many applications among which are GPS
trace extrapolation and user navigation in information net-
works, as shown in this work. We believe that graph neural
networks present a promising solution. We are very interested
in determining the limits of their ability.
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Çaglar Gülçehre, Francis Song, Andrew J. Ballard,
Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer,
Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew
Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph
networks. CoRR, abs/1806.01261, 2018.

[Bruna et al., 2014] Joan Bruna, Wojciech Zaremba, Arthur
Szlam, and Yann Lecun. Spectral networks and locally
connected networks on graphs. In International Con-
ference on Learning Representations (ICLR2014), April
2014.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bres-
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