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Abstract

We propose a new formulation for learning gener-
ative adversarial networks (GANs) using optimal
transport cost (the general form of Wasserstein dis-
tance) as the objective criterion to measure the dis-
similarity between target distribution and learned
distribution. Our formulation is based on the gen-
eral form of the Kantorovich duality which is appli-
cable to optimal transport with a wide range of cost
functions that are not necessarily metric. To make
optimising this duality form amenable to gradient-
based methods, we employ a function that acts as
an amortised optimiser for the innermost optimisa-
tion problem. Interestingly, the amortised optimiser
can be viewed as a mover since it strategically shifts
around data points. The resulting formulation is a
sequential min-max-min game with 3 players: the
generator, the critic, and the mover where the new
player, the mover, attempts to fool the critic by
shifting the data around. Despite involving three
players, we demonstrate that our proposed formu-
lation can be trained reasonably effectively via a
simple alternative gradient learning strategy. Com-
pared with the existing Lipschitz-constrained for-
mulations of Wasserstein GAN on CIFAR-10, our
model yields significantly better diversity scores
than weight clipping and comparable performance
to gradient penalty method.

1 Introduction
In recent years, deep generative models have become increas-
ingly important in theoretical research and applied machine
learning. Crucial to this endeavour is the ability to gener-
ate extremely complex and high-dimensional data observed
in real-world daily activities such as speech, images, videos
and text. An important class of recent deep generative mod-
els is the generative adversarial networks (GANs) [Goodfel-
low et al., 2014] which learn implicit data distribution via
a generator g(z) that maps z from an arbitrary space to the
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data space. Despite its simplicity, GAN has shown an enor-
mous promise in generating high-dimensional data and has
been successfully applied to a wide range of applications in-
cluding 3D object generation [Wu et al., 2016], text-to-image
[Zhang et al., 2016], and image-to-image translation [Zhu et
al., 2017] to name a few.

Efforts to overcome some fundamental problems in the
original GAN formulation, such as mode collapse, have
rapidly advanced the theoretical underpinnings of GAN, no-
ticeably f -GAN [Nowozin et al., 2016] , WGAN [Arjovsky
et al., 2017], and geometric enclosing networks [Le et al.,
2018]. While f -GAN provides an elegant generalisation of
GAN to help us better understand the nature of the divergence
objective in GAN with the f -divergence, the inherent mode
collapse problem still exists [Goodfellow, 2016]. Besides, f -
divergence is inherently discontinuous and a slight change in
the generator g may lead to a significant change in the f -
divergence between the data distribution Pd and distribution
Pg induced by g [Arjovsky et al., 2017]. This causes diffi-
culty in training generative models involving f -divergence.
Another related problem comes from the high dimensionality
of the data space, i.e. the true and induced distributions often
lie in two separate manifolds, making their supports disjoint
and further incurring very large or even infinite f -divergence
values [Arjovsky et al., 2017].

One attractive solution to overcome these aforementioned
problems in using f -divergence is to employ the Wasserstein
distance (the most popular special case of optimal transport
cost), which is inherently continuous and immune against the
dimensionality misspecification, to train GAN as proposed
in WGAN [Arjovsky et al., 2017]. Given a lower semicon-
tinuous cost function c : X × X → [0,+∞], the optimal
transport cost between two distributions Pd and Pg w.r.t this
cost function in its primal form is defined as [Villani, 2008;
Santambrogio, 2015]:

W (Pd,Pg) = min
π∈Π(Pd,Pg)

E
(x,y)∼π

[c (x, y)] , (1)

where Π (Pd,Pg) represents all couplings π of Pd and Pg, i.e.
a joint measure over X × X with marginal distributions Pd
and Pg. When c is a metric, W (·, ·) in (1) becomes the
Wasserstein distance of order 1 between two distributions.
Exploiting the convexity of optimal transport (OT), the gen-
eral Kantorovich duality takes the following form [Santam-
brogio, 2015]:
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W (Pd,Pg) = max
f,f̃

{
E
Pd

[f (x)] + E
Pg

[
f̃ (y)

]}
,

where f, f̃ are bounded and continuous functions satisfy-
ing the constraint: f (x) + f̃ (y) ≤ c (x, y) , ∀x, y ∈ X . Let
fc (y) = minx {c (x, y)− f (x)} be the c-transform of f , one
can transform the above optimisation problem into a more
computational-friendly form:

W (Pd,Pg) = max
f

{
E
Pd

[f (x)] + E
Pg

[fc (y)]

}
. (2)

Some papers in deep generative models using GAN with
Wasserstein distance, e.g. WGAN [Arjovsky et al., 2017]
and WGAN-GP [Gulrajani et al., 2017], have attempted to
exploit the above duality form, but so far have been strictly
limited to the case where the cost function is a norm, i.e.
c (x, y) = ‖x− y‖. When the cost function is a metric in
the underlying space, one can further prove that fc = −f
with f ∈ L1 where L1 denotes the family of 1-Lipschitz func-
tions (with the metric used in the cost function). In summary,
WGAN and WGAN-GP attempted to solve:

min
g
W (Pd,Pg) = min

g
max
f∈L1

{
E
Pd

[f (x)]− E
Pg

[f (y)]

}
, (3)

where g and f are parameterised via neural networks (NNs),
but f is required to be in the class of 1-Lipschitz functions L1.
Despite the powerful and elegant formulation of Wasserstein
distance for this problem, the restriction on Lipschitz con-
dition unfortunately makes training these models difficult, re-
sulting in weight-clipping heuristic technique in WGAN, reg-
ularising through gradient penalty in WGAN-GP and its im-
proved version [Wei et al., 2018] or constraint on the spectral
norm (SN) of the weight matrices in SNGAN [Miyato et al.,
2018]. In these methods, the family of constrained functions
is only a subset of L1. Model-wise, the strict use of norm as
the cost function also arguably limits the true potential of OT.

In this paper, we propose a solution to overcome two afore-
mentioned limitations encountered in the previous work. Our
method considers the general use of OT which is valid for
a wide range of cost functions that are not necessarily met-
ric, and more importantly we successfully remove 1-Lipschitz
constraint. Our key technical contribution is a new formula-
tion that transforms the duality in (2) into a tractable optimi-
sation problem using the amortised optimisation technique.
Our new formulation involves a new function approximator
which we call ‘mover’ h : X → X that attempts to learn
the result of the optimisation problem in computing the c-
transform. This results in the following new optimisation
form which can work with a wide range of cost functions as
well as totally removing the Lipschitz constraint:

min
g

max
f

min
h

{
E
Pg

[f (y)]−E
Pd

[f (h (x))]+E
Pd

[c (h (x) , x)]

}
. (4)

Interestingly, our proposed form can be interpreted as a 3-
player game analogy: g is the generator as in original GAN;
f is the critic, taking to be any lower semi-continuous func-
tion without 1-Lipschitz constraint; and h is a new player,
playing the role of a mover. In essence, while the critic tries
to fool the generator, the mover and the generator in turn

try to fool the critic in different ways. One possible infor-
mal setting is to think of the critic f as a police officer who
tries to distinguish between the real and counterfeit money,
and the generator g as a criminal who makes fake money as
in the usual GAN interpretation [Goodfellow et al., 2014],
whilst the mover h is a corrupt police officer whose job is
to sabotage the officer f to help the criminal g perfect their
counterfeit making process. To elaborate, the generator cre-
ates a counterfeit from raw materials (i.e. random noise)
such that the critic may consider it genuine. Meanwhile, the
mover mildly contaminates an authentic object such that the
critic is not aware of. At the ideal equilibrium, the critic f
becomes the Kantorovich potential (refer to [Villani, 2008;
Santambrogio, 2015] for the definition of Kantorovich po-
tential), the mover becomes the identity function h(x) = x
which incurs no cost in transport, and the induced distribu-
tion Pg is identical to the data distribution Pd.

In our proposed work, all functions g, f and h are mod-
elled via NNs. An immediate question raised from this for-
mulation is whether the nested min-max-min optimisation in
(4) can be addressed in practice. We demonstrate that this
can be done via a simple alternative gradient update scheme.
This suffices to obtain empirical results that are significantly
better than WGAN with weight clipping and comparable to
WGAN with gradient penalty on the CIFAR-10 dataset. We
also discuss interesting connection between the mover to per-
turbation training wherein the data are moved randomly. Our
results show that having an optimal mover is critical to ob-
taining good performance.

In summary, our contributions in this paper are threefold: i)
we propose a general formulation using OT beyond norm cost
for GAN where Lipschitz conditions are all removed, over-
coming a key challenge encountered in existing literature of
applying Wasserstein distance to train GAN; ii) we introduce
a new duality form via the novel use of a mover which results
in an appealing 3-player game strategy where the new mover
attempts to shift the data strategically; and iii) we demon-
strate a simple yet effective alternative gradient optimisation
strategy for our formulation.

2 Three-Player Wasserstein GAN
We revisit the set up of learning an implicit distribution as
follows. The goal is to estimate a distribution over an of-
ten high-dimensional space X where we only have access to
its empirical data distribution Pd. If we have prior knowl-
edge that the support of the data distribution lies only in a
low-dimensional manifold of X , then we can attempt to di-
rectly estimate a mapping g from the coordinate space Z to
X . Formally, let Pz be a prior over the coordinate space Z ,
we wish to learn a mapping function gθ : Z → X , i.e. a deep
neural network, in such a way that the pushforward measure
Pgθ = gθ#Pz is as close to Pd as possible. In other words, we
minimise the OT cost defined in (1) between Pgθ and Pd:

θ∗ = arg min
θ
W (Pd,Pgθ ) . (5)

Our emphasis is a formulation that can work with any lower
semi-continuous cost function c that is not necessarily a met-
ric. Hence, we make use of the general duality in (2) and
further parameterise the function f by a neural network fφ.
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Combining this with (5) we arrive at the following minimax
problem in parametric form:

min
θ

max
φ

[
E
Pd

[fφ (x)] + E
Pgθ

[
fcφ (y)

]]
. (6)

2.1 Amortised Optimisation
The generality of the dual form in (6) comes with a serious
drawback: the c-transform f cφ is implicitly defined via the
optimisation

fcφ (y) = min
x
{c (x, y)− fφ (x)} (7)

and hence it is not straightforward to optimise or differenti-
ate over the parameters θ and φ in (6). To address this diffi-
culty, let us denote α (y) = arg minx {c (x, y)− fφ (x)}, then
fcφ (y) = c (α (y) , y) − fφ (α (y)) . We now propose to ap-
proximate the minimiser α (y) via a learnable neural network
hψ (y) parameterised by ψ. Formally, the function h is learned
by performing the following optimisation

min
ψ

E
Pg

[c (hψ (y) , y)− fφ (hψ (y))] . (8)

Our proposed approach can be viewed from the perspective
of amortised optimisation as follows. Supposed that we have
to solve a large number of optimisation problems. Instead of
solving each of them numerically, the idea of amortised opti-
misation is to estimate a function that maps from the input to
an approximate solution of the optimisation problem. Here,
instead of solving an optimisation problem for every y to find
α(y) , we learn the mapping h from the input y to α(y), i.e. the
solution of the optimisation problem in (7). We call the amor-
tised optimiser h the mover as it attempts to shift elements of
the space X .

2.2 Three-Player Game Formulation
Assume that the function class hψ where ψ ∈ Ψ has
infinite capacity, then the best mover hψ∗ of the op-
timisation problem in (8) is clearly hψ∗ = α, and
so EPgθ [c (hψ∗ (y) , y)− fφ (hψ∗ (y))] = EPgθ

[
fcφ (y)

]
. In

practice, h belongs to a finite capacity family of neu-
ral networks, thus by definition in (7), EPgθ

[
fcφ (y)

]
≤

minψ EPgθ [c (hψ (y) , y)− fφ (hψ (y))]. Instead of dealing di-
rectly with (6), this leads us to propose the following optimi-
sation problem

min
θ

max
φ

{
E
Pd

[fφ (x)] + min
ψ

E
Pgθ

[c (hψ (y) , y)− fφ (hψ (y))]

}
or equivalently,

min
θ

max
φ

min
ψ

{
E
Pd

[fφ (x)]− E
Pgθ

[fφ (hψ (y))] + E
Pgθ

[c (hψ (y) , y)]

}
.

(9)

Noting that in (2) we are free to apply the c-transformation
to the argument of the first expectation instead. Doing so
leads to the following optimisation problem where the mover
h is applied only to the empirical data

min
θ

max
φ

min
ψ

{
E
Pgθ

[fφ (y)]− E
Pd

[fφ (hψ (x))] + E
Pd

[c (hψ (x) , x)]

}
.

(10)

Empirically, we find that (10) has better performance than (9),
so this is the form we use in our experiments. We name our
proposed model 3-player Wasserstein GAN (3P-WGAN).

The following discussion is dedicated to (10) but a simi-
lar one can be derived straightforwardly for (9). The optimi-
sation problem in (10) is now a min-max-min problem and
can be considered as an attempt to solve a 3-player sequen-
tial game involving the following 3 players: the generator g,
the critic f , and the mover h. As in previous formulations of
WGAN and WGAN-GP, the critic f focuses on finding the
difference between the learned distribution Pg and the empir-
ical distribution Pd by assigning high contrast values to the
mismatched regions of the two distributions (i.e. maximis-
ing EPg [f (y)]−EPd [f (h (x))]). Unlike existing formulations,
f in our proposed framework can be a bounded continuous
function and we do not have to deal with the Lipschitz con-
straint of f . Another key difference is the presence of the
mover h. The mover can attempt to fool the critic by mov-
ing the empirical data to reduce the contrast obtained by the
critic (i.e. minimising EPg [f (y)]−EPd [f (h (x))]) with an op-
timal moving cost (i.e. minimising EPd [c (h (x) , x)]). Note
that the cost function c acts as a regulariser for the mover,
preferring the mover to move as little as possible. It can be
observed that the mover h tends to regularise and penalise
the extreme critic, which places extreme high values over Pg
and extreme low values over Pd. With the extreme critic, the
mover h can perform longer moves to transport Pd into the
high-valued region of the critic, hence reducing the chance
for the extreme critic to take over others in the outer maximi-
sation. Certainly, if we ignore the mover by setting it to the
identity function (i.e. hψ (x) = x), the extreme critic dom-
inates others in the outer maximisation. Consequently, the
critic f saturates rapidly, facing the gradient vanishing and
making the generator not be further improved.

It can be seen that at the equilibrium point of this game, we
obtain Pgθ = Pd, the mover is the identity function hψ (x) =
x, and fφ is the Kantorovich potential.

Despite having 3 nets, our proposed model can still be
trained via a simple alternative gradient update scheme, in
which the only modification necessary is to update the mover
more often than the other two players because of the crucial
role of the mover. In particular, for each mini-batch of data,
we sequentially update the mover, the critic and the generator,
then we iterate this process until convergent or the maximum
number of iterations is reached. This learning procedure is
summarised in Algorithm 1. Note that we drop the subscripts
of gθ, fφ and hψ on lines 4, 6, 8 and 9 in Algorithm 1 to make
it succinct since the full notations can be found in (10).

2.3 Remarks
The case of the Wasserstein distance of order p (denoted by
Wp) involves using the cost function c(x, y) = λ ‖x− y‖pp (re-
fer to [Villani, 2008; Santambrogio, 2015]). In this case, (10)
becomes (note that we drop the subscripts for parameters to
shorten the formula)

min
θ

max
φ

min
ψ

{
E
Pg

[f (y)]− E
Pd

[f (h (x))] + λE
Pd

[
‖h (x)− x‖pp

]}
.

Since in our formulation the cost acts as the regulariser for
the mover, it is interesting to note that the scale of the cost
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Algorithm 1 Update scheme of 3P-WGAN.
Input: target distribution Pd, noise distribution Pz , cost
function c (x, y), number of mover updates per epoch
nmover, batch size m, Adam hyperparameters α, β1, β2,
network architectures for generator gθ (·), critic fφ (·) and
mover hψ (·).
Output: optimal parameter θ for the generator g.
1: while θ has not converged do
2: Draw xi

iid∼ Pd, i = 1, . . . ,m.
3: Draw zi

iid∼ Pz, i = 1, . . . ,m.
4: yi ← g (zi) , i = 1, . . . ,m.
5: for t = 1, . . . , nmover do
6: ψ ← Adam

(
1
m

∑m
i=1∇ψ [−f (h (xi)) + c (h (xi) , xi)]

)
.

7: end for
8: φ← Adam

(
1
m

∑m
i=1∇φ [−f (yi) + f (h (xi))]

)
.

9: θ ← Adam
(

1
m

∑m
i=1∇θf (yi)

)
.

10: end while
11: return θ

function λ acts like the regularisation strength for h. In the
extreme case, as λ → ∞, the mover is forced to be an iden-
tity function and hence can be removed entirely from our for-
mulation. This corresponds to having no regularisation, and
the resulting problem is then the same as the standard WGAN
formulation, however f is not constrained to be a 1-Lipschitz
function. We expect this would lead to severe overfitting of
f , and our empirical results confirm this intuition. As λ→ 0,
the mover is allowed to move more freely, thus increasing the
effect of regularisation on the critic. Informally, as the mover
has more freedom, the critic f is less likely to be non-smooth
since any local non-smoothness can be easily fooled by the
mover as it shifts the data around locally.

3 Experimental Results
In this section, we present our experimental results on a syn-
thetic and 2 real-world datasets (i.e. CIFAR-10 [Krizhevsky
and Hinton, 2009] and CelebA [Liu et al., 2015]). The syn-
thetic experiment empirically demonstrates the stable con-
vergence property of our proposed 3P-WGAN. On the other
hand, experiments on real-world datasets show that 3P-
WGAN outperforms WGAN [Arjovsky et al., 2017] and DC-
GAN [Radford et al., 2015], and yields comparable results
to WGAN-GP [Gulrajani et al., 2017]. Then we experiment
with different architectures of the mover h to investigate its
role. In our proposed 3P-WGAN model, we use the objective
function (10) in all experiments. We use TensorFlow [Abadi
et al., 2016] and our code is available on GitHub1.

3.1 Synthetic Experiment
The synthetic samples are generated from a 2-dimensional
Gaussian mixture model. There are 8 mixture components
with equal mixing proportions. The means of all mixture
components are evenly spaced on a circle centred at O with
radius of 2. The covariance matrix of each mixture compo-

nent is
[

0.04 0
0 0.04

]
. The total number of synthetic data

1https://github.com/nhandam/p3_wgan

(a) 100 epochs. (b) 500 epochs. (c) 3000 epochs.(d) 7000 epochs.

Figure 1: Synthetic experiment results: samples from the ground-
truth Gaussian mixture model and learned 3P-WGAN. (Blue: real
data. Red: generated data. Green: moved real data.)

points is 2048 and we use full-batch gradient update (since
the samples are only 2-dimensional, we can effectively com-
pute full-batch gradient). The architecture of generator, critic
and mover is FC - ReLU - FC - ReLU - FC (FC denotes a
fully connected layer), with tanh applied in the last layer of
critic and batch normalisation applied in every layer of gen-
erator and critic. The generator is fed with 128 noise units
drawn from a uniform distribution. We employ Adam opti-
miser [Kingma and Ba, 2014] with learning rate of 0.0001
and exponential decay rates β1, β2 of 0.0, 0.9. In each epoch,
we update the mover five times while updating generator and
critic once. Regarding the reconstruction cost, we use the
scaled Euclidean distance c (x, y) = λ ‖x− y‖2 and anneal
the value of λ from 0.1 to 100 over 25,000 epochs.

Figure 1 shows the result of our synthetic experiment. We
can see that at the end our proposed model could effectively
recover all 8 modes (capturing both mean and covariance) of
the Gaussian mixture model. Furthermore, this visualisation
shows two points: first our model did converge after roughly
3,000 epochs, and second it stably maintained the conver-
gence after at least 4,000 epochs more, which is even longer
than the number of epochs it took to reach convergence.

3.2 Real-World Datasets
We now present our experiments on 2 real-world datasets:
CIFAR-10 and CelebA. In CIFAR-10, we use 50,000 colour
images belonging to 10 classes: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck. Each image is of
size 32 × 32. CelebA dataset contains more than 200,000
colour images of celebrities. We use the aligned cropped
64× 64 version downloaded from the original website of the
dataset. Images in this version focus on the faces.

3.3 Model Architectures
The architectures of our generator and critic follow those in
WGAN-GP. However, we apply tanh to the last layer and em-
ploy batch normalisation in each layer in the critic. The novel
component that our proposed model introduces is the mover
h. It consists of 4 128-feature map residual blocks that sub-
sequently downscale (the first 2 blocks) and upscale (the last
2 blocks) the input, which eventually goes through a ReLU, a
convolutional layer (with kernel size of 3× 3, stride of 1, and
zero padding) and a tanh layer. We also apply batch normal-
isation in each layer of h. With this architecture, the mover
preserves the dimension of the input data.

The total number of epochs in each experiment is 500
yielding roughly 80,000 generator updates, which is fewer
than 100,000 generator updates in WGAN-GP. Regarding the
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Model Inception Score FID

WGAN [Arjovsky et al., 2017] 4.57± 0.05 74.6

DCGAN [Radford et al., 2015] 6.40± 0.05 37.7

WGAN-GP [Gulrajani et al., 2017] 7.86 ± 0.07 29.3

3P-WGAN (ours) 7.38± 0.08 28.8

Table 1: Inception scores (higher is better) and Frechet inception
distance (FID) (lower is better) of various models on CIFAR-10.

reconstruction cost, we use the scaled Euclidean distance
c (x, y) = λ ‖x− y‖2 and anneal the value of λ from 0.1
to 100 over 500 epochs. For hyper-parameter selection, we
do not tune the parameters based on inception score [Sali-
mans et al., 2016] or Frechet inception distance [Heusel et al.,
2017] to avoid overfitting to any metric. We instead try dif-
ferent values of λ, observe the loss of each player and choose
the values of λ such that the critic is neither too discrimina-
tive nor too flat. We employ Adam optimiser [Kingma and
Ba, 2014] with learning rate of 0.0002 and exponential decay
rates β1, β2 of 0.0, 0.9. The learning rate is decayed linearly
over 100,000 generator updates. Due to its critical role, the
mover h is updated 5 times for each weight update of the
critic and generator. Other settings include: (i) weights are
randomly initialised from Gaussian distribution N (0, 0.02I)
with zero bias; (ii) mini-batch size for training each of 3 play-
ers is 64; (iii) and the generator is fed with 128 noise units
drawn from a uniform distribution.

3.4 Inception Results
As a quantitative comparison, Table 1 shows the inception
scores [Salimans et al., 2016] and Frechet inception distance
(FID) [Heusel et al., 2017] of our proposed 3P-WGAN and
some prominent GAN models on CIFAR-10 dataset. FIDs
are calculated on samples of 50,000 images while inception
scores are computed for 10 partitions of 50,000 randomly
generated samples. Our proposed 3P-WGAN clearly outper-
forms WGAN and DCGAN in both criteria. When it comes to
WGAN-GP, our 3P-WGAN marginally outperforms its FID
but at the same time slightly falls behind its inception score.

3.5 Image Generation
Figure 2 shows samples randomly generated by our proposed
3P-WGAN trained on 2 datasets. Figure 2a shows CIFAR-
10 32 × 32 generated images, in which we can recognise
some objects (such as cars, trucks, ships, or horses), whilst
generated images of CelebA 64 × 64 are shown in Figure
2b. Among decent images, we can see variation of some as-
pects such as gender, hair style, hair colour, facial expression,
age, pose angle, moustache and beard, glasses, make-up style.
These randomly generated samples from 2 datasets demon-
strate that our proposed 3P-WGAN is capable of generating
a wide range of decent and recognisable images.

3.6 Inspection of Mover’s Behaviours
In this section, we empirically inspect the mover’s be-
haviours. First, in Figure 3 we show the moved real images
during training of the experiment reported from Section 3.3 to

(a) CIFAR-10 32× 32. (b) CelebA 64× 64.

Figure 2: Images generated by our proposed 3P-WGAN.

(a) 1 epoch. (b) 50 epochs.

(c) 100 epochs. (d) 440 epochs.

Figure 3: Examples of the moved real images (h (xreal)) from
CIFAR-10 during training.

Section 3.5. To elaborate, each sub-figure is the result when
we feed 100 samples randomly selected from CIFAR-10 to
the mover after some epochs. We can see that as training pro-
ceeds the mover tends to make fewer changes to the images,
which supports our claim in Section 2.2 that at the equilib-
rium the mover is the identity mapping. Second, we vary the
architectures of the mover h and conduct experiments that
demonstrate not only the importance of the mover but also
the relationship between 3 players as discussed in Section 2.2.
We use CIFAR-10 in the following experiments.

Mover Is an Identity Function
In this setting, the mover h is no longer a neural net. Instead,
we consider 2 scenarios: h is an identity function and h is
a noisy identity function (i.e. its output is simply the input
added Gaussian noise). The objective function in the first sce-
nario is the same as the objective function of WGAN without
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(a) Noise added to the input. (b) Noise added to the last layer.

Figure 4: Generated images of 3P-WGAN trained on CIFAR-10
dataset when the mover h has stochastic noise.

the Lipschitz constraint. The results in both scenarios support
the importance of learning the mover h.

In the first configuration, the generated images are very
blurry and meaningless, whilst those in the second configu-
ration have only plain patterns and solid colours. In either
case, among 100 random samples there are less than 10 dis-
tinct scenes, which indicates mode collapse.

Mover Is a Noisy Neural Net
In this setting, the mover h is a neural network. We con-
sider 2 scenarios: Gaussian noise added to the input of h and
Gaussian noise added to the last layer of h. Figure 4a and
4b show the generated images of these scenarios respectively.
We can see that the samples in Figure 4a are blurry whilst
those in Figure 4b are noisy. There is an intuitive explana-
tion for these behaviours. From (10), as training proceeds,
the generator g learns to generate images that look like the
‘moved real images’ (i.e. the result of feeding real images
to the mover h), whilst h learns to move real images a short
distance and make the critic f consider them as generated
images. In the first scenario, h learns to move noisy images
to the neighbourhood of real images, thus this process can
be loosely considered as denoising, which results in blurry
images. As g learns to generate images that look like the out-
put of h, the generated images are blurry as in Figure 4a. In
the second scenario where the stochastic noise is added to the
output of h, the mover cannot act as a denoiser but only learns
to reduce the effect of noise. Consequently, the generated im-
ages are noisy as in Figure 4b.

4 Related Work
The work in generative models can be categorised by the
divergence/distance used to measure the dissimilarity be-
tween target distribution and learned distribution such as
Jensen-Shannon (JS) divergence [Goodfellow et al., 2014], f -
divergence [Nowozin et al., 2016], maximum mean discrep-
ancy [Dziugaite et al., 2015], Wasserstein distance [Arjovsky
et al., 2017], and mixture of various divergences [Hoang et
al., 2018; Le et al., 2019; Nguyen et al., 2017].

Among these categories, Wasserstein distance is preferable
due to its continuity property and induced weaker topology
compared with others [Arjovsky et al., 2017]. Many of ex-
isting articles in generative models involving the Wasserstein
distance [Arjovsky et al., 2017; Gulrajani et al., 2017; Wei et

al., 2018] use the Kantorovich duality that requires to enforce
the 1-Lipschitz condition over the critic. In particular, the au-
thors of [Arjovsky et al., 2017] proposed to clip the weight
matrices of the critic, the authors of [Gulrajani et al., 2017;
Wei et al., 2018] used the gradient penalty term to restrict
the gradient norm, and the authors of [Miyato et al., 2018]
imposed a constraint on the spectral norm of the weight ma-
trices. Weight clipping has been shown to result in low-rank
weight matrices for the critic, which therefore uses only a few
features [Miyato et al., 2018]. Gradient penalty requires in-
terpolation between the real and generated data, making it
hard to evaluate in the high-dimensional setting. The key
idea of [Wei et al., 2018] is to impose gradient norm penalty
near the data manifold. However, the implementation using
Gaussian noise perturbation led to blurry images so they used
dropout in the discriminator with debatable assumption that
the implicit distance between the input and the perturbed ver-
sion is constant. Thus we consider this approach as an engi-
neering technique that makes the discriminator robust using
dropout instead of imposing Lipschitz constraints. In gen-
eral, the real families obtained from the techniques in [Ar-
jovsky et al., 2017; Gulrajani et al., 2017; Wei et al., 2018;
Miyato et al., 2018] are strict subsets of the family of 1-
Lipschitz functions, hence only being able to formulate upper
bounds of the corresponding Wasserstein distance.

5 Conclusion and Future Work
In this paper, we propose a new formulation for learning GAN
using optimal transport based on a general form of the Kan-
torovich duality. Unlike previous work, our proposed formu-
lation can work with optimal transport built on a wider range
of cost functions that are not necessarily metric. The general
form of Kantorovich duality appears formidable due to the
implicit definition of the function to be optimised as the re-
sult of another optimisation problem. Our key contribution in
addressing this difficulty is the introduction of an amortised
optimiser, learned by another deep neural network. The new
network acts as a mover as it strategically shifts the data to
fool the critic and sets up a 3-player game between the gener-
ator, the critic and the mover. Furthermore, our method does
not require imposing any Lipschitz constraints on the critic.

Despite the problem of dealing with a 3-player game, our
experimental results demonstrate that with a simple alterna-
tive gradient learning strategy, our proposed model can be ef-
ficiently trained to achieve comparable results to existing and
more restricted WGAN formulations. We experiment with
various variants of the mover, including removing it all to-
gether, replacing the mover by random noise perturbation,
and adding noise to the mover output. The results confirm
the importance of training the mover in a strictly adversarial
setting without noise.

Our work offers a new perspective to the problem of min-
imising optimal transport cost in training GANs. Future work
can further explore more forms of the cost function (some of
which may be specifically designed for a particular task) and
the role that the mover plays regarding not only the critic’s
regulariser, but also the generator’s aide (and we need to iden-
tify which kind this aide is in particular).
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