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Abstract

Link prediction and network alignment are two im-
portant problems in social network analysis and
other network related applications. Considerable
efforts have been devoted to these two problems
while often in an independent way to each other.
In this paper, we argue that these two tasks are rele-
vant and present a joint link prediction and network
alignment framework, whereby a novel cross-graph
node embedding technique is devised to allow for
information propagation. Our approach can either
work with a few initial vertex correspondences as
seeds or from scratch. By extensive experiments
on public benchmarks, we show that link predic-
tion and network alignment can benefit each other
especially for improving the recall for both tasks.

1 Introduction

Network alignment refers to finding vertex correspondences
between two networks, based on both the (optional) node-
wise features and edge (i.e. link) structures around vertices.
In particular, node embedding models have recently received
intensive attention for scalable treatment on large-scale net-
works with applications for node classification, etc..

Another related and widely studied problem is link pre-
diction [Backstrom and Leskovec, 2011; Zhang and Philip,
2015], as proposed in [Liben-Nowell and Kleinberg, 2003],
which aims to infer missing links in the network based on the
observed links. It has a range of applications such as recom-
mendation, knowledge management, relation mining, etc..

We argue in the paper that link prediction refers to the prob-
lem of network structure discovery and inherently relates to
network alignment. Despite such a potential connection, to
one’s surprise, little work [Zhang and Philip, 2015] has ex-
plored the possibility for jointly solving these two tasks in a
unified model. We make an initial effort in this direction and
develop a cross-graph embedding model, whereby the two
tasks are alternatively performed. As the structure informa-
tion becomes richer by newly added links, new possible node
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correspondences can be identified and vice versa. As such,
more links within each graph, together with the node corre-
spondences between graphs, can be identified, leading to an
improvement on recall for both tasks.

In a nutshell, the main contributions of this work are:

1) We present a joint link prediction and network alignment
framework, in contrast to the majority of literature focusing
on either link prediction or network alignment alone.

2) We develop a cross-graph embedding method based on
random walks, whereby a new random walk formula is de-
vised to facilitate network alignment. Also, a new cross-
graph embedding based link prediction method is devised.

3) We perform extensive experiments on public bench-
marks to show that alternatively performing the two tasks can
benefit each other. Especially the recall can be improved for
both link prediction and node correspondence establishment.
Furthermore, we show how the distribution of the network’s
degrees relates to the effectiveness of our model.

2 The Proposed Method

We present our joint link prediction and network alignment
approach, based on node embedding across networks. The
two tasks can alternatively benefit to each other, as such the
recall can be improved over the bootstrapping procedure.

2.1 Notations and Preliminaries

In this paper, we only consider unweighted and undirected
networks and the directed version is left for future work.
Also, we focus on the setting involving two networks for no-
tational simplicity in line with the majority of literature.

Link pattern in two networks for alignment may differ in
many aspects, including density, distributions, etc.. While a
basic assumption is that they share corresponding vertices and
some links in each network are missing due to different rea-
sons. If we re-link all these lost edges, the aligned networks
will be the same or highly similar, thus the aligning process
will be easier. On the other hand, after aligning the networks,
several pairs of aligned vertices will be found and will im-
prove the link prediction in turn, as depicted in Fig. 1. Hence,
we propose a cross-graph embedding-based method that al-
ternately performs link prediction and network alignment to
improve the performance of both, in a bootstrapping way.

We first give basic notations to facilitate the later discus-
sion.
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Figure 1: Illustration for how joint modeling of link prediction and
network alignment can benefit to each other. Given the correspon-
dences v1 = w(u1),v2 = w(u2), it is convincing that (v1,v2)
should be linked since (u1,u2) is linked. Conversely, if (u4,us)
and (v4, vs) are linked, w4 is more likely to align with vy (similarly
us corresponds to vs), as they have similar local structures.

Network alignment. Given two networks for alignment
(G,G, ) where G = (V, &, A) is network with V, €, A as
its vertices, edges and attributes respectively. © : V — V'
denotes correspondence between G and G': u = 7w(v),v =
71 (u) and vertices u € V,v € V' correspond to each other.

Seed vertices and seed set. For network alignment, we de-
note the set of vertices whose correspondences have been es-
tablished, via certain means or prior given beforehand by S.
In this paper, we address the unsupervised setting and assume
no seed vertices are available in the beginning.

Link prediction within a network. Given networks G, G’
and their alignment =, link prediction is to predict the
probability of each unobserved link, which is defined as
Pg(uq,us), for ug, us being the two unlinked vertices in G.

The k-hop neighbors. Vertex u is called v’s k-hop neigh-
bor if the distance from u to v is exactly k. Denote N¢ 1 (u)
as the set of all k-hop neighbors of vertex u in network G.

Topological and structural similarity. In this paper, we
define the inverse of the shortest path distance between two
vertices as their topological similarity. While their structural
similarity is defined by Eq. 1 and they may not be connected
via a series of links. It is useful for cross-graph modeling.

2.2 Node Embedding

Most of recent node embedding techniques on one graph, in-
cluding DeepWalk [Perozzi et al., 2014], node2vec [Grover
and Leskovec, 2016], LINE [Tang et al., 2015], etc., are not
tailored to and cannot measure the similarity across separate
networks (at least on the surface). For network alignment,
even if the two networks are connected through seed vertices,
the corresponding vertices in different networks may still be
dissimilar to each other regarding with their embedding vec-
tors (as will be seen in Fig. 7). Though some node embedding
techniques like struc2vec [Figueiredo et al., 20171, to some
extent, can obtain the structural similarities and alleviate the
above problems, the topological similarity is little considered.
Therefore, we propose a novel cross-graph node embedding
technique that can obtain both the structural and topological
similarities for nodes across networks.

Given GG, G’ and their alignment 7, we construct a
weighted, undirected compound network. Given vertices
u € V, v € V', the structural distance between u and v is
defined as f(u,v) when considering their k-hop neighbors
(k = 0,1,...,K), where the 0-hop neighbor is defined as
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Figure 2: Weighted, undirected network G consisting of two net-
works with cross-graph links among vertices in two networks.

the vertex itself and K is a hyperparameter that controls the
depth of structural similarities. Specifically, we define the
difference between the two vertices from two networks by

K
flu,v) = Zdist(sk(u),sk(v)), (D
k=0

where sy, (u) is the rectified degree sequence of vertices of u’s
k-hop neighbors, i.e. s(u) = [d1,ds,...], in which the rec-

£/
ElV] for each degree

tified degree is specified by d=d
d in order to maintain consistency of degree distributions in
two networks. The | - | here is number of elements in a set.
The dist(sg(u), sk (v)) in Eq. 1 is specified as:

dist =

min log(d+ 1) — min log(d+ 1)| +
min log(d+1) —_min_ log( >|

2

max log(d+ 1) — max log(d+1
e g( ) e g( )

Note u,v are vertices in different networks, thus f(u,v)
focuses on cross-graph structural similarity. Moreover, note
that only minimum and maximum degrees are concerned due
to computational complexity, while we argue these two fea-
tures can approximately obtain the vertices’ distance'. We
use Eq. 2 to measure the distance between u and v, however,
any other technique to evaluate distance can be applied in this
framework. The weight of each pair is defined as

w(u,v) = e~ v 3)

where « is a hyperparameter that controls the distribution of
weights. Then we get a weighted, undirected compound net-
work, which we denote as G’, as depicted in Fig. 2. We con-
sider a biased random walk around G, as specified by:

1. Given a probability ¢ > 0 to decide whether to walk on
the current network or switch to another network (with
probability ¢ walking on the current network and proba-
bility 1 — ¢ for network switching).

2. If the walk is on the current network, the probability of
walking from vertex u € Vto v € Ng 1(u) is

1
p(u,v) = ———. 4)
Na,1 (u)]
'Outside this paper, we verified this form in comparison with
other forms which incorporate more fine-grained information while
we find the used one in the paper is more cost-effective.
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Figure 3: Binary classifier based on product neural network for bi-
nary link prediction within a network.

3. Given that the walk will switch networks, if the current
vertex u € V is a seed vertex, namely u € S, the prob-
ability of walking from vertex u € V to v = 7(u) is:

&)

If the walk will switch networks and the current vertex
u € V is not a seed vertex, then the probability of walk-
ing from vertex u € Vtov € V' is:

p(u,v) = 1.

w(u,v)
= — 6
p(u,v) Zw) (6)
where Z(u) is the normalization factor for vertex w:
Z(u) = Z w(u, v). )

veG’

Finally we use random walks to train a Skip-gram model
to obtain the embedding. In particular, given a vertex, the
objective of Skip-gram model is to maximize the average log
probability of its context in a sequence, where the vertex’s
context is given by the nearby vertices in a sequence.

Since basic Skip-gram model suffers from the computa-
tional complexity, we use Negative Sampling [Mikolov et al.,
2013b], whose objective is defined as follows:

Kneg

T T
IOg O—(X/vj 'xvi) + Z EvnNPn(’u) [IOg U(*X/vn 'X'Ui)]’ (8)
=1

where x,, and x/, are the input and output vector representa-
tions of v respectively. o(z) = 1/(1 + e~7) is the sigmoid
function and K, is the number of negative edges. Then we
set P, (v) di/ 4, where d,, is the degree of vertex v. By
Eq. 8, the vertices’ vector representations can be learned.

2.3 Network Alignment

Varieties of alignment methods e.g. [Singh et al., 2008] try
to find the best overall alignments, in which each vertex in
a network will be matched one or more vertices in another
aligned network simultaneously. In contrast, techniques also
exist [Koyutiirk ef al., 2005] that they aim to find similar mo-
tifs between aligned networks. Our method will combine the
benefits of the above methods and focus on finding the most
confident vertex correspondences between networks periodi-
cally. Here we further define NV (S) as all k-hop neighbors
of the vertices in G. Given vertices u € V,v € V', we also
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Algorithm 1: Network Alignment (NA)
Input: Networks G = (V, &, A), G' = (V', &', A'); seed

vertices S and §’; alignment 7; embedding
{Xu }uev, {Xv foeyr; number of vertex pairs 7.

1 Compute F' = {sim(u, v) },ev,vey by Eq. 9 to 13;

2 while 7" > 0 do

3 T=T-1;

Find a new vertex pair (u*, v*) according to F;

Add new vertex to seed set of G: S = S U {u*};

Add new vertex to seed set of G': &' = §" U {v*};

Establish the new correspondence: 7(u*) = v*.

N B

Output: Updated seed vertices S, S’; alignment 7.

define the embedding similarity of two vertices in different
networks by cosine similarity
o} ,

where x,, is the embedding vector of u and ||-|| is 2-norm of a
vector. In order to align the most confident vertices, we only
consider 1-hop neighbors of S and use a variant of Jaccard
similarities to rectify Eq. 9, therefore, given » and v in V1 (S)
and N7 (S') respectively, the similarity between them is

C./\/G = ./\fcyl(u) n S,
CNe =Nga(v)ns,

SiMemp (4, v) = max {M, 9)
[l - [[%0]]

10
simi (u,0) = TENG) NCN | (10)

jc (W, |7T(CNG')UCNG/|7
Simgraph(uav) = Simemb(u,v) . SiIIle('u,,fu)7 (11)

where | - | denotes the size of the set. Note Eq. 10 suggests if
two vertices in different networks share similar corresponding
vertices, they tend to have higher similarity.
When attribute A is given, the attribute similarity between
vertex u € N1 (S) and v € N;(8’) can be written as
Yu - Yo

70}7
[yull - yoll

where y,, is the attribute vector of vertex u. Thus, the simi-
larity between u and v can be further written as

simyy(u, v) = max { (12)

13)

At last, we will search the most confident pairs of vertices
as is shown in Alg. 1. If (u, v) is a new pair of seed vertices,
then it will be added to S and S’ respectively.

2.4 Link Prediction

In general, given a network G, link prediction refers to pre-
dicting the probability of each unobserved link, which can be
written by Pg(u1,uz), with uy,us being two unlinked ver-
tices in GG. In our task, a natural idea is that new links can be
identified between w; and us in one graph if the correspond-
ing v1 = m(uy), va = w(ug) were already connected in G’.

Therefore, we propose a link prediction method within a
network for alignment that takes into account cross-graph in-
formation, as shown in Alg. 2.

sim(u, v) = SiMgraph (U, V) - SiMger(u, V).
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Algorithm 2: Cross-graph Link Prediction (LP)

Input: Networks G = (V, &, A), G' = (V', &', A’); seed
vertices S, §’; alignment 7; threshold thr.

1 Randomly sample a group of existent links Eqy¢, £,
and nonexistent links &,,;s, £/, in G and G’
respectively and their labels o, o’; Randomly initialize
link prediction classifier’s parameters W = (w, b) and
W= (@', b'),

2 while W and W' not converged do

3 Compute loss function with training links E..t, Emis
and &!_,, E! .. by Eq. 14;

4 | Update W and W' by Eq. 15;

s Construct edge lists &5t =S x Sand &/, = S’ x S';
6 for (u1, ug) in Eiest and (m(uy), w(ug)) in &, do

7 Compute objective lo(u1, ug) and 15 (m(u1 ), m(us))
with parameters W’ and W respectively by Eq. 14.
8 //Note that W and W' are reversed.

9 if o (Ul, UQ) > thr and ll2 (W(Ul), 71'(11,2)) > thr then
10 E=EU{e=(u,u)};

1 L &=&U{e = (n(ur),m(u2))};

Ojltput: Updated networks G and G'.

Given a group of existent and missing edges in graph G,
we construct a training set for link prediction learning. As
illustrated in Fig. 3, for edge e = (u1,u2) € £ and the node
embedding of u; and ug, we adopt a product layer [Qu et
al., 2016] to extract the latent interaction between these two
vertices, which is followed by a Logistic regression layer for
binary classification. Formally, for input edge e = (u1, uz) €
€ and its label o, € {0,1}, we have

lo(e) = concat(Xy, , Xy, s Xuy © Xuy )s
li(e) =w-ly(e) + b,
1

la(e) = alli(e)] = m7

where o is Hadamard product, formally x,, o x,, mul-
tiplies each corresponding elements in x,, and x,, with
(Xuy ©Xuy)i = (Xu, )i+ (Xu, )i- The objective for link predic-
tion classifier can be defined as:

mil? % Z —oclogla(e) — (1 — oc)log (1 —Iz(e)). (15)
“ eef

(14)

We denote the above classifier as C. To approximate the
links in G and G’, C is utilized to perform cross prediction.
Specifically, given uj,us € S, e = (u1,u2) € &, if C pre-
dicts that ¢’ = (7 (u1), 7(ug)) links in G/, then &’ € £'.

Note that classifiers C and C’ only predict the links in their
respective graphs that are connected to the seed vertices with
established correspondences. This strategy avoids error accu-
mulation by noise. The overall procedure is shown in Alg. 3.

3 Related Work

We discuss related work in node embedding, network align-
ment and link prediction, as involved in our approach.
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Algorithm 3: Cross-graph Node Embedding for Joint
Network Alignment and Link Prediction (CENALP)
Input: Networks G = (V, &, A), G' = (V', &', A'); seed
vertices S and S’; alignment 7.
1 while new vertex correspondences can be found do

2 L Update {x,, tuey, {Xs }veyr by Eq. 4 t0 8;

3 Search new correspondences by Alg. 1;
4 Predict links within a network by Alg. 2;
Output: Updated seed vertices S, S’; alignment 7;node
embedding {x, }uey, {Xy }oey-

Node Embedding. There are scalable node embedding
methods e.g. DeepWalk [Perozzi er al., 2014] based on ran-
dom walk and node2vec [Grover and Leskovec, 2016] in-
spired by Skip-gram model [Mikolov et al., 2013a]. In par-
ticular, LINE [Tang et al., 2015] explicitly defines first-order
proximity and second-order proximity and builds heuristics
models for the two proximities. However, the techniques
above cannot obtain similarity between vertices in separate
networks. Though struc2vec [Figueiredo et al., 2017] learns
node representations from structural identity and allows for
learning representations in separate networks, it ignores topo-
logical neighbors that are crucial to network alignment tasks.
In this paper, we propose a novel node embedding technique
that can learn from both structural and topological neighbors.

Network Alignment. Network alignment has recently be-
come an active area. Different features have been used
to network alignment e.g. network structures[Singh et al.,
2008], node attributes [Zhang et al., 2015] and edge at-
tributes [Si and Tong, 2016]. It is common for a user getting
involved in multiple social networks e.g. Foursquare, Face-
book and Twitter. Such shared users among different net-
works are referred to as ‘anchor users’ [Kong et al., 2013;
Tong et al., 2016]. In particular, [Zhang and Philip, 2015]
connects the users by both social links and anchor links si-
multaneously. However, some positive anchor links have to
be used to train their models and the metrics AUC and Pre-
cision@30 (i.e. correct alignments in top-30 choices) do
not find a one-to-one correspondence. In our approach, we
propose a cross-graph embedding-based aligning technique
which enables the model to learn in an unsupervised way.

Link Prediction. Link prediction has been a well- studied
area since the seminal work [Liben-Nowell and Kleinberg,
2003]. A line of works formulates link prediction as a su-
pervised classification task [Al Hasan et al., 2006], whereby
different types of links are labeled for prediction according
to their physical meaning [Backstrom and Leskovec, 2011].
Meanwhile, unsupervised methods [Xiang er al., 2010] are
also developed for estimating the link strength. While in our
case, we perform binary prediction to estimate whether the
link shall be formed or not, regardless of their detailed types.

4 Experiments

Popular datasets are used i.e. Twitter/Facebook, Douban (on-
line and offline communities as China’s popular social net-
work), and the DBLP benchmark. For better visualization, a
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Datasets Nodes Edges Attribute Node pairs
DBLP & G | 2,151 6,306 ] 2151
distrubed copy | G’ | 2,151 5,676 ’
Facebook & G 1,256 4,734 0 1.043
Twitter G' | 1,043 4,860 ’
Douban G | 3906 8,164
online & offline | G’ | 1,118 1,511 538 1,118

Table 1: Statistics of the datasets tested in the experiments.
simple example is given in Fig. 4 to illustrate our method.

4.1 Protocols

The statistics of the used datasets are summarized in Table 1.

1) DBLP. It is collected by [Prado et al., 2013], which can
be treated as a co-authorship network. Each author can be
considered as a vertex and authors’ academic cooperation as
the links. Each author is associated with an attribute vec-
tor representing the number of publications in computer sci-
ence conferences. To generate a similar but slightly differ-
ent network to align, we randomly drop 10% edges and flip
10% attribute information in line with [Si and Tong, 2016].
2) Facebook/Twitter. A cross-graph constructed from two
real-world social networks as collected and published by [Cao
and Yong, 2016]. Facebook and Twitter are the most popu-
lar worldwide online social network and micro-blog website
respectively. Each social account is treated as a vertex and ac-
counts’ friend relationship as edges. If a real-world user owns
both Facebook and Twitter accounts, these two accounts will
be treated as an alignment between two networks. In this task,
no attribute information is used. 3) Douban online/offline. A
real-world social network extracted from which is collected
and published by [Zhong et al., 2012]. It has an online so-
cial network and an offline social network to align. Users’
locations are treated as attributes.

We compare CENALP and its variant CENA to baselines
by accuracy i.e. proportion of correct node correspondences
of the total correspondences. We also evaluate the impact of
the missing ratio of links in our experiments.

We compare our approach with the following methods:

1) DeepWalk. Random walk based network embedding
model [Perozzi et al., 2014] inspired by language model;
2) Struc2vec. Node embedding method [Figueiredo et al.,
2017] based on structural identity; 3) IsoRank. Global align-
ment method initially with application to protein interaction
networks [Singh er al., 2008]; 4) FINAL. State-of-the-art
graph alignment algorithm [Si and Tong, 2016] considering
both node attributes, edge attributes and graph structures. FI-
NAL needs a prior alignment as input, which is not applied in
our approach. So we treat it as attribute similarity alignment.
And if not, the uniform is used; 5) CENALP. Our proposed
framework with joint alignment and link prediction over iter-
ations; 6) CENA. A variant of our approach with only cross-
graph alignment one time without link prediction.

The parameters commonly used in the compared meth-
ods are set the same for a fair comparison. Specifically,
the dimension of node embeddings, including DeepWalk,
struc2vec and our proposed method, is universally set as 64.
The maximum depth of neighbors to hop is set as K = 2.
The parameter in Eq. 3 is set as a = 5. The probability

2255

NETWORK G NETWORK G’ NETWORK G NETWORK G’

a D —_ a D\B
7N S S S
C— e i E \ —(f)— i H \

p

\/ N\ \/ N\
9 H— 67 [ m——O—

h// / | h / /

\/ A / A

e b e S g N (F

N\ A P Y A
c ITERATION : 1 g ©

a ) a D__

N\ \ 7N\ \.
C—ip— i E- | C—p— i E \
Q

/\ \| \ / NL

// AT 9 n—AE
h—" / h

\/ / / \ / /

A ) A

R L fE o0 o

g © ITERATION : 2 g S
a D__ a D__
c/ \ /B c/ . 3 /B
W s Tl
\
/ \ / \wG/I \/ c— !
H— H—
e b ) N
\/ L] VAN
A A
e b ~ - )
S S \F
) B a” o

ITERATION : 3

Figure 4: Iterative alignment and link prediction. Vertex a to ¢
corresponds to A to I. Cyan vertices represent those with estab-
lished correspondences between two graphs, while the yellows are
not aligned. Vertices with red rings represent newly-aligned vertices
and red links mean newly predicted links. For simplicity, the maxi-
mum depth of neighbors to hop is set by K = 0. In this ideal case,
our approach jointly aligns new vertices and predict new links, and
eventually makes the two networks exactly the same in structure.
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Figure 5: Precision and recall over iterations by our CENALP on
DBLP and Facebook/Twitter. Note the recall grows notably. One
can see that the recall grows steadily in the beginning because there
is a few reliable pairs, while it grows rapidly later as seed pairs in-
creases and eventually it becomes saturate.

controlling whether to switch networks is set as ¢ = 0.3.

4.2 Results and Discussion

Recall and precision. As shown in Fig. 5, by joint link pre-
diction and network alignment, recall increases while preci-
sion is stable. We evaluate alignment accuracy and influence
of missing links for different methods. The results are de-
picted in Fig. 6. The proposed CENALP achieves the highest
alignment accuracy in DBLP and Facebook/Twitter networks
while CENA achieves the second highest in Douban, under
different values for the ratio of missing links against all links
in the datasets. In contrast, DeepWalk and struc2vec tend
to drop as link missing ratio grows. Also, the scatter plots
of node degrees in two networks are given on the right, from
which one can see that CENALP works well when the scatters
are more linearly distributed (DBLP and Facebook/Twitter
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Figure 6: Alignment accuracy by varying: edges missing ratio levels
(left) and degree scatters after log transformation (right) of networks.

in contrast to Douban). This helps users to decide if our
method is applicable for their practical tasks. In general, the
alignment accuracy of DeepWalk is low and sometimes ap-
proaches random guess. In our analysis, this is because Deep-
Walk cannot obtain similarities in separate networks. For
struc2vec, it can only learn structural neighbors and ignores
topological neighbors, thus not suitable for aligning tasks,
though it performs better than FINAL and IsoRank in Face-
book/Twitter. FINAL and IsoRank are two aligning methods
that depend on both structure and prior alignment, therefore
in our expectation, they perform badly in Facebook/Twitter
due to the lack of attribute information and prior alignment.
In summary, though our proposed methods do not always per-
form best, it is suitable for aligning networks whose degree
scatter plots are narrowed, or in case when the attribute infor-
mation is absent. Our approach learns not only information
from topological neighbors (within graph), but also the one
from structural ones (cross-graph), since the biased random
walk is both within and cross-graph, and based on Eq. 4, 5
and 6. We compare the distribution of embedded vertices
with different embedding techniques as depicted in Fig. 7,
and tend to conclude that our methods perform better in ob-
taining both topological and structural information.

Time overhead. Though our method covers embedding,
alignment and link prediction, the time cost mainly depends
on sampling time for random walks. Specifically, the task
for DBLP and its disturbed copy with 2,151 nodes and 22
iterations can be finished in average 94 seconds per itera-
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Figure 7: 2-D plot of different methods’ embeddings by PCA di-
mension reduction. Embeddings by DeepWalk from two separate
networks are distant to each other. Our cross-graph method CENA
can project correspondences closely — more closely by CENALP.

tion. Douban online/offline with 1,118 nodes and 18 itera-
tions spend in average 116 seconds per iteration and Face-
book/Twitter with 1,043 nodes and 12 iterations spend in av-
erage 53 seconds per iteration on our desktop with 2.1GHz
CPU and 16G memory. By comparison, for the task DBLP
and its disturbed copy, IsoRank and FINAL spend around 7
seconds and 16 seconds respectively while the embedding-
based methods DeepWalk and struc2vec spend 86 seconds
and 183 seconds respectively. Recall that our method CENA
can be regarded as the running of the first iteration, which
is still competitive against baselines as shown in Fig. 6. By
our design, CENA focuses more on accuracy to ensure the
subsequent iteration will not be influenced by wrong vertex
correspondences. In fact, our method in each iteration has the
same time complexity with Deepwalk.

5 Conclusion

We have presented a joint link prediction and network align-
ment framework for improving the recall for both of the two
tasks. We also develop a cross-graph embedding technique
based on structural and topological neighbors to effectively
enable the node to embed from separate graphs.

We also empirically show the condition under which our
bootstrapping method can perform in expectation and sug-
gest the possible failure case. We believe this is important
as inherently our method may encounter error accumulation
which is common to many self-learning like methods.
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