Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

GSTNet: Global Spatial-Temporal Network for Traffic Flow Prediction

Shen Fang'?, Qi Zhang'?2, Gaofeng Meng', Shiming Xiang'? and Chunhong Pan'!

INLPR, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

{shen.fang, qi.zhang2015, gfmeng, smxiang, chpan} @nlpr.ia.ac.cn

Abstract

Predicting traffic flow on traffic networks is a very
challenging task, due to the complicated and dy-
namic spatial-temporal dependencies between dif-
ferent nodes on the network. The traffic flow ren-
ders two types of temporal dependencies, including
short-term neighboring and long-term periodic de-
pendencies. What’s more, the spatial correlations
over different nodes are both local and non-local.
To capture the global dynamic spatial-temporal cor-
relations, we propose a Global Spatial-Temporal
Network (GSTNet), which consists of several lay-
ers of spatial-temporal blocks. Each block contains
a multi-resolution temporal module and a global
correlated spatial module in sequence, which can
simultaneously extract the dynamic temporal de-
pendencies and the global spatial correlations. Ex-
tensive experiments on the real world datasets ver-
ify the effectiveness and superiority of the proposed
method on both the public transportation network
and the road network.

1 Introduction

Traffic flow refers to the number of people or vehicles passing
through the observation nodes on traffic networks at each time
interval. The goal of traffic flow prediction is to predict the
traffic flow of several future times based on the historical traf-
fic data and the physical traffic network. Accurate prediction
for future traffic states could help citizens bypass the crowded
path and keep away from rush hours when scheduling a trip.
Traffic flow prediction could also be used for recommending
more convenient paths for car drivers and providing convinc-
ing information for traffic management decision. Generally,
it is one of the core components in Intelligent Transporta-
tion Systems (ITS), where the performance has much impact
on the performance quality of various practical applications,
such as intelligent route planning, dynamic traffic manage-
ment, and intelligent location-based service [Wu and Tan,
2016].

Early approaches for traffic flow prediction are usually de-
veloped on time series with shallow machine learning mod-
els [Clark, 2003; Kumar et al., 2013]. But these approaches
can only be applied to a single observation node or traffic
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networks with few nodes. Recently, the deep learning based
prediction methods have been largely developed in the field
of artificial intelligence. Compared with the traditional meth-
ods, deep learning models exhibit better capabilities to extract
the spatial-temporal dependencies on traffic networks [Zhang
et al., 2017]. However, most current methods do not fully ex-
ploit the unique characteristics of traffic data, and thus are of
inefficiency in processing the dynamic spatial-temporal cor-
relations on traffic networks.

Current methods mainly employ RNN models [Chung et
al., 2014] to extract temporal features. However, these meth-
ods suffer three limitations when applied to traffic data. First,
the traffic flow has both short-term neighboring (no more than
one hour) and long-term periodic dependencies (one day, one
week or longer) [Zhang et al., 2017]. Such a characteris-
tic requires the model to have a fairly long receptive field
on temporal axis. However, the receptive field of RNNs is
limited. For instance, if the traffic data is recorded every 10
mins, there are more than one hundred traffic records of one
day period, while RNNs could hardly train such a long se-
quence. Second, RNNs have the delayed responses to sudden
changes of temporal features, which instead are very com-
mon in traffic data patterns, especially for the morning and
evening peaks. Third, the training process of RNNs is time-
consuming and hard to converge.

On the other hand, many existing methods only consider
the localized spatial correlations. However, we notice that the
spatial correlations over different nodes on traffic networks
are both local and non-local. It is observed from Figure 1 that
the traffic flow of nodes with far distances could have close
correlations (see the nodes A, B, and E), while the traffic flow
of nodes with short distances could exhibit different charac-
teristics (see the nodes C, D, and E).

According to the above analyses, accurate traffic flow pre-
diction on traffic networks is a very challenging task. To
capture the complicated and dynamic spatial-temporal depen-
dencies and solve the problem of traffic flow prediction, we
propose a deep Global Spatial-Temporal Network (GSTNet),
which consists of several layers of spatial-temporal blocks.
Each block contains a multi-resolution temporal module and
a global correlated spatial module in sequence. The main con-
tributions of the proposed model are as follows:

e A multi-resolution temporal module with a long recep-
tive field is developed to handle the long-term period-



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

ical dependencies. In the module, both the short-term
neighboring and the long-term periodical dependencies
are carefully captured.

e A global correlated spatial module is proposed to learn
the spatial correlations on traffic networks. The design
of this module is to capture the global correlations be-
tween nodes. Thus, the local and non-local spatial cor-
relations on traffic networks can be simultaneously mod-
eled in the same framework.

e The whole model merges together the temporal and spa-
tial modules, which considers the dynamic temporal and
the global spatial correlations simultaneously. Extensive
experiments verify the effectiveness and superiority of
the proposed model.

2 Related Work

2.1 Deep Learning on Traffic Prediction

Recently the deep learning based methods for traffic predic-
tion have been largely developed. Specifically, the stacked
auto encoder (SAE) [Lv et al., 2015] is first employed to
predict traffic states of different nodes. The LSTM net-
work [Hochreiter and Schmidhuber, 1997] and SAE are com-
bined to predict extreme traffic conditions [Yu ef al., 2017]. In
addition, the convolutional neural networks (CNNs) have also
been adopted for predicting the citywide crowd flows [Zhang
et al., 2017]. To be specific, the traffic data is transformed
into a 32x32 grid image as a heat map, whose pixel value is
determined by the traffic flow at each time interval through
the grid. Then the CNNs with residual connection [He et
al., 2016] are utilized to capture the spatial-temporal traf-
fic patterns. The similar idea is also adopted by the sub-
sequent approaches [Zhou et al., 2018; Yao et al., 2018a;
Yao et al., 2018b], some of which are embedded with LSTM
network or attention mechanism to further strengthen the
model performance. However, directly transforming the traf-
fic data to images distorts and coarsens the spatial relation-
ships between nodes. On the other hand, the graph convolu-
tion models can be applied to traffic prediction.

2.2 Deep Learning on Graphs

To make the convolution applicable on graph structured data,
the graph convolution is developed from the perspective of
spectral domain [Bruna ef al., 2013; Henaff er al., 2015].
However, this convolution requires explicit Laplacian eigen-
value decomposition. For this reason, the convolutional ker-
nel is replaced with a multi-order Chebyshev polynomial
(ChebNet) [Defferrard er al., 2016], which avoids explicit
eigenvalue decomposition. The ChebNet is further modified
for semi-supervised graph classification [Kipf and Welling,
2016]. The graph convolution has also been developed di-
rectly based on the graph structure, such as the graph con-
volution network (GCN) [Hechtlinger ef al., 2017] and the
diffusion convolution [Atwood and Towsley, 2016]. The
MoNet (Mixture Model Networks) [Monti et al., 2016] is a
general description of the models developed from spatial do-
main. Besides, the structure-aware convolutional neural net-
works (SACNNs) [Chang er al., 2018] is proposed for han-
dling the non-Euclidean or graph structured data.
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Figure 1: The passenger flow of five nodes on Beijing subway net-
work. The traffic flow of A, B, and E could have close correlations
but E is very far from A and B. Nodes C, D, and E are adjacent but
the traffic flow of E and that of C, D could express different patterns.

Recently, the graph CNN models have been employed
to capture the spatial correlations for traffic prediction.
For instance, the Diffusion Convolutional Gated Recurrent
Unit (DCGRU) [Li et al., 2018] and LC-RNN [Lv et al.,
2018] are developed to capture the localized spatial corre-
lations on traffic networks. The model with multi-graph
CNNs [Chai et al., 2018] is proposed to predict the city bike
flow. In addition, a fully convolutional spatial-temporal graph
neural network [Yu et al., 2018] is developed to extract the
features on traffic networks. However, most of the current
graph based methods do not notice the non-local spatial cor-
relations between nodes on traffic networks.

3 Proposed Model

3.1 Overview

Notations. The traffic topological network can be repre-
sented by a graph G = (V, £), where V stands for the set of
nodes, and £ describes the accessible routes between nodes.
e;; € & indicates that there is an edge between two nodes
v; and v;. Suppose that there are N nodes and M types of
traffic flow data (e.g., inflow and outflow), the m-th type of
traffic flow data on node v; at time ¢ is denoted as ; 4 ,,,. The
historical traffic flow data with length 7" obtained along the
time axis constitutes a tensor X € RV*TxM

Problem Statement. The task of prediction problem is to
learn a mapping function fy. The function f, takes historical
traffic data X" as well as the graph G as inputs, predicting the
traffic flow of all nodes at the next time:

X = fo(X,0), ey

where X € RN*M denotes the prediction results, and 6
stands for the learnable parameters.

Architecture of Our Designed Network. Figure 2 shows
the architecture of the proposed GSTNet, which consists of
several layers of spatial-temporal blocks and an output layer.
Each spatial-temporal block contains a multi-resolution tem-
poral module and a global correlated spatial module in se-
quence. The output layer employs an attention mechanism
on temporal domain, which automatically selects the relevant
historical traffic data. The detailed mechanism of each mod-
ule is described in the following subsections.
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3.2 Multi-Resolution Temporal Module

A multi-resolution temporal module is proposed, which has
a long receptive field to capture the long-term periodic de-
pendencies. Thus, both short-term neighboring and long-
term periodic dependencies are simultaneously considered.
The module is composed by stacking several layers of ten-
sor causal convolution with different dilation rates, which is
shown in Figure 2 (left bottom).

Tensor Causal Convolution. The tensor causal convolu-
tion is developed to preserve the chronological order of data
(the outputs at current time are only related to historical data).
The result of causal convolution [Oord ef al., 2016] on node
v; 1s as follows:

K, M

Yitp = Z Z Wh,m,p * Tit—d(k—1),m> )

k=1m=1

where y; ; ,, is the convolutional result of node v; on the p-
th channel at time ¢, d is the dilation rate, and wy, ,, , is the
element of the convolution kernel. Furthermore, in Eq. (2),
all the elements of wy, ., , constitute the convolution kernel
W € RE-XMXP yhere K, represents the kernel length,
and P denotes the number of output channels. In process,
zero padding strategy is utilized to keep the temporal length
unchanged. Now, applying the same convolution kernel to
all nodes yields the following formulation of tensor causal
convolution:

V=W &, 3

where ) € RVXTXP is the output features, and *, represents
the tensor causal convolution with dilation rate d. Due to the
entirely convolutional architecture, the tensor causal convolu-
tion has the rapid responses to temporal signals and a flexible
receptive field on the temporal axis. The length of the recep-
tive field is K, x d, where K, is the length of convolution
kernel, and d is the dilation rate.

Multi-Resolution Architecture. Multiple layers of tensor
causal convolution are stacked, which can not only expand
the receptive field on temporal axis, but also obtain the multi-
resolution outputs. The convolutions of bottom layers are de-
signed to extract short-term neighboring dependencies, and
those of higher layers are responsible of learning long-term
temporal features. To further expand the receptive field,

the dilation rate increases with an exponential speed, i.e.,
d® = o-1).

X [=0
1 _ )
Y _{ oV sy Y1) 1=1,2,...,L° @

where Y! € RV*XT*P ig the output features of the [-th layer,
W g RE-*MxP ig the convolutional kernel, and o (-) de-
notes the non-linear activation function. The results V' of
different layers capture the temporal dependencies on differ-
ent resolutions, which are concatenated to obtain the multi-
resolution output features:

y:h([yl’yQ,.__’yL]), (5)

where Y € RN*TXQ 5 the output features of the multi-
resolution temporal module, and @ is the the number of out-
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Figure 2: Model architecture of the proposed GSTNet. The pro-
posed model consists of several layers of spatial-temporal blocks
followed by an output layer to produce the prediction results.
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put channels. Furthermore, [, V2, --- | Y] denotes the op-
eration of tensor concatenation on the channel dimension, and
h(-) is the convolution for channel reduction.

3.3 Global Correlated Spatial Module

A global correlated spatial module is developed, which has
the capability of extracting the global spatial correlations be-
tween nodes on the traffic network. Thus, the local and non-
local spatial correlations can be simultaneously modeled in
the same framework. The proposed module contains a local-
ized graph convolution and a non-local correlated mechanism
with the residual connection [He et al., 2016].

Localized Graph Convolution. The graph convolution is
first developed from the perspective of Fourier domain [Bruna
et al., 2013]. Let € RY be the signal, and A € RV*Y be
the adjacent matrix of the graph, the convolution is:

y=go(L)x = goy(UAUT )z = Ugy(A)UTz, (6)

where y € RY is the convolution result, @ is the learnable
parameters, and gg(A) = diag(6) is the filter of a diagonal
matrix. Furthermore, in Eq. (6), U € RV * is the eigenvec-
tors of the normalized Laplacian L = Iy — D 2AD : =
UAUT, where A € RY¥*N is the corresponding eigenval-
ues, Iy is the identity matrix with /V dimension, and D is the
diagonal degree matrix with D; ; = j A; ;. Since L is pos-
itive semidefinite, U is an orthogonal matrix. In Eq. (6), the
signal z is first transformed to the Fourier domain & = UT .
A diagonal matrix gg(A) is used as the filter to adjust the
amplitude of the transformed signal &. Finally, the modu-
lated signal is transformed back to the spatial domain. Al-
though the convolution of Eq. (6) is theoretically guaranteed,
it suffers from the requirements of explicit Laplacian eigen-
value decomposition and the non-localized filters on spatial
domain. For these reasons, the convolution kernel is replaced
with the Chebyshev polynomial [Defferrard et al., 2016]:

y =31y OTe(L)z = 1) Ohy, 7

where y € RY is the convolutional result, 6}, is the learn-

able parameter, and T} (L) is the k-th order Chebyshev poly-
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nomial, with the rescaled Laplacian L = 2L /A0, — In.
Here A, is the maximal value among the eigenvalues of
L, In Eq. (7), ) can be recursively computed by &) =
22L&y 1 — ®p_o, With &g = @, and &; = La. It is worth
pointing out that & only contains the features of the k-th or-
der adjacent nodes at most. Thus, the convolution is strictly
localized on spatial domain, with a receptive field of length
K —1:y = 0xgx, where = [0y,01,--- ,0_1]T € RE
is the convolution kernel. Now, the localized graph convo-
lution can be applied to extract the local spatial correlations
between nodes on the traffic network. For node v;, the ex-
tracted features at the ¢-th historical time is denoted as a vec-
tor y;+ € R, where Q is the number of channels on each
node. The features of all nodes constitute a feature matrix
Y: = [Y1.6,Y2.4, yne]T € RVX? and the result of
graph convolution is:

Y =0x Yy, (8)

where Y, = [§1.4, G20, Un.e]T € RV*D represents the
output features, and g; ; € R” denotes the localized spatial
features on node v; at time ¢. Furthermore, in Eq. (8), © €
RE:*x@xD ig the convolution kernel, where K is the kernel
length, and D is the number of output channels.

Global Spatial Correlations. The non-local correlated
mechanism is constructed to extract the non-local spatial cor-
relations between nodes, as shown in Figure 2 (right bottom):

zig = 8ij OWie U50) - 950) + 9 Wr, 9
ij7£vi

where z;; € R is the output features on node v; at time
t, F is the number of output channels, and ¢(-,-) is a bi-
variate function. Furthermore, s; ; is the global topological
weight (s;; = 8 > life;; € &, otherwise s; ; = 1), and
g(-) transforms the features on node v;. In Eq. (9), ¢ mea-
sures the global correlations between nodes, and “+ 4; ; W,.”
denotes the residual connection with the localized features,
where W, € RP*F is the learnable parameters. The ad-
dition of topological weight s; ; makes the non-local cor-
related mechanism not only consider the dynamic correla-
tions between nodes, but also the static topological structure
of the traffic network. For practicality, g(9;:) = 9, W,
is the linear function and ¢ is the embedded Gaussian ker-
nel ¢(z,y) = exp(x?Wy) and the learnable dot product
d(x,y) = xTW ,y, respectively, where W, € RP*F and
W, € RPXD are the learnable parameters. The output fea-
tures z; ; of all nodes at all historical times can be efficiently
computed in parallel, and composed to obtain the output ten-
sor:

21,1 *1,2 21T
22,1 222 "t 22T

Z=1 . . s (10)
ZN,1 ZN,2 ZN,T

where Z € RVXT*F i the outputs of the spatial module.
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3.4 Model Summarization

To capture the dynamic temporal and the global spatial cor-
relations simultaneously, the spatial-temporal block is con-
structed. Each block contains a multi-resolution temporal
module and a global correlated spatial module in sequence,
which is shown in Figure 2 (top). Several layers of the spatial-
temporal blocks are stacked, followed by an output layer to
predict the future traffic states. The output layer employs an
attention module [Vaswani et al., 2017] on temporal axis to
adaptively select the most relevant historical traffic data:

T-1

X =Y (2, Z) X W, (11)
t=1

where X’ is the prediction results, Z; € RY*¥" is the spatial-
temporal features at time ¢, and X, € RY*M s the histor-
ical traffic data at time ¢ + 1. Furthermore, W, € RMxM
is the learnable parameters, and v (-, -) is the Frobenius inner
product of two matrices. In Eq. (11), ¥(Zr, Z;) measures
the relevances of the spatial-temporal features between his-
torical times (Z;) and the current time (Z7), which are then
exploited to map the historical traffic data to the traffic states
at the next time. Finally, the MSE loss function is adopted to
train the model:

~ ~112 ~ 2
O L L

where X € RV*M i the ground truth at the next time 7'+ 1.
Now we summarize our GSTNet method as follows: (1) Each
spatial-temporal block can not only capture the short term
neighboring and the long term periodical temporal dependen-
cies, but also take the global spatial correlations into consid-
eration, with few learning parameters. (2) Several layers of
stacked spatial-temporal blocks constitute the framework for
handling structured data with chronological order. (3) The
whole model can be efficiently trained through highly paral-
lelized mechanisms and affordable computing resources.

4 Experiments
4.1 Datasets

The proposed method is verified on three real-world traffic
datasets. The first two datasets are the transaction records of
Beijing Subway and Bus System, and the third dataset is the
taxi GPS trajectories in Beijing. Detailed information of the
datasets is reported in Table 1.

Properties Datasets -
Subway Bus Taxi
# Nodes 278 24 198
Time interval 10 mins 1 hour 20 mins
. 2015/11/1 -
Time span 2016/6/1 - 2016/6/29 2016/5/31
Daily range 6:00-22:00

Table 1: Detailed information of the evaluated datasets.
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Models Subway Dataset Bus Dataset Taxi Dataset
MAE MAPE (%) MAE MAPE (%) MAE MAPE (%)

HA 49.76 30.38 26.18 38.27 52.21 33.45
SAE 26.52 £0.86 | 25.60+1.14 12.34 +£0.94 | 21.56 £ 1.71 35.07 £ 044 | 24.264+0.32
LSTM 26.93 £ 0.17 | 26.53 £0.27 17.34 + 1.38 | 24.76 = 1.36 3575+0.12 | 25.17+£0.19
ChebNet 28.19 £2.40 | 24.89 £2.11 13.57 £ 1.67 | 22.21 £2.14 37.08 £3.08 | 27.52+2.71
GCGRU-GCN 26.64 £0.15 | 26.02 £0.27 18.60 £ 0.60 | 26.15 £ 1.04 3553 £0.29 | 2492 +£0.33
STGCN-Action 26.90 £ 0.61 | 22.724+0.72 11.81 £ 0.70 | 18.93 £0.71 38.92 +1.28 | 26.31 £ 1.15
GSTNet (Product) | 2430+ 1.12 | 21.02 £ 0.78 11.11 +£0.24 | 18.15 + 0.64 31.72 +£ 0.26 | 21.67 + 0.24
GSTNet (Gaussian) | 23.19 +0.43 | 19.78 + 0.29 11.04 = 0.34 | 18.26 £0.34 32.18 049 | 21.924+047

Table 2: Experimental results on the datasets. GSTNet (Product) and GSTNet (Gaussian) represent that the global spatial correlations is
computed by the learnable dot product ¢(x,y) = T W4y, and the embedded Gaussian kernel ¢(x, y) = exp(z” W 4y), respectively.
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Figure 3: The topology graph and the passenger outflow at one time
interval of Beijing subway system.

Subway Transactions Dataset. The Beijing subway trans-
action records include the entering and exiting nodes as well
as the entering and exiting timestamps of each transaction. It
can be easy to infer the passenger flow of all nodes in all time
intervals. For most of the subway lines are closed at night,
only the records from 6:00 to 22:00 are considered. Figure 3
shows the traffic network (partial nodes) and the heat map of
the passenger outflow at one time interval on the network.

Bus Transactions Dataset. The basic characteristics of the
Bus Transactions Dataset are the same as those of the Sub-
way Dataset. There are totally more than 4,500 bus stops and
the computing costs of all stops can be expensive, and thus
the bus Line One and the nodes on this line are taken into
consideration (see Table 1 for more details).

Taxi Trajectories Dataset. The third dataset contains the
trajectories of all taxis (more than 30,000 taxis) in Beijing.
198 major intersections are chosen as nodes to compute the
traffic flow through these nodes in each day (see Table 1 for
more details).

4.2 Experimental Settings

All the models utilize two days of historical traffic data and
predict the traffic flow at the next one time interval.

Network Structure and Learning Strategy. The model
contains two layers of spatial-temporal blocks. The tempo-
ral module consists of three convolution layers. The length
of convolution kernel is three in each layer, and the output
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Figure 4: Detailed prediction results of Subway Dataset.

channels is 8. The 24 output channels are then reduced to 8§
channels. The hidden channels and output channels in spatial
module is set to 8. The length of graph convolution kernel
is three. The embedded Gaussian kernel is the default op-
tion. The hyperparameter (3 is set to 5 = 2. LeaklyReLU is
selected as the non-linear activation function. The normaliza-
tion method is chosen as the Switchable Normalization [Luo
et al., 2018]. The optimizer is the Adam algorithm [Kingma
and Ba, 2014] and the learning rate is set to o = le 3.

Compared Algorithms. Several traditional shallow mod-
els and competitive deep learning models are selected as
the compared algorithms: (1) HA: Historical Average. (2)
LSTM: Long Short Term Memory. (3) SAE [Lv er al.,
2015]: Stacked Auto Encoder. (4) ChebNet [Defferrard et
al., 2016]: Graph CNN with Chebyshev polynomial ker-
nel. (5) GCRNN-GCN [Li ef al., 2018]: Graph Convolu-
tion Recurrent Neural Network with GCN [Hechtlinger et
al., 2017] kernel. (6) STGCN-Action [Yan et al., 2018]:
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Figure 5: Results of different blocks in the model.

Spatial-temporal graph convolutional networks for skeleton-
based human action recognition, where the last layer is mod-
ified for traffic prediction.

Evaluation Metrics. Two most-widely adopted metrics,
MAE (Mean Absolute Error), and MAPE (Mean Absolute
Percentage Error), are employed to measure the performance
of different methods.

4.3 Experimental Results

Model Comparsion. Table 2 reports the experimental re-
sults on the three datasets of Beijing Subway, Bus, and Taxi
Datasets. All the uncertainties are computed by re-training
the models with random seeds and modified by a Student’s
t-distribution with a confidence probability of P = 0.9. The
proposed GSTNet achieves best predicting accuracy and sat-
isfying uncertainties on all metrics and all datasets. As the
RNN based models do not effectively exploit the spatial cor-
relations, and the receptive field on temporal axis is limited,
the prediction accuracy is worse than the proposed model (see
the results of LSTM and GCGRU). Figure 4(a) illustrates the
average MAPE error on each node of the Subway Dataset.
Similar conclusions can be extended to other two datasets.
Only the results of 40 nodes are displayed for clarity. It is ob-
served that the proposed GSTNet outperforms other methods
on different nodes, demonstrating that the proposed model is
advanced on spatial domain. Figure 4(b) shows the average
performance of different models during a week. In the figure,
except for the slightly higher error on Monday, the proposed
GSTNet achieves best results in all other days, illustrating
that the GSTNet is also excellent on temporal dimension.

Number of Spatial-Temporal Blocks in the Model. To
determine the appropriate number of spatial-temporal blocks
in the proposed model, models with different number of
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Figure 6: Evaluation of spatial and temporal modelings.

blocks are compared. Figure 5 illustrates the experimental
results on Subway and Bus Datasets. It is observed that more
blocks lead to the increase of the training time, but the im-
provement of model performance is limited. In addition, too
many blocks could cause over-fitting. Therefore, the model
with two spatial-temporal blocks is appropriate, with satisfy-
ing results and affordable training time.

Evaluation of Spatial and Temporal Modelings. To ver-
ify the effectiveness of the spatial and temporal modelings,
two variants are compared with the proposed GSTNet:

e GSTNet-S (patial): the same structure as the GSTNet
except that there are only spatial modules.

o GSTNet-T (emporal): the same structure as the GSTNet
except that there are only temporal modules.

Figure 6(a) shows the MAE error of different predicting fu-
ture time steps on the Subway Dataset and Figure 6(b) illus-
trates the results on the other two datasets. It is observed that
the performance improvement brought by the combination of
temporal and spatial modelings is superior to that of adopting
one of them, with different datasets and different predicting
future time steps. Such a result demonstrates the effectiveness
of the proposed temporal and spatial modules.

Evaluation of Non-local Properties. To evaluate the non-
local properties on traffic networks, the proposed GSTNet is
compared with two variant models:

e GSTNet-I (dentity): No topological structure informa-
tion is considered, i.e., the graph G is replaced by an
identity matrix I.

o GSTNet-L (ocal): Only the local correlations are con-
sidered in the spatial modules.
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Figure 7: Evaluation of non-local properties.

Figure 7 gives the prediction results on the three datasets. In
the figure, the proposed model with global spatial correlations
performs best results, compared with other two variants. It is
also observed from Figure 7(a) that the local spatial corre-
lations could be weak in long-term prediction tasks (see the
results of GSTNet-I and GSTNet-L in 50 and 60 mins), while
the global spatial correlations could be more essential to long-
term prediction.

Time Comparison. Table 3 gives the results of time com-
parison between different models on the Subway Dataset.
Similar conclusions can be extended to other two datasets.
For a fair comparison, the training time is computed on one
epoch, and the test time is operated on all of the test samples.
All the models are compared under the same computing re-
sources. It is observed from Table 3 that the running time of
the proposed model achieves a compromise between the RNN
based models (GCGRU and LSTM) and the graph convolu-
tion models (ChebNet and STGCN), and meanwhile obtains
the best prediction accuracy.

Results on PeMS Dataset. To further verify the generaliza-
tion of the proposed model, different methods are also com-
pared on a public dataset: the PeMS-BAY Dataset [Li e al.,
20138] for traffic speed prediction. The experimental results
are reported on Table 4. From the results, it is observed that
our model achieves the best accuracy. This demonstrates a
good generalization of the proposed model.

5 Conclusion

This paper proposes a novel deep learning model for pre-
dicting traffic flow on traffic networks, integrating a multi-
resolution temporal module and a global correlated spatial
module. Experiments on the real-world datasets verify the
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Subway Dataset
Models Training (mins) Test (mins)
SAE 0.20 0.03
STGCN-Action 0.10 0.03
ChebNet 0.11 0.03
GSTNet 1.42 0.22
GCGRU-GCN 3.84 1.28
LSTM 6.76 1.64

Table 3: Time comparison of different models.

Models PeMS-BAY Dataset
MAE MAPE (%)

HA 4.83 9.91
SAE 3.34 8.41
LSTM 2.88 6.96
ChebNet 2.61 4.95
GCGRU-GCN 3.16 7.75
STGCN-Action 3.45 8.18
GSTNet 1.94 3.53

Table 4: Prediction results on the PeMS-BAY Dataset.

effectiveness and superiority of the proposed method on two
kinds of traffic networks (public transportation network and
road network) and three types of datasets (subway, bus and
taxi). In the future, we will extend our framework for ad-
dressing multi-step and long-term prediction.
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