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Abstract
Partial label learning is a weakly supervised learn-
ing framework, in which each instance is provid-
ed with multiple candidate labels while only one
of them is correct. Most of the existing approach-
es focus on leveraging the instance relationships to
disambiguate the given noisy label space, while it
is still unclear whether we can exploit potentially
useful information in label space to alleviate the
label ambiguities. This paper gives a positive an-
swer to this question for the first time. Specifical-
ly, if two instances do not share any common can-
didate labels, they cannot have the same ground-
truth label. By exploiting such dissimilarity re-
lationships from label space, we propose a novel
approach that aims to maximize the latent seman-
tic differences of the two instances whose ground-
truth labels are definitely different, while training
the desired model simultaneously, thereby continu-
ally enlarging the gap of label confidences between
two instances of different classes. Extensive ex-
periments on artificial and real-world partial label
datasets show that our approach significantly out-
performs state-of-the-art counterparts.

1 Introduction
Partial label (PL) learning [Jin and Ghahramani, 2003; Cour
et al., 2011] belongs to the family of weakly supervised
learning frameworks. It aims to deal with the problem that
each instance is provided with a set of candidate labels, only
one of which is the ground-truth label. Partial label learn-
ing is also termed as ambiguous label learning [Hüllermeier
and Beringer, 2006; Zeng et al., 2013; Chen et al., 2014;
Chen et al., 2018] and superset label learning [Liu and Diet-
terich, 2012; Liu and Dietterich, 2014; Gong et al., 2018]. As
a result of the difficulty in collecting perfect data with com-
pletely correct labels in many real-world scenarios, partial la-
bel learning has been applied to various domains. Examples
include automatic face naming [Zeng et al., 2013], object de-
tection [Liu and Dietterich, 2012], and web mining [Luo and
Orabona, 2010].

Formally speaking, let X = Rn be the n-dimensional fea-
ture space and Y = {1, 2, · · · , l} be the label space includ-

ing l labels. Suppose the PL dataset is denoted by D =
{(xi, Si)}mi=1 where xi ∈ X is an n-dimensional feature vec-
tor and Si ⊆ Y is the corresponding candidate label set where
the ground-truth label yi must be in this candidate label set,
i.e., yi ∈ Si. Given such data, the goal of partial label learn-
ing is to train a multi-class classification model f : X → Y
that tries to correctly predict the label of a test instance.

Due to the semantic ambiguities conveyed by the label s-
pace, the key of partial label learning is to disambiguate the
candidate label set, thereby targeting the ground-truth label.
To achieve this, most of the existing disambiguation-based
approaches normally follow two typical strategies, including
the average-based strategy [Hüllermeier and Beringer, 2006;
Cour et al., 2011] and identification-based strategy [Jin and
Ghahramani, 2003; Liu and Dietterich, 2012; Zhang and Yu,
2015; Zhang et al., 2016; Tang and Zhang, 2017; Gong et al.,
2018]. The average-based strategy treats each candidate label
equally, and makes the final prediction by averaging the mod-
eling outputs of candidate labels. The identification-based
strategy aims to handle the candidate labels with discrimi-
nation, and usually employ an iterative process to gradually
update the confidence of each candidate label.

By taking into account the different confidences of can-
didate labels, the identification-based strategy generally out-
performs the average-based strategy, thereby having attracted
increasing attention. Most approaches [Zhang and Yu, 2015;
Zhang et al., 2016; Feng and An, 2018; Gong et al., 2018]
following this strategy normally leverage the topological in-
formation in feature space to derive the confidence of each
candidate label. Specifically, the conjecture that nearby (sim-
ilar) instances are supposed to have the same label is widely
used by these approaches. However, it is still unclear whether
we can directly extract useful information in label space to
help with the derivation of the confidences of candidate la-
bels. This paper gives a positive answer to this question for
the first time. There is a key observation that if two instances
do not share any common candidate labels, they cannot have
the same ground-truth label. For example, suppose there are
two instances x1 and x2 whose corresponding label vectors
are given as y1 = [1, 1, 0, 0] and y2 = [0, 0, 1, 1]. Without
knowing the ground-truth label of the each instance, we can
still easily find that x1 and x2 cannot have the same ground-
truth label, since they do not share any common candidate
labels.
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By exploiting such dissimilarity relationships from label
space, we propose a novel partial label learning approach
called SDIM (Semantic DIfference Maximization), which
aims to maximize the latent semantic differences of the two
instances whose ground-truth labels are definitely different,
while training the desired model simultaneously, thereby con-
tinually enlarging the gap of label confidences between two
instances of different classes. The effectiveness of SIDM is
clearly demonstrated by extensive experiments on 4 artificial
and 6 real-world PL datasets.

2 Related Work
The key of effective partial label learning is to disambiguate
the candidate labels. Existing disambiguation-based ap-
proaches mainly follow two strategies: the average-based s-
trategy and the identification-based strategy.

The average-based strategy assumes that each candidate la-
bel contributes equally to model training, and the final pre-
diction is made by averaging the modeling outputs of all the
candidate labels. Following this strategy, instance-based ap-
proaches [Hüllermeier and Beringer, 2006; Gong et al., 2018]
predict the label of a test instance x by averaging the output-
s of its nearest neighbors, i.e., argmaxy∈Y

∑
xi∈N (x) I(y ∈

Si) where N (x) is the set of neighbors of x. In addition,
parametric approaches aim to train a parametric model [Cour
et al., 2011; Zhang et al., 2016] that is able to differentiate the
average modeling output of candidate labels (F (xi, y; θ), y ∈
Si) from that of non-candidate labels (F (xi, ŷ; θ), ŷ ∈ Ŝi),
where Ŝi is the set of non-candidate labels and ŷ ∈ Si is a
non-candidate label. Obviously, the average-based strategy is
simple and clear, while it may suffer from the problem that
without discrimination of candidate labels, the ground-truth
label could be overwhelmed by the other false positive labels.

To address the drawback of the average-based strategy, the
identification-based strategy tries to handle the candidate la-
bels with discrimination, and derive different confidences of
candidate labels. Following this strategy, conventional ap-
proaches aim to optimize the objective function according
to the maximum likelihood criterion [Jin and Ghahramani,
2003] or the maximum margin criterion [Nguyen and Caru-
ana, 2008]. Recently, there have been increasing interests
[Zhang and Yu, 2015; Zhang et al., 2016; Feng and An, 2018;
Gong et al., 2018] in leveraging the topological information
in feature space to derive the confidence of each candidate
label. These approaches normally iteratively update the con-
fidences of candidate labels based on the widely used as-
sumption that nearby (similar) instances are supposed to have
the same label. One potential drawback of the identification-
based strategy lies in that if the differentiated label is a false
positive label, it would have a dramatically malignant influ-
ence on the follow-up model training. In addition, because
of the redundant and noisy features naturally exist in feature
space, the extracted topological information may be mislead-
ing. Hence there is an important question, i.e., whether we
can extract useful information from label space to help with
the iterative process of updating the confidences of candidate
labels?

In this paper, a novel partial label learning approach called

SDIM will be introduced, which provides a positive answer
to the above question.

3 Preliminaries
Following the conventional notations used in Introduction, we
denote the feature matrix and the label matrix given in the
PL dataset by X = [x1,x2, · · · ,xm]> ∈ Rm×n and Y =
[y1,y2, · · · ,ym]> ∈ {0, 1}m×l, respectively. Here, yij = 1
means that the j-th label is in the candidate label set of the
instance xi (i.e., j ∈ Si), otherwise the j-th label is a non-
candidate label of xi. In addition, we introduce the partial
label confidence matrix P = [p1,p2, · · · ,pm] ∈ [0, 1]m×l

where pi represents the label confidence vector of xi.
Note that many approaches [Zhang and Yu, 2015; Zhang

et al., 2016; Feng and An, 2018; Gong et al., 2018; Feng and
An, 2019] have introduced or defined such partial label con-
fidence matrix P. As the partial label confidence matrix P
is not directly accessible from PL training examples, in this
paper, we carefully illustrate some requirements for P. In-
tuitively, since each candidate label has the potential to be
the ground-truth label, the confidence of each candidate la-
bel should be in [0, 1]. While the confidence of each non-
candidate label should be strictly 0, as non-candidate labels
can never be the ground-truth label. We can use the constraint
0 ≤ P ≤ Y to compactly represent such logic. Moreover,
since there is only one ground-truth label for each instance,
competitive relationships naturally exist in the candidate la-
bel set. Therefore, we also assume that each label confidence
vector pi should be normalized, i.e.,

∑
j pij = 1. Such con-

straint implicitly shows that once the confidence of certain
candidate label is enlarged, the confidences of other labels
would be decreased. Based on the above descriptions of P,
we present the formal definition of partial label confidence
matrix as follows.

Definition 1 (Partial Label Confidence Matrix). Given the
label matrix Y in the partial label dataset, we define the par-
tial label confidence matrix P as:

• candidacy: 0 ≤ pi ≤ yi, ∀i ∈ [m]

• normalization:
∑
j pij = 1, ∀i ∈ [m]

where [m] := {1, 2, · · · ,m}. By compact representation, we
also define a partial label simplex as ∆ := {P ∈ [0, 1]m×l :
P ≤ Y,P1l = 1m} where 1m is a vector of size m with all
of its elements equal to 1, thus P ∈∆.

4 Approach
As stated before, SDIM aims to maximize the latent seman-
tic differences of the two instances whose ground-truth la-
bels are definitely different while model training. Formal-
ly, suppose xi and xj have different ground-truth labels, i.e.,
y>i yj = 0, the gap between the label confidence vectors
pi and pj should be maximized. In this paper, we adop-
t the widely-used Euclidean distance. Therefore, our goal
is to maximize ‖pi − pj‖22, if y>i yj = 0. Here, we dig
more about why our proposed regularization approach can
work. Suppose yi = [1, 1, 0, 0] and yj = [0, 0, 1, 1], we
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have pi = [pi1, pi2, 0, 0] and pj = [0, 0, pj3, pj4] (accord-
ing to Definition 1). If pi1, pi2 = 0.5, and pj3, pj4 = 0.5,
we could get ‖pi − pj‖22 = 1. While if pi1 = 1, pi2 = 0
and pj3 = 1, pj4 = 0 (the values could be exchanged), we
would obtain ‖pi − pj‖22 = 2. In this way, it would be clear-
ly observed that ‖pi − pj‖22 hits the lowest value when the
confidence of each candidate label is equal to 0.5. While
‖pi − pj‖22 gradually increases when the confidence of each
candidate label approaches to 0 or 1. As a result, such regular-
ization approach would enhance the discrimination abilities
to disambiguate the candidate labels, and the obtained con-
fidence vectors pi and pj would be more confident, thereby
reducing the label ambiguities.

For better representation, we introduce an indicating ma-
trix R = [rij ]m×m, indicating whether two instances defi-
nitely have different ground-truth labels:

rij =

{
1, if y>i yj = 0

0, if y>i yj 6= 0
(1)

In this way, we present our proposed regularization approach
as follows:

max
P

m∑
i=1

m∑
j=1

rij ‖pi − pj‖22 = max
P

tr(P>LP) (2)

where L = diag(R1) −R is the Laplacian matrix, and tr(·)
is the trace operator. Note that our proposed regularization
approach aims to maximize the convex objective, which is
diametrically opposed to the common convex manifold reg-
ularization [Belkin et al., 2006] that minimizes the convex
objective. In other words, problem (2) is not a convex prob-
lem.

By integrating the proposed regularization term into the
widely-used model, we obtain the final optimization problem:

min
W,P

1

2
‖XW −P‖2F +

λ

2
‖W‖2F −

β

2
tr(P>LP) (3)

s.t. P ∈∆

where W ∈ Rn×l is the model parameter. Note that in prob-
lem (3), we aim to learn from the partial label confidence
matrix P while updating P simultaneously. Such two tasks
would be mutually promoted. Due to the difficulty in opti-
mizing the two variables W and P together, we adopt the
simple alternating optimization method, which enables us to
iteratively optimize one variable with the other fixed.

4.1 Model Training
With P fixed, problem (3) with respect to W reduces to:

min
W

1

2
‖XW −P‖2F +

λ

2
‖W‖2F (4)

which is the common linear regression model. Simple closed-
form solution could be easily obtained:

W = (X>X + λIn×n)
−1X>P (5)

where In×n is an identity matrix whose scale is n× n. How-
ever, such linear model may not be able to deal with the com-
plex nonlinear case. To solve this problem, we adopt a kernel

extension to train a kernel ridge regression model. Specif-
ically, we resort to a feature mapping φ(·) : Rn → RH,
which maps the original feature space (X) to some high-
er dimensional Hilbert space (φ(X)). By representor theo-
rem [Schölkopf et al., 2002], the model parameter W can
be represented by a linear combination of the input features
φ(X), i.e., W = φ(X)

>
A where A = [aij ]m×l is the

matrix storing the weights. Hence φ(X)W = KA where
K = φ(X)φ(X)> ∈ Rm×m is the kernel matrix with each
element kij = φ(xi)

>φ(xj) = κ(xi,xj), and κ(·, ·) denotes
the kernel function. By incorporating such kernel extension,
problem (4) can be stated as:

min
A

1

2
‖KA−P‖2F +

λ

2
tr(A>KA) (6)

where we have used the property of the trace operator, i.e.,
‖W‖2F = tr(W>W) = tr(A>KA). Setting the gradient
w.r.t. A to 0, the closed-form solution is reported as:

A = (K + λIm×m)−1P (7)

In this paper, we adopt the popular Gaussian kernel function
κ(xi,xj) = exp((xi − xj)/2σ

2) with σ set to the averaged
pairwise Euclidean distances of instances.

4.2 Confidence Updating
With A fixed, we denote by the modeling output Q =
φ(X)W = KA, thus problem (3) w.r.t. P reduces to:

min
P

1

2
‖P−Q‖2F −

β

2
tr(P>LP) (8)

s.t. P ∈∆

Note that in problem (8), the first term is convex, while the
last term is concave. Therefore, problem (8) is a constrained
convex-concave problem [Yuille and Rangarajan, 2003; S-
riperumbudur and Lanckriet, 2009]. Fortunately, since the
constraints are linear, we can directly employ the Convex-
ConCave Procedure (CCCP) [Yuille and Rangarajan, 2003]
to update P. CCCP can be regarded as a majorization-
minimization algorithm [Sriperumbudur et al., 2011; Gong et
al., 2018] that optimizes the original nonconvex problem by
solving a sequence of convex problems. Specifically, prob-
lem (8) can be regarded as the difference between two con-
vex functions C1 = 1

2 ‖P−Q‖2F and C2 = β
2 tr(P>LP). In

each iteration, C2 is replaced by its first order Taylor approxi-
mation C̃2, and problem (8) can be approximated by C1 − C̃2,
which becomes a convex problem. Theoretical analyses show
that CCCP converges to a local minima [Sriperumbudur and
Lanckriet, 2009].

For our problem, we denote by P(i) the updated value of
P at the i-th iteration, and linearize C2 at P(i) by its Taylor
approximation:

C̃2 =
β

2
(tr(P(i)>LP(i)) + 2(tr(P>LP(i) −P(i)>LP(i)))

= βtr(P>LP(i))− β

2
tr(P(i)>LP(i)) (9)
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Algorithm 1 The SDIM Algorithm

Inputs:
D: the PL training set {(X,Y)}
λ, β: the regularization parameters
x: the unseen test instance

Output:
y: the predicted label for the test instance x

1: construct the indicating matrix R = [rij ]m×m by (1);
2: construct the kernel matrix K = [κ(xi,xj)]m×m using

Gaussian kernel function;
3: initialize P by (13);
4: repeat
5: update A = [aij ]m×l by (7);
6: update Q = KA;
7: update P by solving (12) with a general QP procedure;
8: until convergence or the maximum number of iterations.
9: return the predicted label y according to (14).

Since the variable is P, the last term in (9) can be removed,
and the approximated objective function for updating P is:

P(i+1) = argmin
P

1

2
‖P−Q‖2F − βtr(P>LP(i)) (10)

s.t. P ∈∆

Here, we will show that problem (10) is actually a standard
Quadratic Programming (QP) problem. Let us vectorize P ∈
Rm×l, Q ∈ Rm×l, and Y ∈ Rm×l to p̂ ∈ Rml, q̂ ∈ Rml,
and ŷ ∈ Rml. To copy with the equality constraint using
p̂, we specially pick up the indices of p̂ by defining a set
Z = {Z0,Z1, · · · ,Zm−1} as follows:

j ∈ Zi, if j%m = i, ∀j ∈ [ml] (11)

Thus problem (10) can be equivalent to:

p̂(i+1) = argmin
p̂

1

2
p̂Hp̂ + f>p̂ (12)

s.t.
∑

j∈Zi

p̂j = 1, ∀Zi ∈ Z

0ml ≤ p̂ ≤ ŷ

where H = Iml×ml, f = −q̂−βGp̂(i), and G = Im×m⊗L
where ⊗ is the Kronecker product. In this way, any off-the-
shelf QP toolbox can be used to solve problem (12). By it-
eratively solving a sequence of QP problems, we can even-
tually get local optimal p̂. Finally, by reshaping p̂ ∈ Rml to
P ∈ Rm×l, we can obtain the eventually updated partial label
confidence matrix P.

Since the variables A and P are alternatively updated, we
can simply always update P for one step (for one QP prob-
lem) after updating A. Thus the iterative process of updating
P is kept, while the optimization efficiency is improved.

For the 0-th iteration, P(0) = [p
(0)
ij ]m×l is initialized as:

p
(0)
ij =

{
1
|Si| , if j ∈ Si
0, if j /∈ Si

(13)

After the completion of the whole optimization process,
SDIM gives the predicted label y of the test instance x by:

y = argmax
j∈[l]

m∑
i=1

aijκ(x,xi) (14)

The pseudo code of SDIM is presented in Algorithm 1.

5 Experiments
In this section, we conduct extensive experiments on artficial
and real-world datasets to demonstrate the effectiveness of
our proposed approach.

5.1 Comparing Algorithms
We compare our approach with six state-of-the-art partial la-
bel learning approaches, each configured with suggested hy-
perparameters in accordance with the respective literature:

• PLKNN [Hüllermeier and Beringer, 2006]: a kNN ap-
proach following the average-based strategy [default
configuration: k ∈ {5, 6, · · · , 10}];
• CLPL [Cour et al., 2011]: a convex approach following

the average-based strategy [default configuration: SVM
with squared hinge loss];

• IPAL [Zhang and Yu, 2015]: an approach following the
identification-based strategy that leverages the structural
information in feature space [default configuration: α ∈
{0, 0.1, · · · , 1}, k ∈ {5, 6, · · · , 10}];
• PL-SVM [Nguyen and Caruana, 2008]: a maximum

margin approach following the identification-based s-
trategy [default configuration: λ ∈ {10−3, · · · , 103}];
• PLALOC [Wu and Zhang, 2018]: a disambiguation-free

approach that adapts the binary decomposition [default
configuration: µ = 10]

• ECOC [Zhang et al., 2017]: a disambiguation-free ap-
proach based on the coding-decoding procedure [default
configuration: L = log2(l)]

For our approach, λ is searched in {0.001, 0.005, · · · , 0.5}
and β is searched in {0.00001, 0.00005, 0.0001, · · · , 0.1}.
For all the approaches, parameters are selected by five-fold
cross-validation on the training set. For each dataset, we per-
form ten-fold cross-validation, and report the resulting mean
prediction accuracies and the standard deviations.

5.2 Experiments on Controlled UCI Datasets

Dataset ecoli dermatology vehicle usps
Examples 336 366 846 9298
Features 7 34 18 256
Labels 8 6 4 10

Table 1: Characteristics of the controlled UCI datasets.

Table 1 reports the characteristics of four UCI dataset-
s used in our experiments. Following the widely-used con-
trolling protocol [Zhang and Yu, 2015; Zhang et al., 2016;
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Dataset Examples Features Labels Avg. CLs Task Domain
Lost 1122 108 16 2.23 automatic face naming [Panis and Lanitis, 2014]

MSRCv2 1758 48 23 3.16 object classification [Liu and Dietterich, 2012]
BirdSong 4998 38 13 2.18 bird song classification [Briggs et al., 2012]

Soccer Player 17472 279 171 2.09 automatic face naming [Zeng et al., 2013]
Yahoo! News 22991 163 219 1.91 automatic face naming [Guillaumin et al., 2010]

FG-NET 1002 262 78 7.48 facial age estimation [Panis and Lanitis, 2014]

Table 2: Characteristics of real-world partial label datasets.

(a) ecoli (b) dermatology (c) vehicle (d) usps

Figure 1: Classification performance on controlled UCI datasets with p ranging from 0.1 to 0.7 (r = 1).

(a) ecoli (b) dermatology (c) vehicle (d) usps

Figure 2: Classification performance on controlled UCI datasets with p ranging from 0.1 to 0.7 (r = 2).

(a) ecoli (b) dermatology (c) vehicle (d) usps

Figure 3: Classification performance on controlled UCI datasets with p ranging from 0.1 to 0.7 (r = 3).

Tang and Zhang, 2017; Feng and An, 2018; Wu and Zhang,
2018], we generate the artificial partial label datasets by us-
ing two contorlling parameters p and r. Here, p controls
the proportion of instances that have candidate labels, and
r controls the number of false positive labels, in other words,
|Si| = r+1. All the candidate labels are randomly generated.

Figure 1, Figure 2, and Figure 3 report the classification
accuracy of each approach as p ranges from 0.1 to 0.7 with
step size 0.1, when r = 1, r = 2, and r = 3, respectively. As
shown in these figures, SDIM outperforms other comparing
algorithms in most cases. It is worth noting that candidate
labels are randomly generated, there might be the case that
many pairs of examples share at least one common candi-

date labels. In this case, Our proposed method may achieve
mediocre performance. However, such case is really rare s-
ince experimental results demonstrate that our method can
achieve the best performance in more than 75 cases out of the
84 cases.

5.3 Experiments on Real-World Datasets
Table 2 summaries the characteristics of the real-world par-
tial label datasets from various task domains, which also in-
cludes the average number of candidate labels per instance
(Avg. CLs). Note that the BirdSong dataset is normalized
using the Z-scores by convention. The mean accuracy with s-
tandard deviation of each approach on each real-world dataset
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SDIM PLKNN CLPL IPAL PLSVM PALOC ECOC
Lost 0.801±0.031 0.432±0.051• 0.742±0.038• 0.678±0.053• 0.729±0.042• 0.629±0.056• 0.703±0.052•

MSRCv2 0.518±0.037 0.417±0.034• 0.413±0.041• 0.529±0.039 0.461±0.046• 0.479±0.042• 0.505±0.027
BirdSong 0.754±0.021 0.648±0.017• 0.632±0.019• 0.713±0.015• 0.663±0.032• 0.711±0.016• 0.740±0.016•

Soccer Player 0.577±0.016 0.495±0.018• 0.368±0.010• 0.541±0.016• 0.464±0.011• 0.537±0.015• 0.537±0.020•
Yahoo! News 0.663±0.013 0.483±0.011• 0.462±0.009• 0.609±0.011• 0.629±0.010• 0.625±0.005• 0.662±0.010•

FG-NET 0.076±0.019 0.039±0.018• 0.063±0.027 0.054±0.030• 0.063±0.029 0.065±0.019 0.040±0.025•
FG-NET(MAE3) 0.466±0.022 0.269±0.045• 0.458±0.022 0.362±0.034• 0.356±0.022• 0.435±0.018• 0.251±0.029•
FG-NET(MAE5) 0.621±0.024 0.438±0.053• 0.596±0.017• 0.540±0.033• 0.479±0.016• 0.609±0.043 0.354±0.038•

Table 3: Classification accuracy of each algorithm on the real-world datasets. Furthermore, •/◦ indicates whether SDIM is statistically
superior/inferior to the comparing algorithm (t-test at 0.05 significance level for two independent samples).

(a) Varying λ on Lost (b) Varying β on Lost (c) Convergence on Lost (d) Convergence on MSRCv2

Figure 4: Parameter sensitivity and convergence analysis of SDIM on the real-world datasets Lost and MSRCv2.

is reported in Table 3. It is worthy noting that all the ap-
proaches achieve extremely poor performance on the FG-
NET dataset, because its Avg. CLs is very large. For better
evaluation of such task, we resort to conventional mean abso-
lute error (MAE). Specifically, for FG-NET (MAE3/MAE5),
a test example is considered correctly classified if the MAE
between the predicted age and the real age is no more than
3/5 years. The experimental results of FG-NET(MAE3) and
FG-NET(MAE5) are also recorded in Table 3. From Table
3, we can observe that: 1) SDIM statistically outperforms
PLKNN on all the real-world datasets; 2) Out of the 48 cas-
es (6 comparing algorithms and 8 tasks), SDIM statistically
outperforms other algorithms in 85.4% cases; 3) It is worthy
noting that SDIM is never statistically inferior to any compar-
ing algorithms.

Further Analysis
There are two tradeoff parameters for SDIM. We conduct sen-
sitivity analysis by varying one parameter, while keeping the
other fixed at the best setting. Figure 4(a) and 4(b) show the
performance of SDIM w.r.t. λ and β, respectively. As can be
seen from Figure 4(a), when performance of SDIM is rela-
tively poor when λ is too small or too big. Such observation a-
grees with the intuition that it is important to control the mod-
el complexity for avoiding overfitting or underfitting. Note
that β controls our proposed regularization term, i.e., the im-
portance of semantic difference maximization. From Figure
4(b), we can also find that when β is very small, the impor-
tance of semantic difference maximization is hardly consid-
ered, thus SDIM achieves relatively low prediction accuracy.
As β increases, the importance of semantic difference max-
imization will gradually be taken into consideration, hence
the prediction accuracy starts to increase. Such observation
clearly confirms the effectiveness of our SDIM approach.
However, if β is overly large, the classification accuracy will
drop. This is because the objective function focuses too much

on maximizing the semantic differences while ignoring the
importance of model training. It is also worth noting that
when β is extremely small (even without the proposed reg-
ularization term), SDIM still achieves satisfied performance.
Which means, the reduced version of SDIM (i.e., kernel re-
gression with confidence updating) provides a strong base-
line. This observation also agrees with [Feng and An, 2018;
Feng and An, 2019].

Figure 4(c) and Figure 4(d) illustrate the convergence of
SDIM on Lost and MSRCv2, according to the difference of
the value of the objective function (3) between two successive
iterations. It can be easily observed that the loss converges
within a few iterations. Hence the convergence of SDIM is
demonstrated.

6 Conclusion

This paper gives the first attempt to leverage the dissimilarity
relationships from label space for dealing with label ambigu-
ities. A novel partial label learning approach called SDIM is
proposed to maximize the latent semantic differences while
training the desired model simultaneously. Extensive experi-
mental results demonstrate the effectiveness of SDIM.

Contrary to conventional approaches that leverage the sim-
ilarities in feature space to disambiguate the candidate label-
s, SDIM resorts to the dissimilarities in label space. Hence
a question naturally arises on how similarities and dissimi-
larities can be combined together for enhancing partial label
learning performance. We leave this as future work.
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