
Using Natural Language for
Reward Shaping in Reinforcement Learning

Prasoon Goyal , Scott Niekum and Raymond J. Mooney
The University of Texas at Austin

{pgoyal, sniekum, mooney}@cs.utexas.edu

Abstract
Recent reinforcement learning (RL) approaches
have shown strong performance in complex do-
mains such as Atari games, but are often highly
sample inefficient. A common approach to re-
duce interaction time with the environment is to
use reward shaping, which involves carefully de-
signing reward functions that provide the agent in-
termediate rewards for progress towards the goal.
However, designing appropriate shaping rewards is
known to be difficult as well as time-consuming. In
this work, we address this problem by using natural
language instructions to perform reward shaping.
We propose the LanguagE-Action Reward Network
(LEARN), a framework that maps free-form nat-
ural language instructions to intermediate rewards
based on actions taken by the agent. These inter-
mediate language-based rewards can seamlessly be
integrated into any standard reinforcement learn-
ing algorithm. We experiment with Montezuma’s
Revenge from the Atari Learning Environment, a
popular benchmark in RL. Our experiments on a
diverse set of 15 tasks demonstrate that, for the
same number of interactions with the environment,
language-based rewards lead to successful comple-
tion of the task 60% more often on average, com-
pared to learning without language.

1 Introduction
Reinforcement learning (RL) has enjoyed much recent suc-
cess in domains ranging from game-playing to real robotics
tasks. However, to make reinforcement learning useful for
large-scale real-world applications, it is critical to be able
to design reward functions that accurately and efficiently de-
scribe tasks. For the sake of simplicity, a common strategy is
to provide the agent with sparse rewards—for example, posi-
tive reward upon reaching a goal state, and zero reward other-
wise. However, it is well-known that learning is often difficult
and slow in sparse reward settings [Večerı́k et al., 2017]. By
contrast, dense rewards can be easier to learn from, but are

Supplementary material link: https://arxiv.org/abs/1903.02020

Figure 1: An agent exploring randomly to complete the task de-
scribed by the blue trajectory may need considerable amount of time
to learn the behavior. By giving natural language instructions like
“Jump over the skull while going to the left”, we can give interme-
diate signals to the agent for faster learning.

significantly more difficult to specify. In this work, we ad-
dress this issue by using natural language to provide dense
rewards to RL agents in a manner that is easy to specify.

Consider the scenario in Figure 1 from the Atari game
Montezuma’s Revenge. Suppose we want the agent to go to
the left while jumping over the skull (as shown in the blue
trajectory). If the agent is given a positive reward only when
it reaches the end of the desired trajectory, it may need to
spend a significant amount of time exploring the environment
to learn that behavior. Giving the agent intermediate rewards
for progress towards the goal can help, a technique known
as “reward shaping” [Ng et al., 1999]. However, designing
intermediate rewards is hard, particularly for non-experts.

Instead, we propose giving the agent intermediate rewards
using instructions in natural language. For instance, the agent
can be given the following instruction:“Jump over the skull
while going to the left” to provide intermediate rewards that
accelerate learning. Since natural language instructions can
easily be provided even by non-experts, it will enable them to
teach RL agents new skills more conveniently.

The main contribution of this work is a new framework
which takes arbitrary natural language instruction and the tra-
jectory executed by the agent so far, and makes a prediction

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2385

whether the agent is following the instruction, which can then
be used as an intermediate reward. Our experiments show that
by using such reward functions, we can speed up learning in
sparse reward settings by guiding the exploration of the agent.

Using arbitrary natural language statements within rein-
forcement learning presents several challenges. First, a map-
ping between language and objects/actions must implicitly or
explicitly be learned, a problem known as symbol grounding
[Harnad, 1990]. For example, to make use of the instruction,
“Jump over the snake”, the system must be able to ground
“snake” to appropriate pixels in the current state (assuming
the state is represented as an image) and “jump” to the appro-
priate action in the action space. Second, natural language
instructions are often incomplete. For instance, it is possible
that the agent is not directly next to the snake and must walk
towards it before jumping. Third, natural language inherently
involves ambiguity and variation. This could be due to differ-
ent ways of referring to the objects/actions (e.g. “jump” vs.
“hop”), different amounts of information in the instructions
(e.g. “Jump over the snake” vs. “Climb down the ladder after
jumping over the snake”), or the level of abstraction at which
the instructions are given (e.g. a high-level subgoal: “Collect
the key” vs. low-level instructions: “Jump over the obstacle.
Climb up the ladder and jump to collect the key.”)

Once an instruction has been interpreted, we incorporate
it into the RL system as an additional reward (as opposed to
other options like defining a distribution over actions), since
modifying the reward function allows using any standard RL
algorithm for policy optimization. We evaluate our approach
on Montezuma’s Revenge, a challenging game in the Atari
domain [Bellemare et al., 2013], demonstrating that it effec-
tively uses linguistic instructions to significantly speed learn-
ing, while also being robust to variation in instructions.

2 Overview of the Approach
A Markov Decision Process (MDP) can be defined by the tu-
ple 〈S,A, T,R, γ〉, where S is a set of states, A is a set of
actions, T : S×A×S → [0, 1] describes transition probabil-
ities, R : S × A → R is a reward function mapping the cur-
rent state st and current action at to real-valued rewards, and
γ < 1 is a discount factor. In this work, we consider an ex-
tension of the MDP framework, defined by 〈S,A,R, T, γ, l〉,
where l ∈ L is a language command describing the intended
behavior (with L defined as the set of all possible language
commands). We denote this language-augmented MDP as
MDP+L. Given an MDP(+L), reinforcement learning can be
used to learn an optimal policy π∗ : S → A that maximizes
expected sum of rewards. We use Rext (“extrinsic”) to de-
note the MDP reward function above, to avoid confusion with
language-based rewards that we define in Section 4.

In order to find an optimal policy in an MDP+L, we use a
two-phase approach:

LanguagE-Action Reward Network (LEARN). In this
step, we train a neural network that takes paired (trajectory,
language) data from the environment and predicts if the lan-
guage describes the actions within the trajectory. To train the
network, we collect natural language instructions for trajec-
tories in the environment (Section 3).

Figure 2: Our framework consists of the standard RL module con-
taining the agent-environment loop, augmented with a LanguagE-
Action Reward Network (LEARN) module.

Language-aided RL. This step involves using RL to learn
a policy for the given MDP+L. Given the trajectory exe-
cuted by the agent so far and the language instruction, we
use LEARN to predict whether the agent is making progress
and use that prediction as a shaping reward (Section 4). Note
that since we are only modifying the reward function, this
step is agnostic to the particular choice of RL algorithm. A
schematic diagram of the approach is given in Figure 2.

3 LanguagE-Action Reward Network
3.1 Model
LEARN takes in a trajectory and a language description and
predicts whether the language describes the actions in the
trajectory. More formally, given a trajectory τ , we create
action-frequency vectors from it as follows:
1. Sample two distinct timesteps i and j (such that i < j)
from the set {1, . . . , |τ |}, where |τ | denotes the number of
timesteps in τ . Let τ [i : j] denote the segment of τ between
timesteps i and j.
2. Create an action-frequency vector f from the actions in
τ [i : j], where the dimensionality of f is equal to the number
of actions in the MDP+L, and the kth component of f is the
fraction of timesteps action k appears in τ [i : j].

Using the above process, we create a dataset of (f, l) pairs
from a given set of (τ, l) pairs. Positive examples are created
by sampling f from a given trajectory τ and using the lan-
guage description l associated with τ . Negative examples are
created by (1) sampling an action-frequency vector f from
a given trajectory τ , but choosing an alternate language de-
scription l′ sampled uniformly at random from the data ex-
cluding l, or (2) creating a random action-frequency vector
f ′ and pairing it with the language description l. These ex-
amples are used to train a neural network, as described be-
low. Thus, given a pair (f, l), the network learns to predict

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2386

Figure 3: Neural network architecture for LEARN (Section 3.1)

whether the action-frequency vector f is related to the lan-
guage description l or not.

Neural Network Details
The action-frequency vector is passed through a sequence of
fully-connected layers to get an encoded action vector with
dimension D1. To embed the natural language instruction
into a D2-dimensional vector, we experimented with three
models:
1. InferSent : In this model, we used a pretrained sen-

tence embedding model [Conneau et al., 2017], which
embeds sentences into a 4096-dimensional vector space.
The 4096-dimensional vectors were projected to D2-
dimensional vectors using a fully-connected layer. We
train only the projection layer during training, keeping the
original sentence embedding model fixed.

2. GloVe+RNN : In this model, we represent the sentence
using pretrained 50-dimensional GloVe word embeddings
[Pennington et al., 2014], and train a two-layer GRU [Cho
et al., 2014] encoder on top of it, while keeping the word
embeddings fixed. We used the mean of the output vectors
from the top layer as the encoding of the sentence. The
hidden state size of the GRUs was set to D2.

3. RNNOnly : This model is identical to Glove+RNN, ex-
cept instead of starting with pretrained GloVe vectors, we
randomly initialize the word vectors and train both the
word embeddings and the two-layer GRU encoder.
These three models trade-off prior domain knowledge with

flexibility – InferSent model starts with the knowledge of
sentence similarity and is least flexible, GloVe+RNN model
starts with word vectors and is more flexible in combin-
ing them to generate sentence embeddings, while RNNOnly
starts with no linguistic knowledge and is completely flexible
while learning word and sentence representations.

The encoded action-frequency vector and language vector
are then concatenated, and further passed through another se-
quence of fully-connected layers, each of dimension D3, fol-
lowed by a softmax layer. The final output of the network
is a probability distribution over two classes – RELATED and
UNRELATED, corresponding to whether the action-frequency
vector f can be explained by the language instruction l. Our
complete neural network architecture is shown in Figure 3.
D1, D2 and D3 were tuned using validation data.

We used backpropagation with an Adam optimizer
[Kingma and Ba, 2014] to train the above neural network for

50 epochs to minimize cross-entropy loss.

3.2 Data Collection
To collect data for training LEARN, we generate trajectories
in the environment, which may or may not be directly relevant
for the final task(s). Then, for each trajectory, we get natural
language annotations from human annotators, which are in
the form of instructions that the agent should follow to go
from the initial state of the trajectory to the final state.

In our experiments, we used 20 trajectories from the Atari
Grand Challenge dataset [Kurin et al., 2017], which contains
hundreds of crowd-sourced trajectories of human gameplays
on 5 Atari games, including Montezuma’s Revenge. The 20
trajectories we used contain a total of about 183,000 frames.
From these trajectories, we extracted 2,708 equally-spaced
clips (with overlapping frames), each three-seconds long. To
obtain language descriptions for these clips, we used Ama-
zon Mechanical Turk. Workers were shown clips from the
game and asked to provide corresponding language instruc-
tions. Each annotator was asked to provide descriptions for
6 distinct clips, while each clip was annotated by 3 people.
After minimal filtering, we obtained a total of 6,870 language
descriptions.

More details about the Amazon Mechanical Turk interface,
the filtering process and example descriptions are included in
the supplementary material.

4 Using Language-based Rewards in RL
To incorporate language information into RL, we use
LEARN’s predictions to generate intermediate rewards.
Given the sequence of actions a1, . . . , at−1 executed by the
agent until timestep t and the language instruction l associ-
ated with the given MDP+L, we create an action-frequency
vector ft, by setting the kth component of f equal to the frac-
tion of timesteps action k appears in a1, . . . , at−1. The result-
ing action-frequency vector f and the language instruction
l are passed to LEARN. Let the output probabilities corre-
sponding to classes RELATED and UNRELATED be denoted
as pR(ft) and pU (ft). Note that since l is fixed for a given
MDP+L, pR(ft) and pU (ft) are functions of only the current
action-frequency vector ft.

Intuitively, trajectories that contain actions described by
the language instruction more often will have higher values
of pR(ft), compared to other trajectories. For instance, if
the language instruction is “Jump over the skull while go-
ing to the left”, then trajectories with high frequencies corre-
sponding to the “jump” and “left” actions will be considered
more related to the language by LEARN. Therefore, we can
use these probabilities to define intermediate language-based
rewards. These intermediate rewards will enable the agent
to explore more systematically, by choosing relevant actions
more often than irrelevant actions.

To map the probabilities to language-based shaping re-
wards, we define a potential function for the current timestep
as φ(ft) = pR(ft) − pU (ft). The intermediate language-
based reward is then defined as Rlang(ft) = γ · φ(ft) −
φ(ft−1), where γ is the discount factor for the MDP+L. We
show in the supplementary material that a policy that is opti-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2387

mal under the original reward function (Rext) is also optimal
under the new reward function (Rext +Rlang).

5 Experimental Evaluation
To validate the effectiveness of our approach, we conducted
experiments on the Atari game Montezuma’s Revenge. The
game involves controlling an agent to navigate around multi-
ple rooms. There are several types of objects within the rooms
– (1) ladders, ropes, doors, etc. that can be used to navigate
within a room, (2) enemy objects (such as skulls and crabs)
that the agent needs to escape from, (3) keys, daggers, etc.
that can be collected. A screenshot from the game is included
in Figure 1. We selected this game because the rich set of
objects and interactions allows for a wide variety of natural
language descriptions.

The first step involved collecting (trajectory, language)
pairs in the game as described in Section 3.2. The (trajec-
tory, language) pairs were split into training and validation
sets, such that there is no overlap between the frames in the
training set and the validation set. In particular, Level 1 of
Montezuma’s revenge consists of 24 rooms, of which we use
14 for training, and the remaining 10 for validation and test-
ing. The set of objects in both training and validation/test set
are the same, but each room has only a subset of these objects
arranged in different layouts. We create a training dataset
with 160,000 (action-frequency vector, language) pairs from
the training set, and a validation dataset with 40,000 pairs
from the validation set, which were used to train LEARN.

We define a set of 15 diverse tasks in multiple rooms, each
of which requires the agent to go from a fixed start position
to a fixed goal position while interacting with some of the
objects present in the path.1 For each task, the agent gets an
extrinsic reward of +1 from the environment for reaching the
goal, and an extrinsic reward of zero in all other cases.

For each of the tasks, we generate a reference trajectory,
and use Amazon Mechanical Turk to obtain 3 descriptions
for the trajectory. We use each of these descriptions as lan-
guage commands in our MDP+L experiments, as described
below. Note that we do not use the reference trajectories to
aid learning the policy in MDP+L; they are only used to col-
lect language commands to be used in our experiments.

We use Proximal Policy Optimization, a popular on-policy
RL algorithm [Schulman et al., 2017]. We train the policy for
500,000 timesteps for all our experiments.

5.1 How Much Does Language Help?
We experiment with 2 different RL setups to evaluate how
much using language-based rewards help:

1. ExtOnly: In this setup, we use the original environment
reward, without using language-based reward. This is the
standard MDP setup, and serves as our baseline.

2. Ext+Lang: In this setup, in addition to the original envi-
ronment reward that the agent gets on completing the task

1Although the tasks (and corresponding descriptions) involve in-
teractions with objects, we observe that just using actions, as we
do in our approach, already gives improvements over the baseline,
likely because most objects can be interacted with only in one way.

Figure 4: Comparison of different reward functions: The solid lines
represent the mean successful episodes averaged over all tasks, and
the shaded regions represent 95% confidence intervals.

successfully, we also provide the agent potential-based
language reward Rlang at each step, as described in Sec-
tion 4.

We use the following metrics:

1. AUC: From each policy training run, we plot a graph with
the number of timesteps on the x-axis and the number of
successful episodes on the y-axis. The area under this
curve is a measure of how quickly the agent learns, and
is the metric we use to compare two policy training runs.

2. Final Policy: To compare the final learned policy with
ExtOnly and Ext+Lang, we perform policy evaluation at
the end of 500,000 training steps. For each policy training
run, we use the learned policy for an additional 10,000
timesteps without updating it, and record the number of
successful episodes.

For the Ext+Lang setup, we perform validation over the
three types of language encoders described in Section 4 (In-
ferSent / GloVe+RNN / RNNOnly). For each type of lan-
guage encoder, we use the LEARN model with the best ac-
curacy on the validation data. Further, we define the joint
reward function as Rtotal = Rext+λRlang . The type of lan-
guage encoder and the hyperparameter λ are selected using
validation as follows. We treat each task as the test task in
turn, using the remaining 14 tasks to find the best language
encoder and λ. For each setting of the hyperparameters, we
run policy training on all the validation tasks and each of the
3 descriptions, and compute AUC for each run. Since AUCs
across tasks differ by orders of magnitude (due to varying task
difficulties), we aggregate the scores across tasks as follows
– for each validation task, we compute a rank for each set-
ting of the hyperparameters based on AUC, and then for each
setting of the hyperparameters, we compute its average rank
across the validation tasks. The setting with the best average
rank is used for the test task.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2388

Results
At test time, we performed 10 policy learning runs with
different initializations for each task and each description.
The results, averaged across all tasks and descriptions, are
summarized in Figure 4, from which we can conclude that
Ext+Lang learns much faster than ExtOnly, demonstrating
that using natural language instructions for reward shaping
is effective. In particular, the average number of successful
episodes for ExtOnly after 500,000 timesteps is 903.12, while
Ext+Lang achieves that score only after 358,464 timesteps,
which amounts to a 30% speed-up. Alternately, after 500,000
timesteps, Ext+Lang completes 1529.43 episodes on average,
compared to 903.12 for ExtOnly, thereby giving a 60% rela-
tive improvement.

For each task, we perform an unpaired t-test between 10
runs of policy training with random initializations using Ex-
tOnly reward function and 30 runs of policy training with
random initializations using Ext+Lang reward function (3 de-
scriptions × 10 runs per description), for both metrics.

1. AUC: Of the total 15 tasks, Ext+Lang gives statistically
significant improvement in 11 tasks, leads to statistically
significant deterioration in 1 task, and makes no statisti-
cal difference in the remaining 3 tasks. This agrees with
the conclusions from Figure 4, that using language-based
reward improves the efficiency of policy training on aver-
age.

2. Final Policy: We observe that the number of successful
episodes for the final policies is statistically significantly
greater for Ext+Lang compared to ExtOnly in 8 out of 15
tasks, while the difference is not significant in the remain-
ing 7 tasks. Further, averaged across all tasks, the number
of successful episodes is more than twice with Ext+Lang
compared to ExtOnly. These results suggests that using
natural language for reward shaping often helps learn a
better final policy, and rarely (if ever) results in a worse
policy.

5.2 Analysis of Language-based Rewards
In order to analyze if the language-based rewards generated
from LEARN actually correlate with language descriptions
for the task, we compute the Spearman’s rank correlation
coefficient between each component of the action-frequency
vector and corresponding prediction from LEARN over the
500,000 timesteps of policy training. Correlation coefficients
averaged across 10 runs of policy training for some selected
tasks are reported in Table 1. Figure 5 shows the policy train-
ing curves for these selected tasks. This analysis supports
some interesting observations:

1. For task 4 with simple descriptions, only the DOWN ac-
tion is positively correlated with language-based reward.
All other actions have a strong negative correlation with
language-based reward, suggesting that the proposed ap-
proach discourages those actions, thereby aiding explo-
ration.

2. For task 6 with more complex descriptions, LEARN cor-
rectly predicts language rewards to be correlated with ac-
tions LEFT and DOWN. For the third description, since the

description does not instruct going down, the language re-
ward is negatively correlated with the DOWN action. In-
deed, we notice in our experiments that we obtain statisti-
cally significant improvement in AUC for the first two de-
scriptions, while no statistically significant difference for
the third description.

3. Task 14 represents a failure case. Language rewards pre-
dicted by LEARN are not well-correlated with the descrip-
tion, and consequently, using language-based rewards re-
sults in statistically significant deterioration in AUC. In
general, we observe that groundings produced by LEARN
for descriptions involving the word “jump” are noisy. We
hypothesize that this is because (i) the JUMP action typ-
ically appears with other actions like LEFT and RIGHT,
and (ii) humans would typically use similar words to refer
to JUMP, JUMP-LEFT and JUMP-RIGHT actions. These
factors make it harder for the network to learn correct as-
sociations.
Note that LEARN does not see action names used in Ta-

ble 1 (NO-OP, JUMP, etc.); instead, actions are represented
as ordinals from 0 through 17. Thus, we see that our ap-
proach successfully learns to ground action names to actions
in the environment.2

6 Related Work
Prior work on combining RL and natural language can be
divided into two classes. The first class uses reinforcement
learning to solve NLP tasks, such as summarization [Paulus
et al., 2017], question-answering [Xiong et al., 2017] and di-
alog generation [Li et al., 2016]. The second class, in which
our approach lies, uses natural language to aid RL.

Regarding methods that use NLP to help RL, some re-
cent approaches map natural language to a reward function.
[Williams et al., 2017] and [Arumugam et al., 2017] map lan-
guage to a reward function in an object-oriented MDP frame-
work. However, these approaches use a predefined set of ob-
jects, object properties and spatial relations, and/or use simple
language-based features, which is difficult to scale to more
complex environments and instructions. Our approach, on
the other hand, learns to ground natural language concepts to
actions directly from data.

[Misra et al., 2017] use natural language to describe the
goal, which is combined with the state information to learn
a policy in contextual bandit setting. However, they use dis-
tance from the goal and from reference trajectories for reward
shaping. [Kuhlmann et al., 2004] map natural language to a
set of rules which are then used to increase or decrease the
probability of choosing an action during reinforcement learn-
ing. Extending this to complex environments would require
engineering how each rule affects the probabilities of differ-
ent actions. Our approach, on the other hand, uses the natural
language instruction itself for reward shaping, directly gener-
ating rewards from language, thereby reducing human effort.

[Branavan et al., 2012b] extract features from natural lan-
guage instructions, and incorporate them into the action-value

2While there are a total of 18 actions, we only report the most
common 8 actions in Table 1 for brevity. The omitted 10 actions
jointly constitute less that 1% of the actions in the training data.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2389

Task Id Description Correlation coefficients of different actions

NO-OP JUMP UP RIGHT LEFT DOWN
JUMP-
RIGHT

JUMP-
LEFT

4
climb down the ladder -0.60 -0.58 -0.59 -0.61 -0.55 0.07 -0.57 -0.56
go down the ladder to the bottom -0.58 -0.58 -0.58 -0.60 -0.53 0.09 -0.59 -0.60
move on spider and down on the lader -0.58 -0.54 -0.59 -0.60 -0.49 0.10 -0.58 -0.56

6
go to the left and go under skulls and then down the ladder -0.37 -0.40 -0.49 -0.43 0.33 0.16 -0.46 -0.01
go to the left and then go down the ladder -0.24 -0.26 -0.35 -0.31 0.28 0.36 -0.34 -0.04
move to the left and go under the skulls -0.16 -0.25 -0.60 -0.48 0.27 -0.63 -0.52 -0.40

14
Jump once then down 0.00 0.07 -0.15 -0.13 0.51 0.50 0.09 0.52
go down the rope and to the bottom -0.03 0.10 -0.16 0.56 0.54 0.33 0.28 0.01
jump once and climb down the stick 0.11 0.11 0.06 0.04 0.14 0.40 0.25 0.11

Table 1: Analysis of language-based rewards

Figure 5: Comparisons of different reward functions for selected tasks

function. More recently, [Bahdanau et al., 2018] proposed
an adversarial learning framework wherein a discriminator
distinguishes between a fixed set of good (instruction, state)
pairs and (instruction, state) pairs generated by the current
policy, and this is used as a reward function to simultane-
ously improve the policy. A key difference between these
approaches and our approach is that they learn linguistic fea-
tures jointly during reinforcement learning, while we learn to
map language to a reward function offline, which could be
beneficial if interaction with the environment is expensive.
However, our approach requires pairs of trajectories and nat-
ural language instructions for offline training.

[Branavan et al., 2012a] and [Kaplan et al., 2017] use natu-
ral language to do high-level planning. These approaches are
orthogonal to our work, in that these approaches can be used
to generate subgoals at a high-level, whereas our approach
can be used to make exploration faster at a lower-level.

Finally, our model is related to that in [Wang et al., 2018],
which also uses intermediate language-based rewards in RL.
However, their goal is to use RL to improve natural language
instruction-following, while our focus is on the reverse prob-
lem of using instructions to improve RL performance.

7 Conclusions and Future Work
We propose LanguagE Action Reward Network (LEARN), a
framework trained on paired (trajectory, language) data in an
environment to predict if the actions in a trajectory match the
language description. The outputs of the network are used
to generate intermediate rewards for reinforcement learning.
We show in our experiments that these language-based re-
wards can be used to train faster and learn a better policy for

sparse reward settings. Further, since the modality by which
information is given to the agent is natural language, this ap-
proach can potentially be used even by non-experts to specify
tasks to RL agents.

While our approach achieves promising improvements
over the baseline, there are several possible extensions:
1. Temporal ordering: Our approach aggregates the se-

quence of past actions into an action-frequency vector,
thereby losing temporal information. Therefore a possi-
ble extension is to look at the complete action sequences.

2. State-based rewards: Currently, the language-based re-
ward is a function of only the past actions. As such, the
model cannot utilize natural language descriptions that re-
fer to objects in the state (e.g. “Go towards the ladder”,
“avoid the skulls”.) Modelling the language-based reward
as a function of both the past states and actions should al-
low the agent to benefit from such language descriptions.

3. Multi-step instructions: The current approach only han-
dles a single instruction. One way to handle multiple in-
structions is to have another module (trained / heuristic-
based) to predict if a language instruction has been com-
pleted or not. This could then be used in conjunction with
our current approach, where the agent starts following the
first instruction, and transitions to the next one when this
new module predicts that the current instruction has been
completed.

Acknowledgements
This work was partially supported by an NSF NRI grant (IIS-
1637736) and an Amazon Research Award.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2390

References
[Arumugam et al., 2017] Dilip Arumugam, Siddharth

Karamcheti, Nakul Gopalan, Lawson LS Wong, and
Stefanie Tellex. Accurately and efficiently interpreting
human-robot instructions of varying granularities. arXiv
preprint arXiv:1704.06616, 2017.

[Bahdanau et al., 2018] Dzmitry Bahdanau, Felix Hill, Jan
Leike, Edward Hughes, Pushmeet Kohli, and Edward
Grefenstette. Learning to follow language instruc-
tions with adversarial reward induction. arXiv preprint
arXiv:1806.01946, 2018.

[Bellemare et al., 2013] Marc G Bellemare, Yavar Naddaf,
Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47:253–279,
2013.

[Branavan et al., 2012a] SRK Branavan, Nate Kushman, Tao
Lei, and Regina Barzilay. Learning high-level planning
from text. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics: Long
Papers-Volume 1, pages 126–135. Association for Com-
putational Linguistics, 2012.

[Branavan et al., 2012b] SRK Branavan, David Silver, and
Regina Barzilay. Learning to win by reading manuals in a
monte-carlo framework. Journal of Artificial Intelligence
Research, 43:661–704, 2012.

[Cho et al., 2014] Kyunghyun Cho, Bart Van Merriënboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078,
2014.

[Conneau et al., 2017] Alexis Conneau, Douwe Kiela, Hol-
ger Schwenk, Loı̈c Barrault, and Antoine Bordes. Su-
pervised learning of universal sentence representations
from natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 670–680, Copenhagen, Den-
mark, September 2017. Association for Computational
Linguistics.

[Harnad, 1990] Stevan Harnad. The symbol grounding prob-
lem. Physica D: Nonlinear Phenomena, 42(1-3):335–346,
1990.

[Kaplan et al., 2017] Russell Kaplan, Christopher Sauer,
and Alexander Sosa. Beating atari with natural lan-
guage guided reinforcement learning. arXiv preprint
arXiv:1704.05539, 2017.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Kostrikov, 2018] Ilya Kostrikov. Pytorch implementations
of reinforcement learning algorithms. https://github.com/
ikostrikov/pytorch-a2c-ppo-acktr, 2018.

[Kuhlmann et al., 2004] Gregory Kuhlmann, Peter Stone,
Raymond Mooney, and Jude Shavlik. Guiding a reinforce-
ment learner with natural language advice: Initial results
in robocup soccer. In The AAAI-2004 workshop on super-
visory control of learning and adaptive systems. San Jose,
CA, 2004.

[Kurin et al., 2017] Vitaly Kurin, Sebastian Nowozin, Katja
Hofmann, Lucas Beyer, and Bastian Leibe. The atari grand
challenge dataset. arXiv preprint arXiv:1705.10998, 2017.

[Li et al., 2016] Jiwei Li, Will Monroe, Alan Ritter, Michel
Galley, Jianfeng Gao, and Dan Jurafsky. Deep reinforce-
ment learning for dialogue generation. arXiv preprint
arXiv:1606.01541, 2016.

[Misra et al., 2017] Dipendra Misra, John Langford, and
Yoav Artzi. Mapping instructions and visual observations
to actions with reinforcement learning. arXiv preprint
arXiv:1704.08795, 2017.

[Ng et al., 1999] Andrew Y Ng, Daishi Harada, and Stuart
Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In ICML, vol-
ume 99, pages 278–287, 1999.

[Paulus et al., 2017] Romain Paulus, Caiming Xiong, and
Richard Socher. A deep reinforced model for abstractive
summarization. arXiv preprint arXiv:1705.04304, 2017.

[Pennington et al., 2014] Jeffrey Pennington, Richard
Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014
conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[Večerı́k et al., 2017] Matej Večerı́k, Todd Hester, Jonathan
Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas
Heess, Thomas Rothörl, Thomas Lampe, and Martin Ried-
miller. Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards. arXiv
preprint arXiv:1707.08817, 2017.

[Wang et al., 2018] Xin Wang, Qiuyuan Huang, Asli Ce-
likyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang
Wang, William Yang Wang, and Lei Zhang. Rein-
forced cross-modal matching and self-supervised imitation
learning for vision-language navigation. arXiv preprint
arXiv:1811.10092, 2018.

[Williams et al., 2017] Edward C Williams, Mina Rhee,
Nakul Gopalan, and Stefanie Tellex. Learning to parse
natural language to grounded reward functions with weak
supervision. In AAAI Fall Symposium on Natural Commu-
nication for Human-Robot Collaboration, 2017.

[Xiong et al., 2017] Caiming Xiong, Victor Zhong, and
Richard Socher. Dcn+: Mixed objective and deep resid-
ual coattention for question answering. arXiv preprint
arXiv:1711.00106, 2017.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2391

