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Abstract

In capsule networks, the mapping of low-level
capsules to high-level capsules is achieved by a
routing-by-agreement algorithm. Since the cap-
sule is made up of collections of neurons and the
routing mechanism involves all the capsules in-
stead of simply discarding some of the neurons like
Max-Pooling, the capsule network has stronger rep-
resentation ability than the traditional neural net-
work. However, considering too much low-level
capsules’ information will cause its corresponding
upper layer capsules to be interfered by other ir-
relevant information or noise capsules. Therefore,
the original capsule network does not perform well
on complex data structure. What’s worse, compu-
tational complexity becomes a bottleneck in deal-
ing with large data networks. In order to solve
these shortcomings, this paper proposes a group re-
construction and max-pooling residual capsule net-
work (GRMR-CapsNet). We build a block in which
all capsules are divided into different groups and
perform group reconstruction routing algorithm to
obtain the corresponding high-level capsules. Be-
tween the lower and higher layers, Capsule Max-
Pooling is adopted to prevent overfitting. We con-
duct experiments on CIFAR-10/100 and SVHN
datasets and the results show that our method can
perform better against state-of-the-arts.

1 Introduction
In recent years, convolutional neural network (CNN) has
been a main deep learning model for computer vision tasks
[Krizhevsky et al., 2012]. However, internal data representa-
tion of a convolutional neural network does not take into ac-
count important spatial hierarchies between simple and com-
plex objects [Hinton et al., 2018]. Especially, viewpoint in-
variance is achieved by pooling [Simonyan and Zisserman,
2014] so that the small perturbations in the input can not ef-
fect the output too much [Cohen and Welling, 2016], [Cohen
et al., 2018]. This results in the loss of information about the
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internal properties of present entities (e.g location, orienta-
tion, shape and pose) in an image and relationships between
them. Capsule network is a new type network introduced in
[Sabour et al., 2017] for image classification. There are two
key features distinguishing them from CNNs.

On one hand, rather than using a scalar, a capsule is a
group of neurons which can denote many more properties
such as pose, viewpoint, velocity, grain or regions, etc. In
this way, the network can not only extract features, but also
extract variants of them. The introduction of capsules pro-
vides a new method of feature learning, which is represented
by the parameterization of the entity vector (named capsule)
to represent a wide variety of attributes, so that better robust-
ness can be obtained.

On the other hand, pooling is replaced with a routing
scheme to send lower-level capsule (e.g nose, mouth, ears
etc.) outputs as input to parent capsule (e.g face) that repre-
sent part-whole relationships to achieve translation equivari-
ance and untangles the coordinate frame of an entity through
linear transformations. Such a scheme can be seen as a
feature clustering and be optimized by coordinate descent
through several iterations. However, the computational com-
plexity in the routing scheme is fairly high [Chen and Cran-
dall, 2018]. The capsule network has shown its potential
by achieving a state-of-the-art result of 0.25% test error on
MNIST , better than the previous baseline of 0.39%. How-
ever, its performance on complex data, such as CIFAR-10
[Krizhevsky and Hinton, 2009], seems not so good, only
68.93% [Xi et al., 2017].

Compared with pooling, routing will take every lower cap-
sule learned into account when mapping from lower cap-
sules to higher counterparts. This scheme works well on
MNIST [LeCun, 1998] according to handwritten digits hardly
have noise so that every capsule in lower layer represents the
desired features. However, normal images like CIFAR-10
[Krizhevsky and Hinton, 2009] have much more noise which
can cause that the higher capsules achieve too much useless
information such as background. This will disrupt useful
lower capsule routing to its higher capsules. The computa-
tional complexity becomes too high while dealing with large
datasets [Ben-Israel and Greville, 2003], [Li et al., 2018].

To tackle these drawbacks, we propose a group recon-
struction and max-pooling residual capsule network (GRMR-
CapsNet). It can significantly reduce computational complex-
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ity and improve the recognition accuracy for complex data
such as images in CIFAR-10/100. There are three main con-
tributions in our paper:
• Different from the method of multiplying the low-level

capsule dimension to the high-level capsule by multi-
plying the viewing angle invariant matrix in [Sabour
et al., 2017], [Hinton et al., 2018], we use a convolu-
tional layer named Convolutional Transformation Layer
to compute capsules within a local receptive field so as
to reduce the complexity of computation.
• We propose a new routing scheme named Group-

Reconstruction Routing Algorithm to map from low-
level capsules to high-level capsules in a supervised way.
Our method firstly divides all capsules in the lower layer
into different groups and then routes them separately
in each group. By doing this, some capsules that are
divided into the same group will be given a very low
weight (almost zero) in the route of the next layer, while
other capsule groups important can achieve high weight.
For all capsules in one group share the parameters in
routing, the computational complexity can also be re-
duced. For all capsules in one group share the param-
eters in routing, the computational complexity can also
be reduced.
• We design a Capsule Max-Pooling Residual Block which

can adaptively choose the routing or max-pooling.
Specifically, we add capsule-based max-pooling as a
skip connection into each block. Formally, denoting the
routing mapping as R(x). We can get the higher level
capsules u from the lower level capsules v by the map-
ping of u = R(v). Specifically, we let M(x) denote
the max-pooling, the original mapping is changed into
u = R(v) +M(v). It is conceivable that the mapping of
the network tends to u ≈M(v) when the pooling effect
is better, and the mapping of that tends to u ≈ M(v)
when the routing effect is better.

We firstly conduct experiments on CIFAR-10 to show that
our proposed group capsule routing have explicit improve-
ment over original routing algorithm. Then, we present com-
prehensive experiments on CIFAR-10/100 and SVHN to eval-
uate our network, which shows that our method have a posi-
tively improvement against state-of-the-arts.

2 Related Work
2.1 Capsules
[Sabour et al., 2017] presented a vector consisting of neu-

rons, called capsule, whose orientation represents the proper-
ties of the entity and whose length represents the probability
of it. In [Hinton et al., 2018], a capsule was introduced by a
4x4 pose matrix and an activation probability which can re-
spectively evaluate the properties and existence of entities.

2.2 Routing
According to [Sabour et al., 2017], let ui, vj denote the lower
and higher capsules in a layer respectively, where i, j in-
dicate the index of capsules. Use d1, d2, n1, n2 to repre-
sent the dimensions and number of capsules in the lower and

higher layers, i.e., {ui ∈ Rd1}n1
i=1, {vj ∈ Rd2}n2

j=1. The first
step is mapping from the dimension of ui to that of vj by
νj|i = wij · ui where wij ∈ Rd2×d1 is a transform matrix.
The second step is an agreement routing method to cluster all
lower capsules into higher ones. The transformed capsules
are multiplied by a routing coefficient:

s
(r)
j =

∑
i

c
(r)
ij · νj|i. (1)

The process of dynamically updating cij could be deemed as
voting. Firstly, given b(r)ij ← 0, r ← 0, then:

b
(r+1)
ij ← b

(r)
ij + νj|i · v

(r)
j , (2)

where v(r) is computed from s(r) via squash(·):

v =
‖s‖2

1 + ‖s‖2
s

‖s‖
. (3)

The coefficients in the routing algorithm is updated by an un-
supervised approach iteratively which finds the best voting c
[Sabour et al., 2017]. In [Hinton et al., 2018], the routing
algorithm was replaced by a modified EM-algorithm to fit a
gaussian mixture model (GMM). GivenRij ← 1/n2, the EM
routing clusters n1 capsules the dimensions of d1 into n2 cap-
sules the dimensions of d2 iteratively:

α
(r)
j , µ

(r)
j , σrj ←M − step[αi, R(r)

ij , νj|i], (4)

R
(r+1)
ij ← E − step[α(r)

j , Pj|i(νj|i, µ
(r)
j , σrj )]. (5)

where αi represents the activation probability of low-level
capsules uj . M − step produces the activation αj together
with the mean µj and std standard deviation σj in high layer.
Then, the co-efficients Rij is updated by the the E − step.

In [Lenssen et al., 2018], they proposed a group equivari-
ant capsule network (GECN) which can guarantee equivari-
ance and invariance properties just like the group convolution.
That paper also introduced a scheme for routing by agreement
algorithms, a spatial aggregation method, and the ability to
integrate group convolutions. In [Zhang et al., 2018a], they
proposed a orthogonal projections onto capsule subspaces
method to capture features. Compared with introducing some
brand new architectures for capsule nets,that paper tends to
learn a group of capsule subspaces to represent a set of en-
tity classes. In [Zhang et al., 2018b], they tried to extract
multi-labeled relation with the capsule network by add atten-
tion scheme into routing-by-agreement algorithm.

3 Methodology
3.1 Convolutional Transformation Layer
As mentioned in Section 2, before they are fed into routing-
by-agreement algorithm, capsules in low layer u with the di-
mension of d1 should be mapped to ν with the dimension of
d2 by a transformation matrix wij ∈ Rd2×d1 . However, the
number of parameters would become very large with an in-
creasing dimension d1 and d2. According to [Hinton et al.,
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Figure 1: Group Capsule Layer. Capsules in the lower layer is
divided into N groups. Capsules in the higher layer are obtained
by the Reconstruction Feedback Routing (RF-Routing) in the same
group.

2011], [Sabour et al., 2017], We can summarize the two main
roles of the matrixwij . Firstly, the matrixwij encodes impor-
tant spatial and other relationships between ui which repre-
sent lower level feature (eyes, mouth and nose) and vj higher
level feature (face). Secondly, matrices attempt to learn to
transform low-layer capsules into high-layer capsules from a
different viewpoint.

Based on the above analysis that only information between
adjacent capsules is beneficial, we propose Convolutional
Transformation Layer (CTL) to extract the local perspective
and relationship of all capsules. Specifically, the voting νt|m
is obtained by um fed into convolutional capsule layer with
32 group convolution [Krizhevsky et al., 2012] which indi-
cates 32 capsule types, a receptive field of 3×3, a padding of
1 and a stride of 1× 1.

3.2 Group Reconstruction Routing Algorithm
In this section, we will detail the proposed Group Reconstruc-
tion Routing Algorithm which can effectively avoid informa-
tion confusion during the mapping from the low-level capsule
to the high-level capsule. The low-level capsules firstly are
fed into Group Capsule Layer, in which capsules are divided
into several groups. Following is the Reconstruction Feed-
back Routing which can use back propagation to update the
coefficients compared with iterative ones.

Group Capsule Layer
According to [Sabour et al., 2017] , the routing-by-agreement
algorithm could find a potential relationship between the cap-
sules in lower layers and those in higher layers, that is, if the
two capsules are more similar, their cosine similarity will be
higher. Nevertheless, for a capsule, it is not directly related
to all other capsules, so it is not reasonable to route the entire
capsules in lower layers. What’s worse, all capsules learned
can hardly be used to represent features, because a significant
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Figure 2: Reconstruction Feedback Routing. The input are lower
layer capsules ν transformed by Convolutional Transformation
Layer (CTL). Following are three stacked layers to learn µ, v̂ and σ2

which directly express higher-layer capsules v as the output. Then,
we use generation layers gû to reconstruct û and compare the dis-
tance between u and û and use this distance as feedback to train the
network.

portion of the capsules are noise ones. Capsules in higher lay-
ers achieving the noisy-mixed capsules in lower layers, cap-
sule networks works not very well on complex data.

Taking this into account, we propose a method which di-
vides capsules into several groups {Gn}, trying to learn the
capsules in each group are as similar as possible. As shown
in Figure 1, we divide capsules into N groups of which M
capsules make up. The length of each capsule is L. Capsules
in different groups are present by different colors. For ex-
ample, the first capsule group is shown by blue color and the
second one is present by green. In each group n, we aggre-
gate M capsules into T capsules with the length of K by the
Group Reconstruction Routing algorithm which shares the
same variables, so the computational complexity in routing
could be reduced. Totally, we can obtain N × T capsules in
the higher layer. For example, for a face, we should learn
capsule groups that represent the eyes, nose, ears, mouth and
so on respectively.

Reconstruction Feedback Routing
In each group which is described in the above section, what
we get are capsules with similar information. In [Hinton et
al., 2018], Gaussian Mixed Model (GMM) plays the role of
the routing-by-agreement algorithm. Formally, let νij , Rij ,
αij denote voting, the pose entity and the activation, then we
can get:

N (νij ;µj ,σ
2
j )

=
d∏
l=1

1√
2πσlj

exp

(
− 1

2(σlj)
2

(νlij − µlj)2
)
,

(6)

pij ← N (νij ;µj ,σ
2
j ), (7)

Rij ←
αjPij∑T
j=1 αjPij

, (8)

where µj and σ2
j is the the mean and std standard deviation

of vj .
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Figure 3: GRMR-CapsNet. The network firstly consists of four CMPR-Blocks, following is the Group Capsule Layer. The last layer is a
normal capsule layer which generates n class capsules. Margin loss is used in our paper.

In this paper, we directly learn µj and σ2
j by back propaga-

tion algorithm. Similarly to [Kingma and Welling, 2013], let
us consider capsules in high layers V = {vt}Tt=1 which are
generated by capsules in low layers U = {um}Mm=1. Given
the p(V |U) which represents the posterior probability of V
for U and p(U) the distribution of U , the distribution p(V )
can easily be obtained by the corresponding formula:

p(V ) =
∑

p(V |U)p(U). (9)

Therefore, if {um}Mi=m and {vt}Tt=1 are i.i.d. and obey
the Gaussian distribution, we can know that p(vt|um) ∼
N (vt;um,σ

2
m).

Based on the above analysis, we build two neural networks:
µt = fµ(νt|m), σ2

t = fσ(νt|m). so as to express p(V ) di-
rectly by formula:

vt = N (v̂t;ut|m,σ
2
t|m), (10)

where v̂t is computed by a neural network fv(νt|m). We
can also get the reconstructed U through a generator Û =
g(V ). Let us define D(ûm, um)2 as the distance of the ûm
and um, then we can get the Reconstruction Loss:

LRecon =
M∑
m

D(ûm, um)2

=
M∑
m

cos (Θm) =
M∑
m

um · ûm
|um| |ûm|

.

(11)

We use cosine similarity to describe the distance between the
reconstructed capsules and the original capsules.

Then, in each group, capsules are aggregated into higher
layer capsules by Group Reconstruction Feedback Rout-
ing Algorithm with LRecon restricted shown in Algorithm1.
Firstly, the transformed capsules in lower layers are are

Algorithm 1 Group Reconstruction Routing Algorithm.
Input: low-level capsules um
Output: high-level capsules vt

1: for all capsules um: νt|m ← CTLt(um)
2: divide all capsule um into groups Gn;
3: for all groups Gn do
4: for all capsule νt|m ∈ Gn:

µt|m ← fµ(νt|m), σ2
t|m ← fσ(νt|m), v̂t ← fv(νt|m)

5: for all capsules v̂t: vt ← N (v̂t;ut|m,σ
2
t|m)

6: for all capsules vt: ûm ← gû(vt)
7: end for
8: for all capsules ûm: LRecon = D(ûm, um)2

9: fµ, fσ, fv, gû ← BP (LRecon)
10: return vt

evenly divided into N groups, each group corresponding to
the same type of capsules, which will avoid higher layer cap-
sules mixing in useless information in the routing. In order to
reduce the number of parameters to build a deeper network,
we improve the original method [Hinton et al., 2018] which
iteratively obtains higher layer capsules using the EM algo-
rithm. Instead, we design three stacked layers: fµ, fσ and fv
to directly fit the corresponding mean µ, variance σ2 and cap-
sules v̂. Then, the higher-layer capsules are obtained by the
Equation 10. Finally, based on the hypothesis that the higher
layer capsules can reconstruct the lower layer capsules, we
design generation layers gû to reconstruct the lower layer cap-
sules, and compare their similarity by Equation 11, and add
this similarity loss to the BP algorithm to update fµ, fσ and
fv and gû in a feedback manner. Compared to [Sabour et
al., 2017][Hinton et al., 2018], our method can have a better
performance in a supervised way.
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3.3 Capsule Max-Pooling Residual Block
As we know, once the pooling is proposed, it has been widely
used because of its good performance on the reduction of
parameters to avoid overfitting. Considering its advantages
that routing does not have, we propose a capsule-based max-
pooling and add it to every few stacked layers which is shown
in Figure 3. Formally, we define the block named Capsule
Max-Pooling Residual Block (CMPR-Block) as:

v = R(ν) +M(ν), (12)
here ν are the capsules transformed by CTL in the lower layer
and v are higher layer capsules and the dimensions of M(x)
and R(x) are equal. The function R(ν) represents the RF-
Routing which is described in section 3.2 and the function
M(ν) indicates the capsule max-pooling. As Figure 3 shows,
in each group, we firstly compute the l2 norm for all capsules:
‖v‖2, then we choose the max value of these l2 norms with
the kernel size of k and stride of s. The whole process can
be simply described as: vres = max(‖v‖)2. The operation
R + M is performed by element-wise addition just like [He
et al., 2016]. The shortcut connections shown in Equation 12
will not bring extra calculations and parameters, which will
be shown in Section 4.3.

3.4 Network Architecture
The architecture of Group Reconstruction and Max-Pooling
Residual Capsule Network (GRMR-CapsNet) is shown in
Figure 3. The input to the network is a 3×32×32 image. The
network begins with the four CMPR-Block described in Sec-
tion 3.3 . Each block contains 32 groups in which the number
of capsules is equal. In the first CMPR-Block, each group has
32× 32 capsules with a dimension of 2. In the following lay-
ers, the number of capsules in each group is gradually halved,
while the dimensions of the capsule are gradually doubled (ig,
the second layer has 16× 16 capsules with a dimension of 4,
and the third layer has 8 × 8 capsules with a dimension of 8
.....). In the end, we will get 32 groups of 4× 4 capsules each
with a dimensions of 16 and these capsules are fed into the
Group Capsule Layer. After routing by G-Caps Layer, there
is only one capsule left in each group. Then, the capsules
of these groups are sent to the Class Caps Layer, similarly
to the primary caps layer in [Sabour et al., 2017], which is
a fully connected capsule layer. Capsules in different groups
are clustered into n types of capsules by the dynamic routing
algorithm, and the length of each obtained capsule represents
the activation. In this paper, the loss we used is the margin
loss proposed by [Sabour et al., 2017].

3.5 Margin Loss
Just like [Sabour et al., 2017], we use the length of the capsule
to represent the probability of its entity existence. We want
the capsule in the top layer for image class n to have the most
significant length if and only if that the n class image is fed
into the network. To allow for multiple classes, a separate
margin loss Ln follows, for each image capsule, n:

Ln =
N∑
n=1

(Tnmax
(
0,m+ − ‖vn‖

)2
+

λ (1− Tn)max
(
0, ‖vn‖ −m−

)2
)

(13)

where Tn = 1 if a image of class n is present. m+ = 0.9 means
that the length of the vector vn is at least 0.9 to be activated,
and m− = 0.1 means that the length of the vector should be
less than 0.1 without the presence of class n images. The
λ down-weighting of the loss for absent image classes stops
the initial learning from shrinking the lengths of the activity
vectors of all the image capsules. We use λ = 0.5. The total
loss is simply the sum of the losses of all image capsules.

4 Experiments
4.1 Datesets
We do experiments on both CIFAR [Krizhevsky and Hinton,
2009] and SVHN [Netzer et al., 2011] datasets to evaluate
the performance of our network. CIFAR-10 and CIFAR-100
are labeled as a subset of 80 million tiny image datasets. The
Street View House Number dataset has 73257 colored dig-
its for training, 26032 digits for testing, with an additional
531131 training images available. We adapt the standard data
augmentation: horizontal flipping and shifting to the datasets.

4.2 Implementation Details
Convolutional Transformation Layer. As methioned in
3.1, we use the convolutional capsule layer with 64 group
convolution [Krizhevsky et al., 2012] which indicates 64 cap-
sule types, a receptive field of 3×3, a padding of 1 and a stride
of 1× 1.

Group Reconstruction Routing Algorithm. We use group
convolution to implement group capsule. We define three
convolutional layers as a function layer and use three funtion
layers to learn the fµ, fσ , fv and gû. Instead directly comput-
ing the v by Equation 10, we let α, β and γ as the coefficient
to the µ, σ and û so that the network can coverage better.
Contrary to the function layer, we use three deconvolutional
layers each of which has a kernel size of 3 × 3, a padding of
1 and a stride of 1.

Capsule Max-Pooling Residual Block. We use the method
introduced in 3.3 with a kernel of 2×2 and a stride of 2 in each
group. After the operation M + R performed by element-
wise addition, we use the squash expressed by Equation 3 to
normalize the capsules cascaded with ReLu [Nair and Hinton,
2010].

4.3 Results
We perform experiments with the capsule network [Sabour et
al., 2017] named CapsNetI as baseline for comparison with
the proposed G-CapsNet. In particular, the baseline model
is shallow with only two convolutional layers and one fully
connected layer. Conv1 has 256, 9 × 9 convolution kernels
with a stride of 1 and ReLU activation. The second layer
(PrimaryCapsules) is a convolutional capsule layer. In the
third layer (DigitsCapsules) with the matrix Wij the size of
8 × 16, using routing to cluster the class capsules. In our
first experiment which is shown in Table 1, we replace Dig-
itsCapsules Layer with our method. Specifically, dividing the
capsules into 16, 32, 64 groups respectively, we obtain three
models: CapsuleNet-16, CapsuleNet-32 and CapsuleNet-64.
We conduct experiments on CIFAR-10 datasets to evaluate
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Model Number of parameters CIFAR-10

CapsNetI 8.2M 68.93
G-CapsNet-16 1.5M 69.32
G-CapsNet-32 1.5M 70.45
G-CapsNet-64 1.4M 71.77
CMPR-Block 1.4M 72. 87

Block with LRecon 1.6M 75.62

Table 1: Top 1 accuracy and number of parameters on CIFAR-10.
The best results are highlighted in bold for different network archi-
tectures.

Model CIFAR-10 CIFAR-100 SVHN

ResNet110 93.37 72.78 97.99
VGG16 92.63 70.44 96.04
GoodInit 94.16 72.6 98.21

Batch NIN 93.25 71.14 98.19
Maxout 90.65 61.43 97.53

CapsNetII 87.34 60.44 95.7
Our Method 94.91 76.21 98.64

Table 2: Top 1 accuracy of GRMR-CapsNet compared with state-
of-the-arts on CIFAR-10/100 and SVHN .The best results are high-
lighted in bold for different network architectures.

the proposed G-CapsNets compared with the capsule network
[Sabour et al., 2017]. For CapsNetI, the number of parame-
ters is about 8.2M and the accuracy is 68.93%. Compared
with the baseline model, we proposed model G-CapsNet-
16 which contains 16 groups has the 1.5M numbers of pa-
rameters and the accuracy of 70.45% as shown in Table
1. At the same time, when the capsule is divided into 32
and 64 groups, the number of parameters decreases to 1.5M
and 1.4M and the accuracy improves to 71.77% and 72.87%
respectively. This result indicates that the more the num-
ber of groups divided, the denser the capsule relationship
within the group, and the more able to distinguish the dis-
crimination of different groups of capsules. Then, we add
Capsule Max-Pooling to the G-CapsNet-64, scilicet CMPR-
Block proposeed in Section 3.3. The result shows that Cap-
sule Max-Pooling can slightly improve the performance with-
out enduring the increasing computation complexity. Lastly,
considering LRecon, we will get the top 1 accuracy of 75.62%
which indicates that the reconstruction loss will indeed bene-
fit the routing.

Comparison with State-of-the-arts
In order to demonstrate the superiority of our model, CRMR-
CapsNet presented in 3.4 , we also conduct a experiment
compared with the state-of-art network: ResNet110 [He et
al., 2016], VGG16 [Simonyan and Zisserman, 2014], Good-
Init [Mishkin and Matas, 2015], Batch NIN [Chang and Chen,
2015], Maxout [Goodfellow et al., 2013] and CapsNetII. In
this paper, our purpose is to improve the performance of Cap-
sule Networks. We just choose the works which are widely
used to compare with. Instead the CapsNetI, we use six layers
to extract features to build capsules before the PrimaryCap-

sules Layer. Each layer contains two convolutional layers
with the kernel of 2×2, the padding of 1×1 and the stride of
1. Following is Batch Normalization and ReLu. Initial learn-
ing rate is set to 0.0001 and maximum epoch is 80. Adam
[Kingma and Ba, 2014] is used with momentum 0.9. Batch
size [Ioffe and Szegedy, 2015] is 128. We conduct the exper-
iments on CIFAR-10/100 and SVHN. It is clear from Table 2
that the best top 1 accuracy of state-of-the-arts on three date-
sets are GoodInit’s 94.16%, ResNet110’s 72.78% and Goo-
dInit’s 98.21% respectively. Our proposed method achieves
the top 1 accuracy of 94.91%, 76.21% and 98.64%, which is
better than theirs on all three datasets. And we have a 7.57%,
15.77% and 2.94% increasing of the basic CapsNet which
just uses dynamic routing or EM routing.

5 Conclusion

In this paper, we propose a Group Reconstruction and Max-
Pooling Residual Capsule Network (GRMR-CapsNet) that
consists of Capsule Max-Pooling Residual Block (CMPR-
Block). In each block, all capsules transformed by Convolu-
tional Transformation Layer (CTL) are fed into Group Cap-
sule Layer (GCL) in which the capsules are devided into N
groups. To reduce the computational complexity and map-
ping many more useful information to higher layer capsules,
we introduce Reconstruction Feedback Routing that construct
three funtion to obtain µ, σ2 and v̂ and define a LRecon as a
feedback to the block. The proposed network takes a image
as input and predicts its classification just like the capsule net-
work. The class capsules the length of which represents the
probability of the entity can be obtained through Class Caps
Layer. We do experiments to prove that the proposed CMPR-
Block with LRecon could greatly improve the performance
of capssule network and reduce its computational complex-
ity. Simultaneously, we find different numbers of group can
have an effect on the performance. Experiment results on
CIFAR-10/100 and SVHN show that our network is compet-
itive compared with state-of-the-arts.
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