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Abstract
Automatically generating videos according to the
given text is a highly challenging task, where vi-
sual quality and semantic consistency with text are
two critical issues. In existing methods, when gen-
erating a specific frame, the information in those
frames generated before is not fully exploited. And
an effective way to measure the semantic consis-
tency between videos and given text remains to be
established. To address these issues, we present a
novel Introspective Recurrent Convolutional GAN
(IRC-GAN) approach. First, we propose a re-
current transconvolutional generator, where LSTM
cells are integrated with 2D transconvolutional lay-
ers. As 2D transconvolutional layers put more
emphasis on the details of each frame than 3D
ones, our generator takes both the definition of
each video frame and temporal coherence across
the whole video into consideration, and thus can
generate videos with better visual quality. Second,
we propose mutual-information introspection to se-
mantically align the generated video to text. Unlike
other methods simply judging whether the video
and the text match or not, we further take mutual in-
formation to concretely measure the semantic con-
sistency. In this way, our model is able to introspect
the semantic distance between the generated video
and the corresponding text, and try to minimize it
to boost the semantic consistency. We conduct ex-
periments on 3 datasets and compare with state-of-
the-art methods. Experimental results demonstrate
the effectiveness of our IRC-GAN to generate plau-
sible videos from given text.

1 Introduction
In computer vision, automatic visual content generation has
experienced a remarkable evolution due to Generative Ad-
versarial Networks (GANs) [Goodfellow et al., 2014]. Many
improvements are made to reach better results including CA-
GAN [Ni et al., 2018] , MEGAN [Park et al., 2018] and so
∗These authors contributed equally.
†Corresponding author.
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Figure 1: Overview of the proposed IRC-GAN approach.

on [Zhang and Peng, 2018b]. GANs are capable of more
complex tasks like muti-domain synthesis [Mao and Li, 2018;
Hao et al., 2018] and multi-view generation [Tian et al., 2018;
Song et al., 2018].

In this paper, we focus on generating videos from text,
namely text-to-video generation. There are two critical is-
sues in such task. First, the generated frames need to be both
realistic and temporally coherent. Second, the video content
needs to be in accordance with text. In brief, text-to-video
generation has two key components: visual quality and se-
mantic consistency.

A straightforward idea to handle such issues is to use con-
ditional generative models like c-GAN [Goodfellow et al.,
2014] and c-VAE [Doersch, 2016] as most current meth-
ods do, which are mainly adapted from image synthesis like
[Zhang et al., 2017; Zhang and Peng, 2018a]. When extend-
ing image generation to videos, there is an inevitable problem
that videos have one more dimension than images. In order
to tackle this, [Pan et al., 2017] replaces the 2D convolutional
layers [Zeiler et al., 2010] with 3D layers, while [Mittal et al.,
2016] chooses to simply use 2D layers to generate the video
frame by frame. However, 3D layers may have poorer frame
quality than 2D layers [Saito et al., 2017] while 2D layers
fail to take temporal dependency into account. Due to these
reasons, generated videos may suffer from either low frame
quality or poor temporal coherence. On the other hand, sim-
ply treating text as conditions cannot concretely measure the
semantic consistency between videos and text and thus may
struggle to precisely coordinate videos with text.

In order to overcome the difficulties of video generation
from text, we present a novel Introspective Recurrent Convo-
lutional GAN as shown in Figure 1, which mainly has follow-
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ing contributions:

• Recurrent Transconvolutional Generator (RTG):
Frame quality and temporal coherence are two aspects
of visual quality of the generated videos. To improve
these, our generator integrates LSTM cells with 2D
transconvolutional networks. Such structure endows the
generator with memory of history information so that
each frame is generated on the basis of previous frames,
which may lead to better coherence. Besides, as 2D
transconvolutional layers put more emphasis on the de-
tails of each frame than 3D ones, the definition of each
frame is boosted. In this way, our generator can synthe-
size videos with better quality.

• Mutual-information Introspection (MI): Instead of
simply judging matched or not, mutual information is in-
troduced to measure semantic similarity quantitatively.
In this way, our model introspects how far the gener-
ated video is semantically from the given text during a
two-stage training process. In the first stage, the text
encoder is trained with a seq2seq auto-encoder and an
introspective network extracting mutual information be-
tween the text and the corresponding video. In this way,
semantic distances among different text are established.
In the second stage, our model introspects the seman-
tic distance between the generated videos and the corre-
sponding text and try to minimize it to boost the seman-
tic consistency. By doing so, our model can generate
videos precisely matched with the given text.

To verify the effectiveness of our IRC-GAN method, we
collect several datasets and modify them into 3 datasets: Sin-
gle Moving Mnist-4, Double Moving Mnist-4 and KTH-4,
comparing with 4 state-of-the-art approaches.

2 Introspective Recurrent Convolutional
GAN

Our IRC-GAN attempts to synthesize a temporal coherent
and plausible frame sequence semantically aligned with the
given text. As shown in figure 2, there are three compo-
nents: the text encoder network, the recurrent transconvolu-
tional generator network and the introspective discriminator
network.

2.1 Text Encoder Network

The text encoder is designed to encode the given text into text
latent codes ztext for video generation. First, each word is
represented as a one-hot vector. So a sentence of length l can
be denoted as {w1, w2, . . . , wl}. wt is the t-th word’s one-hot
vector. The sentence is then fed into a bidirectional LSTM
network [Schuster and Paliwal, 1997] to contextually embed
each word into ht. Finally, we input the contextually embed-
ded word sequence {h1, h2, . . . , hl} into a LSTM-based en-
coder and treat the final LSTM output as the text latent code
ztext ∈ Rdtext .

2.2 Recurrent Transconvolutional Generator
Network

Overview of Structure
We prefer 2D-transconvolution-based networks to 3D net-
works for two reasons: 1) Flexibility. 2D networks can han-
dle any arbitrary length of frame sequences. 2) Frame quality.
3D networks construct the whole video in one go, whose ker-
nels are distracted, while 2D networks do the job frame by
frame, whose kernels focus on the details of each frame. So
the synthesized frames by 2D networks tend to be of higher
definition.

But such method can’t deal with temporal coherence, be-
cause each frame is generated independently. To break such
independence, we introduce LSTM units into the network
so that each frame can be created on the basis of previous
frames. Furthermore, the text latent code ztext is addition-
ally fed into the LSTM units at each time step to remind the
generator of what the given text is.

Details of Network
First, an LSTM-based feature generator Gf (z) :
Rdtext+dnorm → Rdl×df is designed to transform the
latent code z ∈ Rdtext+dnorm into a frame-wise feature
sequence [y1, y2, · · · , ydl

]. The latent code z is the concate-
nation of the text latent code ztext and a normal random
vector znorm. And yi ∈ Rdf denotes the frame-wise feature
which will be utilized to generate the i-th frame later.

Then each yi will go through a series of 2D transconvo-
lutional layers, denoted as TransConv2Dk, k = 1, 2, · · · , 5,
and will finally turn into a video frame with the size of
dc × dh × dw. As is mentioned above, in order to take
temporal dependency into account, we integrate LSTM cells
with each TransConv2Di to endow the generator with the
memory of history information. In particular, the output of
TransConv2Di, denoted as Vi ∈ Rdci

×dhi
×dwi , is first re-

shaped as V̂i ∈ Rdci
×(dhi

×dwi
) and we send V̂i to a LSTM-

based memory unit Mi : R(dhi
×dwi

) → R(dhi
×dwi

) chan-
nel by channel. We collect all the channels that go through
Mi and put together to form Li ∈ Rdci

×dhi
×dwi . Then

Li, concatenated with the original Vi in the channel dim, is
treated as the input of the next 2D transconvolution layer,
TransConv2Di+1. The states of these memory units are
passed across frames and thus each frame can be constructed
on the basis of history information which can contribute to
the temporal coherence.

Besides, we additionally feed the text latent code ztext into
the memory units at each time step to further guide the video
generation so the mapping of the LSTM-based memory unit
is actually R(dhi

×dwi
)+dtext → R(dhi

×dwi
). At the end, we

put the generated frames together and join them into a whole
video with the size of dl × dc × dh × dw.

2.3 Introspective Discriminator Network
Basic Discriminators
Inspired by [Pan et al., 2017], the discriminator network D is
designed to distinguish real videos from synthetic ones from
three perspectives: (1) the whole video, (2) each video frame,
(3) the motion across adjacent frames. To implement these
three points, two types of basic discriminators are required:
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Figure 2: Our IRC-GAN framework consists of three parts: the text encoder network, the recurrent transconvolutional generator network and
the introspective discriminator network.

• 3D discriminator D1(v) : Rdl×dc×dh×dw → [0, 1].
D1 first extracts video-level features mv from the in-
put video v ∈ Rdl×dc×dh×dw via 3D convolutional lay-
ers and then feeds mv into a fully-connected layer with
softmax to discriminate whether the input video is real
or fake from the perspective of the whole video.
• 2D discriminator D2(v) : Rdl×dc×dh×dw → [0, 1]. D2

also gets a video as its input but processes it in a frame-
wise way. In order to obtain information about the tem-
poral coherence, we get the output after four 2D con-
volutional layers and subtract the output of the previous
frame fi−1 from that of the current one fi. The details
are the same as [Pan et al., 2017].

Mutual-information Introspection
The discriminator network described above is only able to
help synthesize videos that look like real ones. In order to
semantically align the generated videos to the text, we pro-
pose mutual-information introspection, which is inspired by
InfoGAN [Chen et al., 2016]. We similarly argue that there
should be high mutual information between the videos and
the corresponding text. In information theory, mutual infor-
mation between X and Y measures the “amount of informa-
tion” learned from knowledge of random variable Y about
the other random variable X . The mutual information can be
expressed as the difference of two entropy terms:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (1)

This definition has an intuitive interpretation: I(X;Y ) is
the reduction of uncertainty in X when Y is observed.
This interpretation makes it easy to formulate a cost in the
text-to-video problem: give any z′ ∼ Pztext

(z), we want
PG(G(ztext, znorm)|ztext = z′) to have a small entropy. In

other words, the uncertainty of the generated video is mini-
mized when the corresponding text is given. In formalization,
mutual-information introspection can be expressed as the fol-
lowing optimization problem:

max
G

I(ztext;G(ztext, znorm)) (2)

Similarly with [Chen et al., 2016], the mutual information
term I(ztext;G(ztext, znorm)) is hard to maximize directly
and we first find its lower bound:

I(ztext;G(ztext, znorm))

= H(ztext)−H(ztext|G(ztext, znorm))

= Ex∼G(ztext,znorm)[Ez′∼P (ztext|x)P (z
′|x)] +H(ztext)

= Ex∼G(ztext,znorm)[DKL(P (·|x)||Q(·|x))
+ Ez′∼P (ztext|x)Q(z′|x)] +H(ztext)

≥ Ex∼G(ztext,znorm)[Ez′∼P (ztext|x)Q(z′|x)] +H(ztext)

= Ez′∼P (ztext),x∼G(z′,znorm)Q(z′|x) +H(ztext)
(3)

The above inequation makes sense because the KL-
divergence is always non-negative. It is obvious that this
lower bound becomes tight as the auxiliary ditribution Q ap-
proaches the posterior distribution P (·|v) where v obeys the
distribution of videos , making the KL-divergence betweenQ
and P decreases to zero.

In implementation, we parameterize the auxiliary Q as a
neural network named as introspective network and perform
supervised learning with video-text pairs to make it converge
to the true posterior distribution P (·|v). Assume we have
trainedQ to an approximation of P and then, as a result, since
the entropy of ztext has nothing to do with the video gener-
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ation, mutual-information introspection becomes the maxi-
mization of Ez′∼P (ztext),x∼G(z′,znorm)Q(z′|x).

For simplicity, we assume the posterior distribution as a pa-
rameterized normal distribution. Then the problem becomes:

max
G

Ez′∼P (ztext),x∼G(z′,znorm)Q(z′|x)

⇔max
G

Ez′∼P (ztext),x∼G(z′,znorm)Q(ẑ = z′|v = x)

⇔max
G

Ez′∼P (ztext),x∼G(z′,znorm) logQ(ẑ = z′|v = x)

⇔min
G

Ez′∼P (ztext),x∼G(z′,znorm)||z′ − z0||2

(4)
where z0 is the mean of the normal posterior distribution
P (·|v = x) which depends on the video x.

From the above mathematical derivation, an intuitive inter-
pretation for mutual-information introspection is to introspect
the generation by reconstructing what it is made from, namely
the process of video-to-text, and use the reconstruction error
as the cost function.

In order to reduce the computation cost, the Q introspec-
tive network can share all the convolutional layers with the
discriminators. So we just modify the two discriminators de-
scribed above by adding a fully-connected layer respectively
to output the reconstructed text latent code.

We find by experiments that preserving the conditional
structure of the 3D discriminator like [Pan et al., 2017] can
speed up the convergence of the model. Therefore, the in-
tegrated discriminator network is composed of the following
two subnetworks:
• 3D-convolution-based subnet D1(v, ztext) :
Rdl×dc×dh×dw × Rdtext → [0, 1] × Rdtext . From
the perspective of the whole video, D1 distinguishes
whether the input video looks like a real one and
matches the given text, as well as introspectively
outputs the reconstructed text latent code z10 . Of course,
the input ztext will not participate in the reconstruction
of the latent code.
• 2D-convolution-based subnet D2(v) : Rdl×dc×dh×dw ×
Rdtext → [0, 1]×Rdtext . From the perspective of frame
quality and motion,D2 just distinguishes whether the in-
put video is real or fake and also introspectively outputs
the reconstructed text latent code z20 .

In the following paper, we still use D1(v, ztext) and D2(v)
to represent the true-or-false answer the discriminator net-
work outputs, and we denote the introspectively reconstructed
text latent codes from video v as Q1(v) and Q2(v) for conve-
nience.

2.4 Optimization
According to the discussion above, the overall optimization
problem of the discriminator network is as follows:

min
D1,D2,Q1,Q2

LD1
+ LD2

+ LQ1
+ LQ2

(5)

where LD1
,LD2

,LQ1
,LQ2

are defined as:
LD1

=− logD1(vreal, zmatched)

− log(1−D1(vsyn, zmatched))

− log(1−D1(vreal, zunmatched))

(6)

LD2
= − logD2(vreal)− log(1−D2(vsyn)) (7)

LQ1
= λinfo · ||Q1(vreal)− zmatched||2 (8)

LQ2 = λinfo · ||Q2(vreal)− zmatched||2 (9)
vreal and vsyn denote real videos and synthetic videos respec-
tively while zmatched and zunmatched denote the text latent
code that match and does not match the video.

Equations (6) and (7) are cost functions of typical GANs.
Equations (8) and (9) are meant to learn the true posterior
distribution P (·|v) by means of supervised learning, which is
part of our mutual-information introspection.

On the other hand, the overall optimization problem of the
generator network is as follows:

min
G
LG1 + LG2 + Linfo (10)

where LG1
,LG2

,Linfo are defined as:

LG1 = − logD1(G(ztext, znorm), ztext) (11)

LG2 = − logD2(G(ztext, znorm)) (12)

Linfo = λinfo · (||Q1(G(ztext, znorm))− ztext||2

+ ||Q2(G(ztext, znorm))− ztext||2)
(13)

Equations (11) and (12) are also cost functions of typical
GANs. Equation (13) is the regularization that makes the gen-
erator synthesize videos from which the reconstructed text
latent code can be as close to the ground-truth as possible,
which means aligning the generated videos to the given text.

As discussed above, we can see that both the recurrent
transconvolutional generator and the mutual-information in-
trospection rely on an adequate distribution of the text latent
code. So it is natural to perform a two-stage training process:
first pre-training the text encoder and then training the whole
model with the encoder fixed.

In the first stage, the text encoder is trained with a seq2seq
auto-encoder [Dai and Le, 2015] and a “Q-style” introspec-
tive network which recovers the text latent code from videos.
In order to better perform mutual-information introspection
later, the cost function includes not only the term of the auto-
encoder reconstruction error, but also the mean square dis-
tance between the encoded ztext and the reconstructed text la-
tent code from the corresponding video. In the second stage,
only the text encoder in the previous training process is pre-
served. And we train the generator and discriminator network
with the cost functions of (5) and (10).

3 Experiments and Results
3.1 Datasets
We have adopted 3 datasets of progressively increasing com-
plexity: Single Moving Mnist-4, Double Moving Mnist-4 and
KTH-4. They are constructed according to [Mittal et al.,
2016]. Each video in these datasets has 16 frames and each
frame has the size of 64× 64.
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• Single Moving Mnist-4: [Mittal et al., 2016] first con-
structed Single Moving Mnist dataset for the text-to-
video task. As there are merely two motions: up-down
and left-right in the original dataset, we find it too sim-
ple to distinguish the effectiveness of the current meth-
ods. So we slightly improve the dataset by introducing
four moving directions : move left then right, move
right then left, move up then down and move down then
up while the original dataset doesn’t tell apart “up then
down” and “down then up”. Each video is accompanied
with a single sentence describing the digit and its mov-
ing direction.
• Double Moving Mnist-4: [Mittal et al., 2016] also con-

structed a more complicated version of Moving Mnist
which contains two bouncing handwritten digits. Simi-
larly, we extend the dataset by introducing four moving
directions for each digit.
• KTH-4: Based on the original KTH dataset by [Laptev

et al., 2004], [Mittal et al., 2016] first select some video
clips and accompany each video clip with a descriptive
caption. Since [Mittal et al., 2016] didn’t make open
their dataset or source codes to construct it, we construct
our own KTH-4 according to the method mentioned in
[Mittal et al., 2016]. The original KTH dataset contains
600 videos, classified into 6 actions and 25 people. We
pick out 4 of the actions: walking, running, boxing, wav-
ing hands, and then extend them into 6 motions: walk-
ing from left to right, walking from right to left, run-
ning from left to right, running from right to left, waving
hands and boxing.

3.2 Compared Methods
We compare our IRC-GAN with the following state-of-the-
art methods: Sync-DRAW [Mittal et al., 2016], VGAN-c
[Vondrick et al., 2016], TGANs-c [Pan et al., 2017] and
MoCoGAN-c [Tulyakov et al., 2018]. Like [Pan et al., 2017],
we also modify VGAN and MoCoGAN as VGAN-c and
MoCoGAN-c to adapt to the text-to-video task.

3.3 Evaluation Metrics
In text-to-video generation, we need to evaluate both the vi-
sual quality and the semantic match. In addition to visually
examining the results, we adopt two quantified evaluation
metrics to evaluate the effectiveness.

Generative Adversarial Metric (GAM)
Generative Adversarial Metric [Im et al., 2016] can directly
compare two generative adversarial models by having them
engage in a “battle” against each other. Given two generative
models M1 = (G̃1, D̃1) and M2 = (G̃2, D̃2), two kinds of
ratios between the discriminators of the two models are cal-
culated:

rtest =
ε(D̃1(xtest))

ε(D̃2(xtest))
, rsample =

ε(D̃1(G̃2(z)))

ε(D̃2(G̃1(z)))
(14)

where ε(·) denotes the average classification error rate and
xtest is the testing set. If rtest is close to 1, which means
the two models have almost the same ability to recognize the

real videos, the relationship between rsample and 1 can re-
veal which model can fool the other model more easily. For
example, rtest ≈ 1 and rsample < 1 mean that G1 is a
better generative model than G2.

Since this method is restricted for GANs, Sync-DRAW is
excluded from this comparison. As for our IRC-GAN, our
discriminator network additionally takes the mutual informa-
tion between the generated videos and the text into consider-
ation. So we add a term about the mutual information when
calculating the classification error rate of our discriminator
network. In order to be fair, when comparing our IRC-GAN
with other methods, we adjust the weights of the mutual in-
formation term to make sure rtest is close to 1 so that we can
compare the two models by checking rsample.

Human Evaluation
Additionally, we conduct a user study to evaluate both of the
visual quality and semantic consistency. To compare the vi-
sual quality of our method and others, the testee will be shown
2 gifs, one randomly chosen from the generated videos of our
method and the other from one of the compared methods. The
testee is then required to point out the gif he thinks to have
better quality. On the other hand, to compare the semantic
match, we show the testee two gifs generated from the same
text but from different methods and we require the testee to
report which gif is more in line with the text. A total number
of 20 evaluators are invited as testees. Each testee is given
30 inquiries on visual quality and 30 inquiries on semantic
match. The testee can prefer either of the two given gifs or he
can claim a draw, which means choosing the two at the same
time. The percentage user preference shown in Tables 2 and
3 is the proportion of the chosen times of two methods.

3.4 Qualitative Analysis
Figure 3 shows some samples of our results on these datasets.
VGAN-c doesn’t seem to reach convergence and performs
poorly. By traditional 2D transconvolutional layers, Sync-
DRAW can generate relatively clear frames but its temporal
coherence remains to be improved: The shape of the digit
varies across frames and its motion is not coherent. Al-
though our IRC-GAN performs roughly the same as TGANs-
c and MoCoGAN-c on the simple Moving Mnist dataset, our
IRC-GAN generates better results on the real-world KTH-4
dataset. The results demonstrate that our IRC-GAN can gen-
erate videos of both fine definition and coherence.

In Table 1, the GAM rsample scores are all less than 1,
which means our IRC-GAN can generate videos that can fool
the discriminators of other GAN-based methods. In other
words, compared with the videos generated by other meth-
ods, those generated by ours are more consistent with the text
and more similar to the real ones.

Battler Single-4 Double-4 KTH-4
ours vs VGAN-c 0.532 0.220 0.391
ours vs TGANs-c 0.673 0.687 0.667
ours vs MoCoGAN-c 0.372 0.372 0.505

Table 1: GAM metric: the rsample score with rtest balanced to 1
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Figure 3: Examples of generated videos

User preference, % Single-4 Double-4 KTH-4
ours / VGAN-c 97.2/2.8 99.9/0.1 85.7/14.3
ours / Sync-DRAW 69.8/30.2 76.2/23.8 82.6/17.4
ours / TGANs-c 59.3/40.7 67.6/32.4 54.5/45.5
ours / MoCoGAN-c 52.0/48.0 57.1/42.9 58.3/41.7

Table 2: User preference score on video generation quality

In Tables 2 and 3, we can see that more testees prefer the
generated videos of our method both on visual quality and se-
mantic match. The advantage of our model on visual quality
suggests that our RTG is capable of synthesizing more coher-
ent and more vivid videos by memorizing the previous gener-
ated frames. And exceeding in semantic match indicates that

User preference, % Single-4 Double-4 KTH-4
ours / VGAN-c 94.1/5.9 95.5/4.5 95.0/5.0
ours / Sync-DRAW 73.5/26.5 83.3/16.7 71.1/28.9
ours / TGANs-c 64.0/36.0 55.6/44.4 51.9/48.1
ours / MoCoGAN-c 58.6/41.4 63.2/36.8 64.4/35.6

Table 3: User preference score on the semantic consistency between
the generated videos and the text

Battler Single-4 Double-4 KTH-4
ours vs RCGAN-c 0.500 0.768 0.778
ours vs TGANs-info 0.895 0.835 0.956

Table 4: GAM metrics of our model against the baselines

measuring the semantic distance between videos and text by
MI can effectively improve the video-text consistency.

3.5 Ablation Analysis
Two ablation experiments are conducted to further show the
effectiveness of the two components in our approach, namely
MI and RTG. 1) RCGAN-c: Our approach without MI. 2)
TGANs-info: RTG is replaced with the commonly-used gen-
erator of TGANs.

As shown in Table 4, these two baseline models are com-
pared with our IRC-GAN via GAM metrics. The rsample

scores are less than 1 on all of the 3 datasets, which means the
videos generated by our IRC-GAN can fool these two base-
line models. In other words, our model is better.

4 Conclusion
In this paper, we have proposed an Introspective Recurrent
Convolutional GAN (IRC-GAN) to generate videos from
text. Such task needs to consider both visual quality and se-
mantic consistency. To improve visual quality, we propose a
recurrent transconvolutional generator where LSTM cells are
integrated with 2D transconvolutional layers. Such generator
boosts both the definition of each video frame and temporal
coherence across the whole video. On the other hand, seman-
tic consistency is ensured by mutual-information introspec-
tion. In this way, the semantic distances between videos and
text can be learnt, which helps to synthesize corresponding
videos. Experiments on three datasets compared with several
state-of-art methods verify the effectiveness of our method.
In the future work, we will introduce cross-media techniques
to further establish relations between text and video.
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