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Abstract

In conventional partially observable Markov de-
cision processes, the observations that the agent
receives originate from fixed known distributions.
However, in a variety of real-world scenarios, the
agent has an active role in its perception by se-
lecting which observations to receive. We avoid
combinatorial expansion of the action space from
integration of planning and perception decisions,
through a greedy strategy for observation selection
that minimizes an information-theoretic measure of
the state uncertainty. We develop a novel point-
based value iteration algorithm that incorporates
this greedy strategy to pick perception actions for
each sampled belief point in each iteration. As a
result, not only the solver requires less belief points
to approximate the reachable subspace of the belief
simplex, but it also requires less computation per
iteration. Further, we prove that the proposed al-
gorithm achieves a near-optimal guarantee on value
function with respect to an optimal perception strat-
egy, and demonstrate its performance empirically.

1 Introduction

In the era of information explosion it is crucial to develop
decision-making platforms that are able to judiciously ex-
tract useful information to accomplish a task. The impor-
tance of mining useful information from large data appears in
many applications including artificial intelligence, robotics,
networked systems and internet of things.

Partially observable Markov decision  processes
(POMDPs) provide a framework to model sequential
decision-making with partial perception of the environ-
ment and stochastic outcomes. While relatively efficient
algorithms for computing near-optimal policies have been
developed, the majority of existing algorithms focus on either
merely perception or merely planning.

In this paper, we address joint perception and planning in
POMDPs. In particular, we consider an agent that decides
about two sets of actions: perception actions and planning
actions. The perception actions, such as activating a sensor,
only affect the belief of the agent regarding the environment.
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The planning actions, such as choosing a navigation direc-
tion, only affect the environment evolution. To the best of our
knowledge, this is the first work that considers the problem of
joint active perception and planning in POMDPs.

While treating perception and planning in isolation from
each other likely deteriorates performance, an integrated ap-
proach is typically intractable. Essentially, the complexity is
roughly dictated by how much perception and planning rely
on each other. Therefore, a trade-off between optimality and
tractability is necessary.

The main contribution of this paper is establishing near-
optimal and tractable solutions for a class of problems where
perception is defined as picking a subset of information
sources. Essentially, we prove that it is possible to decouple
the perception action space and the planning action space yet
still achieve near-optimal strategies. What enables this decou-
pling is the fact that the perception strategy aims to reduce un-
certainty. Hence, one can use approximate algorithms, such
as greedy methods, to optimize a quantitative measure of un-
certainty. Furthermore, we develop a novel POMDP solver
through which we can evaluate and hence optimize the joint
effect of perception and planning actions on the overall value
of a strategy, even though the action spaces are decoupled.

The class of active perception considered in this paper,
i.e., picking the most useful information sources, resem-
bles the well-established problem of subset selection [Krause
and Golovin, 2014; Qian er al., 2017]. This type of ac-
tive perception arises in various applications in control sys-
tems, robotics, and machine learning, where the constraints
on sensing stem from power, processing capability, or com-
munication limits.

1.1 Contributions
We point to the main contributions below.

Problem formulation. We introduce a new mathematical
definition of POMDPs, called AP>-POMDP, that captures
active perception and planning. The objective is to find pure
belief-based policies for perception and planning such that
the expected discounted cumulative reward is maximized.

Algorithm development. To solve AP>-POMDP, we de-
velop a novel point-based method that approximates the value
function using a finite set of belief points, each associated
with a pair of perception and planning actions. We exploit the
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uncertainty reduction purpose of perception actions to devise
a greedy perception decision that is conditioned on a belief
point and a planning decision. The value iteration step then
integrates the effects of a pair of perception and planning ac-
tions on the expected cumulative reward.

Theoretical guarantees. We establish theoretical guaran-
tees on the near-optimality of the greedy perception decision
with respect to an optimal perception decision. Subsequently,
we prove near-optimality of the value function obtained by
the proposed algorithm. We also provide complexity analysis
of the algorithm to demonstrate the computational gain.'

1.2 Related Work

Finding exact solution to POMDPs is PSPACE-complete [Pa-
padimitriou and Tsitsiklis, 1987]. Hence, near-optimal algo-
rithms have been subject to extensive research. A common
technique is to approximate the reachable subspace of belief
by a finite set and apply value iteration over this set [Sondik,
1978; Cheng, 1988; Lovejoy, 1991; Zhang and Zhang, 2001].
Pineau et al. [2006] proves that the error due to belief sam-
pling is bounded and depends on the density of the belief
set. Well-established offline POMDP solvers include SAR-
SOP [Kurniawati et al., 2008] and HSVI [Smith and Sim-
mons, 2012], that guide the belief sampling toward the reach-
able subspace under optimal policies. We show that the pro-
posed greedy observation selection scheme leads to belief
points that are, in expectation, close to the ones from the op-
timal set of observations.

An instance of active perception is dynamic sensor selec-
tion. Kreucher et al. [2005] use Renyi divergence to com-
pute the utility of sensing actions. In a setting of Kalman
filtering, Shamaiah et al. [2010] and Hashemi et al. [2018]
develop greedy selection schemes, with near-optimality guar-
antees, to minimize scalarizations of the error covariance ma-
trix. Prior work such as [Spaan and Lima, 2009; Natarajan
et al., 2015] model active perception as a POMDP. However,
the most relevant work to ours is that of [Araya et al., 2010;
Spaan et al., 2015; Satsangi et al., 2018]. Araya et al. [2010]
proposed pPOMDP framework where the reward depends on
the entropy of the belief. Spaan er al. [2015] introduced
POMDP-IR where the reward depends on an accurate pre-
diction about the state. Satsangi et al. [2018] established
an equivalence property between pPPOMDP and POMDP-IR.
Furthermore, they employed the submodularity of the under-
lying value function, under some conditions, to use greedy
scheme for sensor selection. The main difference of our work
is that we consider active perception as a means to accom-
plishing the original task while in these work, active percep-
tion is the task itself and hence the POMDP rewards are met-
rics to capture perception quality.

2 Problem Formulation

This section starts by giving an overview of the related con-
cepts and then stating the problem formulation.

'See [Ghasemi and Topcu, 2019] for the extended version.

2.1 Preliminaries

We introduce a new class of POMDP models, called AP2-
POMDP, that are suitable for problems with both elements of
active perception and planning.

POMDP with Perception Action
We formally define an AP>-POMDP below.

Definition 1. An AP?>-POMDP is a tuple P =
(S, Ak, T,Q,0,R,~). S is the finite set of states.
A = APl x AP" denotes the finite set of paired actions with
APl being the set of planning actions and AP" being the set
of perception actions. AP" = {§ € {0,1}" : ||0]|, < k}
constructs an n-dimensional lattice where k is the maxi-
mum number of information sources to be activated. Each
component of an action § € AP" determines whether to
activate the corresponding information source, e.g. Sensor.
T : S x APl x S — [0,1] denotes the probabilistic transition
function. Q@ = Q' x Q% x ... x Q" is the partitioned
set of observations, where each §); corresponds to the
set of measurements observable by information source 1.
O : S x AxQ — [0,1] denotes the probabilistic observation
function. R : S x APY — R is the reward function, and
v € [0,1] is the discount factor.

At each time step, the environment is in a state s € .S. The
agent takes an action 3 € AP! that causes a transition to a
state s’ € S with probability Pr(s’|s,8) = T(s, 3,s). At
the same time step, the agent also picks k information sources
by d € AP". Then it receives an observation w € €) with
probability Pr(wl|s’,8,6) = O(s', 3,0,w), and a scalar re-
ward R(s, 5). Note that conventional POMDP models are a
special case of AP2-POMDP where k = n = 1.

Remark 1. The constrained active perception defined above,
i.e., selecting a subset of available information sources
under cardinality constraint, arises in settings that the
cost of sensing actions are uniform, e.g., for homogeneous
sensors. It is possible to consider variations of constraints
for different settings, leading to slightly modified solutions.
For example, a more general case with nonuniform cost
falls into the category of subset selection with linear cost
constraints [Qian et al., 2017].

In many practical settings, the measurements from infor-
mation sources only depend on the state and the previous
action, as formally stated below.

Assumption 1. We assume that given the cur-

rent state and the previous action, the o0b-
servations  from  information  sources are  mutu-
ally independent, ie, VI, I, C {1,2,...,n},
Il n 12 = @ P?"(Uilell w“’UiZEIQ OJZ2‘S,5) =

PT(Uilell wh |575)PT(Ui2€IZ w*[s, B).
Let ¢(6) = {i|6(i) = 1} to denote the subset of informa-
tion sources that are selected by 6. Assumption 1 yields:

Pr(w|s’,8,6) = Pr (Uie((é) Wi\5/75»5> = [Tices) Oil(s', B,w'),
, ‘ ey

where Pr(w'|s’, B) = O;(¢, B,w").
The belief of the agent at each time step, denoted by
by is the posterior probability distribution of state given
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the history of previous actions and observations, i.e.,
ht = (ap,w1,a1,...,a4-1,w). A well-known fact is that
due to Markovian property, a sufficient statistics to represent
history of actions and observations is belief [Astrom, 1965;
Smallwood and Sondik, 1973]. Given the initial belief b,
the following update equation holds between previous belief

b and the belief b;a’“’ after taking action a = (/3,4) and re-
ceiving observation w:

ooy = PrUGls 5.6 5, Prisls, )
b o Pr(w|B,9)

Hie((é) O; (S/a B, w' Zs T(sv B, s/)b(s)

5 Hiccry) Oi( Brot) 53, (s, B 5)b()
2
The goal is to learn a pure policy to maximize
E[>2 07 R(s¢, Be)|bo]. A pure policy is a mapping from
beliefs to actions w : B — A, where B is the set of beliefs
that constructs a (|S| — 1)-dimensional probability simplex.
The POMDP solvers apply value iteration [Sondik, 19781,
a dynamic programming technique, to find an optimal policy.
Let V' be a value function that maps beliefs to values in R.
The following recursive expression holds for V':

‘/t(b) = maXg <Zs€5 b(S)R(s? a) +7 Zweﬂ P7>(w|b7 a)‘/tfl (b;a’w)> .
3

The value iteration converges to the optimal value function
V* which satisfies the Bellman’s optimality equation [Bell-
man, 1957]. Once the optimal value function is learned, an
optimal policy can be derived. An important outcome of (3)
is that at any horizon, the value function is piecewise-linear
and convex [Smallwood and Sondik, 1973] and hence, can be
represented by a finite set of hyperplanes. Each hyperplane is
associated with an action. Let a’s to denote the correspond-
ing vectors of the hyperplanes and let I'; to be the set of «
vectors at horizon ¢. Then,

Vi(b) = max ox b. “)
This fact has motivated approximate point based solvers that
try to approximate the value function by updating the hyper-
planes over a finite set of belief points.

Submodularity

Since the theoretical guarantee of the proposed algorithm
is founded upon the theoretical results from the field of
submodular optimization, here, we overview the necessary
definitions. Let X' to denote a ground set and f a set function
that maps an input set to a real number.

Definition 2. Set function f : 2% — R is monotone nonde-

creasing if f(Th) < f(Ts) forall Ty C Ty C X.

Definition 3. Set function f : 2% — R is submodular if
f(Tyud{i}) — f(Th) > f(Ta U {i}) — f(T2)

Sor all subsets Ty C To C X and i € X\Ts. The term

fi(T) = f(T U {i}) — f(T) is the marginal value of adding

element i to set T

Monotonicity states that adding elements to a set increases
the function value while submodularity refers to diminishing
returns property.
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Figure 1: Entropy of belief for a 3-state POMDP.

2.2 Problem Definition

Having stated the required background, next, we formulate
the joint perception and planning problem.

Problem 1. Ler P = (S, Ak, T,Q,0,R,~) to denote an
AP?-POMDP and by to be an initial belief . The goal is to
learn a pure belief-based policy (b) = (3,0) such that the
expected discounted cumulative reward is maximized, i.e,

Tt = argmax E[Z Y R(s¢, w(be))|bo]- %)
=0

3 Active Perception with Greedy Scheme

For variety of performance metrics, finding an optimal sub-
set of information sources poses a computationally chal-
lenging combinatorial optimization problem that is NP-
hard [Williamson and Shmoys, 2011]. Augmenting POMDP
planning actions with (/) active perception actions results in
a combinatorial expansion of the action space. Thereupon,
it is infeasible to directly apply existing POMDP solvers to
Problem 1. Instead of concatenating both sets of actions and
treating them similarly, we propose a greedy strategy for se-
lecting perception actions that aims to pick the information
sources that result in minimal uncertainty about the state.
The key enabling factor is that the perception actions does
not affect the transition, consequently, we can decompose the
single-step belief update in (2) into two steps:

by (s') =D T(s,B,)b(s), (6a)
b:é,w(s//) _ [Lices) Oi(s”, B,w')b(s")
b Zs’ Hzeg(é) Oi(slvﬂvwi)b(sl)‘

This in turn implies that after a transition is made, the agent
should pick a subset of observations that lead to minimal un-

(6b)

certainty in b;;‘s’“’.

To quantify state uncertainty, we use Shannon entropy of
the belief. For a discrete random variable x, the entropy
is defined as H(x) = — >, p(z;)logp(z;). An important
property of entropy is its strict concavity over the simplex
of belief points, denoted by Ap [Cover and Thomas, 2012].
Further, the entropy is zero at the vertices of A g and achieves
its maximum, log|S|, at the center of Ap that corresponds
to uniform distribution, i.e., when the uncertainty about the
state is the highest. Figure 1 demonstrates the entropy and its
level sets for | S| = 3. Since the observation values are un-
known before selecting the sensors, we optimize conditional
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Algorithm 1 Greedy policy for perception action

1: Input: AP>-POMDP P = (S, A,k,T,9,0, R,~), Cur-
rent belief b, Planning action f3.

2: Output: Perception action §.

3: Initialize X = {1,2,...,n}, (= 0.

4: forl=1,... kdo

5:  j* =argmax;eca\¢ —’H(s|bbﬂ, Uiecugy @)
6: (= CU{j}

7: end for

8:

return J corresponding to .

entropy that yields the expected value of entropy. For dis-
crete random variables x and vy, conditional entropy is de-
fined as H(xly) = E, [H(2|y)] = 3, p(y:) H(@|y,). Subsc-
quently, with some algebraic manipulation, one obtains the
conditional entropy of state given current belief with respect
to J as:

H(s|b,w) =

— Z Z Z(b(s) H 0, (s, B,w")
wil Qi Wik €Qik SES i;€¢(8)

lo b($) [T, ccs) Ois (585 0%)
*\ Zoes W) ecs) O, (5 B,w)

(7

where ((6) = {i1,42,...,4x}. It is worth mentioning that b
is the current distribution of s and is explicitly written only
for the purpose of clarity, otherwise, H(s|b, §) = H(s]J).

To minimize entropy, we define the objective function as
the following set function:

F(C) = H(slby) — H(s|by, | J &) ®)

i€C

and the optimization problem as:

0% = arg max f(¢(9)). ©)
We propose a greedy algorithm, outlined in Algorithm 1 to
find a near-optimal, yet efficient solution to (9). The algo-
rithm takes as input the agent’s belief and planning action.
Then it iteratively adds elements from the ground set (set of
all information sources) whose marginal gain with respect to
f is maximal and terminates after k selection.

Next, we derive a theoretical guarantee for the performance
of the proposed greedy algorithm. The following lemma
states the required properties to prove the theorem. The proof
of the lemma follows from monotonicity and submodularity
of conditional entropy [Ko et al., 1995].

Lemma 1. Let Q = {w! w? ... ,w"} to represent a set
of observations of the state s such that Assumption 1 holds.
Then, f((), defined in (8), is normalized, monotone nonde-
creasing, and submodular.

The above lemma enables us to establish the approximation
factor using the classical analysis in [Nemhauser er al., 1978].

Theorem 1. Let (* to denote the optimal subset of observa-
tions with regard to objective function f({), and {9 to denote

the output of the greedy algorithm in Algorithm 1. Then, the
following performance guarantee holds:

- ) 1 - 1 - .
H(slby, | ] w?) < =H(s|b)) + (1 - ) H(s|by, | ] wb).
igg € € ig*

(10)
Remark 2. One can interpret the minimization of conditional
entropy as pushing the agent’s belief toward the boundary of
the probability simplex Ag. This implies that the belief is
moving toward regions of belief space that have higher value.

Although Theorem 1 proves that the entropy of the belief
point achieved by the greedy algorithm is close to the entropy
of the belief point from the optimal solution, the key question
is whether the value of these points are close. We assess this
question in the following and show that at each time step,
in expectation, the value from greedy scheme is close to the
value from optimal selection with regard to (9). To that end,
we first show that the distance between the two belief points
is upper-bounded. Thereafter, we prove that the difference
between value function at these two points is upper-bounded.

Theorem 2. Let the agent’s current belief to be b and its plan-
ning action to be 5. Consider the optimization problem in (9),
and let 5* and 69 to denote the optimal perception action and
the perception action obtained by the greedy algorithm, re-
spectively. It holds that:

§ 2
By, w[16? —5°,] < J Z By, et (D (b [0)],

where b* and b9 are the updated beliefs according to (6).

Theorem 3. Instate the notation and hypothesis of Theo-
rem 2. Additionally, let V to be the true value function for
AP?-POMDP. The following statement holds: >

By, « [V (6) = V(7)) <

2 aX{| ’rmw:|7 |R7nin‘}
E D p (b [p) X AU ,
\/e Uz‘eé*u [ ICL( || )] 1_7

4 Perception-Aware Point-Based
Value Iteration

In this section, we propose a novel point-based value it-
eration algorithm to approximate the value function for
AP2-POMDPs. The algorithm relies on the performance
guarantee of the proposed greedy observation selection in
previous section. Algorithm 2 outlines the general procedure
for a point-based solver. It starts with an initial set of belief
points By and their corresponding « vectors. Then it per-
forms a Bellman backup for each point to update o vectors.
Next, it prunes « vectors to remove dominated ones. After-
wards, it samples a new set of belief points and repeats these
steps until convergence or other termination criteria is met.
The difference between solvers is in how they apply sampling
and pruning. The sampling step usually depends on the reach-
ability tree of belief space, see Figure 2. The state-of-the-art
point-based methods do not traverse the whole reachability
tree, but they try to have enough sample points to provide a
good coverage of the reachable space.

*See [Ghasemi and Topcu, 2019] for the proofs.
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Algorithm 2 Generic algorithm for point-based solvers
[Araya et al., 2010]

Input: POMDP.
Output: Approximate value function V.
Initialize B = By and I'.
while ~ (termination condition) do

B <+ Sample(B)

I’ < BackUp(B,T)

I’ < Prune(B,T")
end while
return V' (b)

—_

R A U ol

= maxXger « - b.

Note that the combinatorial number of actions due to per-
ception decisions highly expand the size of the reachability
tree. However, since the perception decisions aim to reduce
the state uncertainty, we apply the greedy scheme for entropy
minimization to make the choice of § deterministically de-
pendent on [ and previous belief. To that end, we modify
the BackUp step of point-based value iteration. The proposed
BackUp step can be combined with any sampling and pruning
method in other solvers, such as the ones developed by Spaan
and Vlassis [2005], Kurniawati et al. [2008], and Smith and
Simmons [2012].

4.1 Proposed Point-Based Solver

In point-based solvers each witness belief point is associ-
ated with an « vector and an action. Nevertheless, for
AP2-POMDPs, each witness point is associated with two ac-
tions, 8 and . We compute § based on greedy maximization
of (9) so that given b and 3, § is uniquely determined. Hence-
forth, we can rewrite (3) using (4) to obtain:

w0 = s 3o

72Prw|bﬁ6) mraxabﬁ >

weN
= max (Z b(s

ses
max

v Z acl'_q

WERy X XDy s'esS

ZJEQ(S)
w') ZT(S,/B,S’ b

H OZ(S

i;e¢(d) s€s

—maX<Zb

seS

DY

WERjy X XDy
ij€<(5)

H 01(8

i;€¢(6)

a(s’)x

(1)

max Z Z a(s’)x
aely 1

seSs'eS
W )T (s, B, S’)b(5)> :

where § = argmax;e a»- f(¢(5)) and f is computed at l;bﬁ

Figure 2: The belief reachability tree. The circles are belief points
while squares depict branchings based on actions. Addition of per-
ception actions leads to combinatorial expansion of number of belief
points in each layer.

Based on the derivation in (11), we develop the BackUp
step detailed in Algorithm 3 to compute the new set of o vec-
tors from the previous ones using Bellman backup operation.
What distinguishes this algorithm from conventional Bellman
backup step is the inclusion of perception actions. Basically,
we need to compute the greedy perception action for each be-
lief point and each action (Line 7). This in turn affects com-
putation of Ff’ﬁ "“ as it represents a different set for each be-
lief point (Lines 9-13). However, notice that this added com-
plexity is significantly lower than concatenating the combina-
torial perception actions with the planning actions and using
conventional point-based solvers. See [Ghasemi and Topcu,
2019] for detailed complexity analysis.

Algorithm 3 BackUp step for AP>-POMDP

1: Input: AP2-POMDP P = (S, A, k,T,9Q,0, R, ), Cur-
rent set of belief points By, Current set of o vectors I';_.

2: Qutput: Next set of « vectors I'y.

3: Initialize Iy = 0, T?% = () forall b € B, and 3 € AP

4: for B € APl do

5. TP« af*(s) = R(s, )

6: forbec B, do

7: 0 = Greedy_argmax; 4, f((0))

8: rhe — g B

9: forw e Q;, x ... xQ,,,i; € ((0)do

10: foraeI'y_; do

11: ab’ﬂ’w(s) =7 ZS’GS Hijec(z?)
Oi(s', B,w" )T(s, B,5")o(s")

12: LoPw  ThPwy gbfew

13: end for

14: end for

15: abB = of* —|—ZMEQ x0,, ATGMAX, cpbsw Q- b
i EC(é)

16: 28 by abh

17:  end for

18: end for

19: for b € B; do

200 ab= AGMAX b, ge gp O 0
21 Iy=T,uab

22: end for

23: return I';.

2375



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

L B B BB
SLIL N I IO B B —
i:j ] |
[ 11-T11 =L H-
1 2 3 4 n—1n - o
(a) 1-D grid i NN

(b) 2-D grid

Figure 3: The robot moves in a grid while communicating with the
cameras to localize itself. The accuracy of cameras’ measurements
depends on their distance from a state. The robot’s objective is to
reach the goal state, labeled by star, while avoiding the obstacles.

5 Simulation Results

To evaluate the proposed algorithm for active perception and
planning, we implement the point-based value iteration solver
for AP>-POMDPs. We initialize the belief set by uniform
sampling from Ap [Devroye, 1986]. To focus on the effect
of perception, we keep the belief set fixed throughout the it-
erations. However, one can incorporate any sampling method
such as the ones proposed by Kurniawati et al. [2008], and
Smith and Simmons [2012]. The « vectors are initialized by
ﬁmin&aR(s,a).OnesﬂSD [Shani et al., 2013]. Further-
more, to speedup the solver, one can employ a randomized
backup step, as suggested by Spaan and Vlassis [2005]. The
solver terminates once the difference between value functions
in two consecutive iterations falls below a predefined thresh-
old. We also implemented a random perception policy that
selects a subset of information sources, uniformly at random,
at each backup step.

5.1 Robotic Navigation in 1-D Grid

The first scenario is similar to that of [Satsangi et al., 2018]
and models a robot that is moving in a 1-D discrete environ-
ment (Figure 3-(a)). The robot can move to adjacent cells by
its navigation actions AP! = {left,right, stop}. The robot’s
transitions are probabilistic due to possible actuation errors.
The robot does not have any sensor and it relies on a set of
cameras for localization. There is one camera at each cell
that outputs a probability distribution over the position of the
robot. To model the effect of robot’s position on the accu-
racy of cameras’ measurements, we use a binomial distribu-
tion with its mean at the cell that camera is on. The robot’s
objective is to reach n specific cell in the map. For that pur-
pose, at each time step, the robot picks a navigation action
and selects k cameras from the set of n cameras.

We evaluate the computed policy by running 1000 Monte
Carlo simulations. The robot starts at the origin and its initial
belief is uniform. Figure 4-(a) demonstrates the discounted
cumulative reward, averaged over 1000 runs, for random se-
lection of 1 and 2 cameras, and greedy selection of 1 and
2 cameras. It shows that the greedy perception policy sig-
nificantly outperforms the random perception. Figure 4-(b)
depicts the belief entropy over the time. The lower entropy
of greedy perception, compared to random perception, shows
less uncertainty of the robot when taking planning actions.

o
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Figure 4: Results of 1-D simulation for a map of size 12. Left: The
average discounted cumulative reward along its standard deviation.
Right: The average belief entropy over a time horizon of 25 steps.
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Figure 5: The frequency of visiting states when using different per-
ception methods for a 2-D map of size 5*5 according to Figure 3-(b).

5.2 Robotic Navigation in 2-D Grid

The second setting is a 2-D variant of the first scenario
(Figure 3-(b)). The navigation actions of the robot are APt =
{up, right, down, left, stop}. The rest of the setting is simi-
lar to 1-D case, except the cameras’ positions, as they are now
placed around the perimeter of the map. Also, now the robot
must avoid the obstacles in the map. The reward is 10 at the
goal state, -4 at the obstacles, and -1 in other states.

We applied the proposed solver with both random percep-
tion and greedy perception on the 2-D example. Next, we let
the robot to run for a horizon of 25 steps and terminated the
simulations once the robot reached the goal. Figure 5 illus-
trates the normalized frequency of visiting each state for each
perception algorithm. It can be seen that the policy learned by
greedy active perception leads to better obstacle avoidance.
See [Ghasemi and Topcu, 2019] for further results.

6 Conclusion

We introduced AP?-POMDPs as a modeling framework for
joint active perception and planning in POMDPs. To tackle
the computational challenge of adding perception actions, we
proposed a greedy scheme for observation selection that aims
to minimize the state uncertainty. Founded upon the theoret-
ical guarantee of greedy active perception, we developed and
empirically evaluated a point-based value iteration solver for
AP?-POMDPs. The idea introduced in the solver to address
active perception is general and can be applied to state-of-the-
art point-based solvers.
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