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Abstract
Recent years have seen advances in optimizing large
scale statistical estimation problems. In statistical
learning settings iterative optimization algorithms
have been shown to enjoy geometric convergence.
While powerful, such results only hold for the origi-
nal dataset, and may face computational challenges
when the sample size is large. In this paper, we study
sketched iterative algorithms, in particular sketched-
PGD (projected gradient descent) and sketched-
SVRG (stochastic variance reduced gradient) for
structured generalized linear model, and illustrate
that these methods continue to have geometric con-
vergence to the statistical error under suitable as-
sumptions. Moreover, the sketching dimension is
allowed to be even smaller than the ambient dimen-
sion, thus can lead to significant speed-ups. The
sketched iterative algorithms introduced provide an
additional dimension to study the trade-offs between
statistical accuracy and time.

1 Introduction
In this paper, we consider algorithms for efficiently learning
generalized linear models (GLMs) of the form:

yi|xi ∼ P(yi|xTi θ∗), (1)

where xi ∈ Rp is a data point, yi ∈ R is the response, and
θ∗ ∈ Rp is the structured parameter that we want to learn. For
example, in linear regression yi = xTi θ

∗+wi, where wi is the
noise; in logistic regression yi ∈ {−1,+1} and P(yi|xTi θ∗) =

1

1+e−yix
T
i
θ∗ . θ∗ can be sparse, low rank, etc [Tibshirani, 1996;

Recht et al., 2010]. Estimators for θ∗ can be posed as the
following constrained problem [Oymak et al., 2018]

min
R(θ)≤λ

Ln(θ) =
1

n

n∑
i=1

l(xTi θ; yi), (2)

where l : R × R → R is the loss function, and is a function
of xTi θ and yi, e.g., in linear regression, l(ŷ; y) is the square
loss 1

2 (y − ŷ)2, in logistic regression, l(ŷ; y) is the logistic
loss log(1 + e−yŷ), etc., n is the sample size, and R(.) is a
suitable norm inducing structures in θ [Banerjee et al., 2014;

Negahban et al., 2012], e.g., sparsity can be induced by L1

norm or k-support norm [Tibshirani, 1996; Argyriou et al.,
2012], low-rank can be induced by nuclear norm [Recht et al.,
2010], etc. In this paper, we set λ = R(θ∗).

In modern machine learning, problems like (2) are con-
fronted with extremely large datasets, i.e., sample size n is
large. Dealing with such large datasets brings about several
computational challenges, including large per iteration com-
plexity for methods like gradient descent and memory manage-
ment challenges for most methods. In this work, inspired by
sketching [Woodruff, 2014], a powerful technique for sample
size reduction based on random projection, we propose the
sketched version of two standard iterative methods, projected
gradient descent (PGD) and stochastic variance reduced gradi-
ent (SVRG). Since sketching of the data happens once upfront,
the iterative algorithms work with a dataset of much smaller
effective size.

In this work, we reduce the computation of GLMs while
keeping the structure of parameters. For statistical estimation
problem (2), at each iteration of PGD and each stage of SVRG,
we need to do matrix vector multiplication, and sketching
reduces the per iteration time complexity. We show that PGD
and SVRG will reach a solution θ̂ such that ‖θ̂ − θ∗‖2 ≤
C
n

∥∥∥[ ∂∂ŷ l(xTi θ∗; yi)]n
i=1

∥∥∥
2
, for constant C > 0. We have two

main contributions. First, we present novel sketched iterative
algorithms S-PGD and S-SVRG for general loss function
of form (2). Our algorithms combine iterative algorithms
and sketching. For arbitrary δ > 0, if we choose sketching
dimension m ≥ c

δ2 for constant c > 0 , then the approximate
solution θ̂ of our algorithms satisfies

‖θ̂ − θ∗‖2 ≤
1√
n

(
C1δ +

C2√
n

)∥∥∥∥[ ∂∂ŷ l(xTi θ∗; yi)
]n
i=1

∥∥∥∥
2

,

for positive constants C1 and C2. Term
‖( ∂∂ŷ l(x

T
i θ
∗; yi))

n
i=1‖2 is related to the estimation er-

ror of model (1). Different choices of δ determine the
accuracy of our approximation. In the literature, progress
have been made in applying sketching to least squares
[Woodruff, 2014]. However, sketching methods for general
optimization problems are limited [Tang et al., 2017;
Pilanci and Wainwright, 2016]. [Pilanci and Wainwright,
2017] requires approximating the Hessian of program objec-
tive function using sketching in every iteration, which can be
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computationally expensive . Our algorithms approximate the
gradient, which effectively alleviate the computational burden
for large-scale problems. To the best of our knowledge, it is
the first sketched first-order algorithm for GLMs.

Our second main contribution is to establish the theoreti-
cal convergence rates of the proposed sketched algorithms,
and experiments on synthetic date to illustrate the theoreti-
cal results. We characterize the convergence rates of both
S-PGD and S-SVRG, with suitable modifications to standard
SVRG. Our results hold for any norm R(.). We show that
for sketched algorithms, sketching dimension m is a key fac-
tor that determines the tradeoff between computational time
and approximation accuracy. We analyze both S-PGD and
S-SVRG for constrained least squares and S-PGD for general
GLMs. We show that as long as a statistical condition called
restricted strong convexity holds, geometric convergence rate
can be established even when m < p.

The rest of paper is organized as follows. We first review
the relevant background and related works in Section 2. We
propose our algorithms in Section 3. In Section 4, we discuss
convergence of S-PGD and S-SVRG for constrained least
squares. In Section 5, we extend our convergence results to
general loss function. In Section 6, we compare our algorithm
with SGD. We show our algorithms’ experimental results and
conclude in Section 7 and 8 respectively.

Notations: Throughout this paper, we denote l′(ŷ; y) =
∂
∂ŷ l(ŷ; y) and l′′(ŷ; y) = ∂2

∂ŷ2 l(ŷ; y), matrix X =

[x1, . . . , xn]T the stack up of all data points, vector
dn(θ) = [l′(xT1 θ; y1) . . . l′(xTnθ; yn)]T the first order
derivatives of all loss functions, and vector d

(2)
n (θ) =

[l′′(xT1 θ; y1) . . . l′′(xTnθ; yn)]T the second order derivatives
of all loss functions. For a given positive integer n, denote
[n] = {1, . . . , n}. We use In as the n× n identity matrix. We
denote Bn a unit ball and Sn−1 a unit sphere in Rn.

2 Background and Related Work
2.1 Projected Gradient Descent (PGD)
One efficient first order algorithm for problem (2) is the pro-
jected gradient descent (PGD) [Bertsekas, 2010]. Each step of
PGD is given by

θt+1 = PK(θt − η∇Ln(θt)), (3)
where η is the learning rate, PK(.) is the projection oper-

ator such that PK(z) = argminy∈K ‖y − z‖22, and K is the
constraint set K = {θ : R(θ) ≤ λ}. The computation of PGD
includes a gradient update and a projection onto feasible set.

2.2 Stochastic Variance Reduction Gradient
(SVRG)

If sample size of problem (2) is large, then a popular mod-
ification of PGD is stochastic variance reduction gradient
(SVRG) [Johnson and Zhang, 2013; Schmidt et al., 2017;
Defazio et al., 2014]. Each outer iteration or stage s of SVRG
maintains an estimation of solution to (2) θs, and a full gradi-
ent at θs denoted by µs = ∇Ln(θs). An inner iteration t+ 1
is given by the following rule
θst+1 = PK(θt−η(∇θl(xTi θst ; yi)−∇θl(xTi θs; yi)+µs), (4)

where index i is drawn uniformly from [n].

2.3 Sub-Gaussian Sketch (SGS)
Given matrices A ∈ Rn×p and B ∈ Rn×q, the time com-
plexity of matrix product ATB is O(pqn). Sketching approx-
imates ATB by first sampling a random matrix S ∈ Rm×n
with m < n, and then computing SA and SB. Computing the
production (SA)T (SB) requires only O(pqm).

We say S is a σ-sub-Gaussian random matrix [Vershynin,
2012] if each row of S is an i.i.d. copy of a random vec-

tor x, which satisfies supu∈Sn−1 P (|〈u, x〉| ≥ t) ≤ 2e−
nt2

2σ2 .
One example of sub-Gaussian random matrix is the Gaussian
random matrix, whose each entry is an i.i.d. sample from
standard Gaussian distribution. Sub-Gaussian sketch takes
O(mn(p+ q)) basic operations to compute sketched matrices
SA and SB. In this paper, we assume ESTS = In.

2.4 Random Orthogonal Sketch (ROS)
In order to construct sketched matrices faster, we consider
random orthogonal sketch [Pilanci and Wainwright, 2015].
Let S =

√
n
mP ·H ·D, where H ∈ Rn×n is an orthonormal

matrix, P ∈ Rm×n samplesm coordinates of Rn uniformly at
random, andD ∈ Rn×n is a diagonal re-randomization matrix
of Rademacher random variables. One commonly used ROS
is random Hadamard sketch (RHS) [Ailon and Liberty, 2008].
H is called a Hadamard matrix if Hi,j ∈ {− 1√

n
, 1√

n
}. For

any x ∈ Rn the mapping Hx can be computed in O(n log n).
RHS takes O(n(p+ q) log(m)) basic operations to compute
sketched matrices SA and SB.

2.5 Gaussian Width
In this paper, both optimization and statistical results are de-
scribed in terms of a geometric measure called Gaussian width
[Banerjee et al., 2014; Vershynin, 2015; Chandrasekaran et al.,
2012]. For any set A ∈ Rp, Gaussian width w(A) measures
the complexity of A, and it is defined as

w(A) = E supu∈A〈u, g〉, (5)

where g ∼ N (0, In) is a standard Gaussian random vector.

2.6 Related Work
Let the minimizer of problem (2) be θ′. Statistical guaran-
tees and computational methods for (2) has been extensively
studied. From statistical perspective, much progress has been
made in the regime p� n. [Chandrasekaran et al., 2012] ana-
lyzed exact recovery guarantee of atomic norm minimization
linear inverse problem in noiseless setting, under restricted
strong convexity (RSC) condition [Raskutti et al., 2010]. In
noisy setting, [Negahban et al., 2012] established a bound of
estimation error ‖θ′ − θ∗‖2 for decomposable norm regular-
ized problem; [Banerjee et al., 2014] analyzed general norm
regularized estimator using Gaussian width [Vershynin, 2015].

From the computational perspective, two key ideas have
been explored in recent works. Firstly, randomized optimiza-
tion algorithm has been investigated to reduce computation
and storage of large scale problems. One line of research is ran-
dom projection technique including importance sampling [Ma-
honey, 2011], sub-Gaussian sketch [Pilanci and Wainwright,
2015], fast Johnson-Lindenstrauss transforms [Ailon and Lib-
erty, 2008], and dimensionality reduction [Zhang et al., 2013;
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Algorithm 1: Sketched Projected Gradient Descent
(S-PGD)

Inputs: X ∈ Rn×p.
Initialize: θ0 = 0.
Generate a random matrix S ∈ Rm×n
Let X̂ = SX
for t = 0, 1, . . . , T do
θt+1 = PK(θt − ηX̂TS · dn(θt))

end for

Wang et al., 2017] etc.. In [Pilanci and Wainwright, 2017], a
second-order method called "Newton-sketch" was proposed,
which approximates the Hessian of objective function by
sketching. [Tang et al., 2017] extended [Pilanci and Wain-
wright, 2017] to first-order method for constrained least
squares. The other line of research is stochastic optimiza-
tion algorithms. SGD and SVRG are two popular examples
[Johnson and Zhang, 2013; Robbins and Monro, 1951].

The second key idea is to use statistical assumptions to
establish fast convergence of PGD. Two kinds of conver-
gence are considered in literature: convergence to statistical
optimum θ∗ and convergence to optimization optimum θ′.
[Agarwal et al., 2012] established convergence of PGD by
‖θt− θ′‖2 ≤ ρt‖θ0− θ′‖2 +‖θ′− θ∗‖2 . [Qu et al., 2017] ex-
tended [Agarwal et al., 2012] to SVRG. In statistical machine
learning, a more interesting problem is ‖θt− θ∗‖2. [Oymak et
al., 2018] showed that estimation error converge geometrically
to an error bound under RSC by PGD. [Li et al., 2016] showed
linear convergence of SVRG to statistical error bound with
nonconvex constrain.

3 Sketched Iterative Algorithms
In this section, we propose our sketched projected gradient
descent and sketched stochastic variance reduction gradient.

For problem (2), one step of PGD algorithm is

θt+1 = PK(θt − ηXT dn(θt)) . (6)

For problems with large sample size, the computation of
matrix-vector product XT · dn(θ) is not efficient. Given a
sketching matrix S ∈ Rm×n with m < n, we improve the
computation by using sketched matrix SX and vector Sdn(θ).
The sketched algorithm is given by 1. We can compute and
store the sketched data matrix X̂ = SX upfront and use X̂ in
every iteration of optimization algorithm, improving the per
iteration complexity. The construction of X̂ takes O(mnp)
for SGS and O(mp log n) for RHS. For each iteration, we
first construct sketched vector Sdn(θ), which requires O(mn)
for SGS and O(m log n) for RHS. Then the time complexity
of sketched matrix-vector product XTSTSdn(θ) is O(pm).
If we use RHS, then each iteration takes O(n logm + pm)
that is better than O(pn) for direct computation. We call this
algorithm sketched projected gradient descent (S-PGD), and it
is described as Algorithm 1. For the special case constrained
least squares, it is shown [Pilanci and Wainwright, 2015;
Tang et al., 2017] that S-PGD 1 finds the solution to the fol-

Algorithm 2: Sketched Stochastic Variance Reduction
Gradient (S-SVRG)

Inputs: X ∈ Rn×p.
Initialize: θ0 = 0.
Generate a random matrix S ∈ Rm×n
Let X̂ = SX
for s = 0, 1, . . . do
µs = 1

nX̂
TSdn(θs)

for t = 0, 1, . . . , T do
Randomly select i from 1, . . . ,m.
θst+1 = PK(θst + η(x̂is

T
i (dn(θt)− dn(θs) + µs))

end for
θs+1 =

∑m
t=1

1
2m+1−t θ

s
t

end for

lowing approximation problem

min
θ∈K
L̂n(θ) =

1

2n
‖ŷ − X̂θ‖22, (7)

where ŷ = Sy. One iteration of S-PGD reduces per iteration
computation from O(pn) to O(pm).

By using ideas similar to S-PGD, we propose sketched
stochastic variance reduction gradient (S-SVRG) algorithm
2 . Denote θ̄s1 = θs1, and we average all the intermediate
results by θ̄st = 1

2 θ̄
s
t−1 + 1

2θ
s
t for all 1 < t ≤ m. At last we

output θs+1 = θ̄sm. For large scale problems, S-SVRG applies
an one shot sketching, therefore less memory is required in
computation. The S-SVRG is given by Algorithm 2 .

4 Constrained Least Squares
In this section, we show the convergence of S-PGD and
S-SVRG for constrained least squares. By feasibility, the
solution of problem (2) lies in error cone C(θ∗), which is
the smallest closed cone contains set K − θ denoted as
C(θ∗) = cone(K − θ∗), In this paper, we use C short for
C(θ∗). We present both optimization and statistical results
in terms of Gaussian width w(XC ∩ Sn−1). We make the
following assumptions:

Assumption 1 (Restricted Eigenvelue (RE) Condition) There
is a κn(C) > 0 such that for all v ∈ C

1
n‖Xv‖

2
2 ≥ κn(C)‖v‖22. (8)

Assumption 2 (Boundedness (BD) Condition) There is a
Ln > 0 such that for all θ1, θ2 ∈ K,

1
n‖X(θ2 − θ1)‖22 ≤ Ln‖θ2 − θ1‖22. (9)

For constrained least squares, RE and BD conditions cor-
responds to the RSC and smoothness condition for gen-
eral loss function. In literature, the RE and BD conditions
have been comprehensively studied. [Negahban et al., 2012;
Banerjee et al., 2014] have shown that when X is a 1-sub-
Gaussian random matrix, then κn(C) ≥ 1− w2(C∩Sp−1)

n with
high probability. [Vershynin, 2012] has shown that when X is
sampled from a general distribution, then Ln = O(1 + cnp ).
We assume X satisfies both RE and BD conditions.
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4.1 Convergence of S-PGD
We give the main theoretical result of S-PGD under our as-
sumptions above. Our results precisely characterize the conver-
gence rate and statistical guarantee of S-PGD for constrained
least squares estimator .
Theorem 1 Let C = C(θ∗) and S ∈ Rm×n be a σ-sub Gaus-
sian random matrix. Let θ∗ ∈ Rp be an arbitrary vector,
and y = Xθ∗ + w. With θ0 = 0, we apply sketched PGD
update θt+1 = PK(θt + η

nX
TSTS(y − Xθt)). Let us as-

sume the RE and BD conditions hold. Set learning rate
η = cmn

Ln(
√
m+
√
n)2

, if m > w2(XC∩Sm−1)
δ2 , then with proba-

bility at least 1− 7 exp
(
−c1mδ

2

σ4

)
for some c1 > 0

‖θt+1 − θ∗‖2 ≤
(

1− m(1− δ)κn(C)
(
√
m+

√
n)2Ln

)t
‖θ∗‖2

+
1√

n(1− δ)κn
(
√
Lnδ +

1√
n
ξ(C))‖w‖2.

(10)

where ξ(C) = supu∈C∩Bn u
TXT w

‖w‖2 .
Theorem 1 shows the precise geometric convergence rate

of S-PGD under RSC condition. For sub-Gaussian noise
w, we know from literature [Banerjee et al., 2014] that
‖w‖2 = Θ(

√
n) with high probability. If we choose δ =

w(XC∩Sn−1)√
m

, then the second term on the right hand of
(10) goes to 1√

nκn
ξ(C) with the growth of m. If we also

assume X is a sub-Gaussian random matrix, then statisti-
cal error bound ξ(C) = O(w(C ∩ Bn)) and RE condition
κn(C) = Ω(1− w(C∩Sp−1)

n ) with high probability[Banerjee et
al., 2014]. Therefore, as n increases, 1√

nκn
ξ(C) goes down

to zero. The result of [Oymak et al., 2018] shows that the
convergence rate ρ(C) of PGD is 1− κn(C)

Ln
, thus S-PGD have

slower convergence rate ρ(C) due to the effect of sketching.
But each update of S-PGD can be computed more efficiently.

4.2 Convergence of S-SVRG
We characterize convergence rate for constrained least squares
using S-SVRG. Our conclusions precisely describe how
sketching impacts the convergence rate of S-SVRG and the
statistical error bound of our estimator. The convergence of
S-SVRG is presented in the following theorem:
Theorem 2 Let C = C(θ∗), S ∈ Rm×n be a σ-sub Gaussian
random matrix. Let θ∗ ∈ Rp be an arbitrary vector, and
y = Xθ∗ + w. With θ0 = 0, we apply sketched SVRG update
θst+1 = PK(θst + η(x̂ix̂

T
i (θs − θst ) − µ̂s)). Denote the i-th

row of S as si, x̂i is given by x̂i = 1√
n
XT si. Let us assume

the RE and BD conditions, and Ln
(1−δ)κn(C) ≤

3
2 hold. Set

learning rate η = 1
2Ln

, if m > w2(XC∩Sm−1)
δ2 , then starting

from θ0 = 0, with probability at least 1− 7 exp
(
−c1mδ

2

σ4

)
,

E‖θs+1 − θ∗‖22 ≤
(

7

8

)s
(
√
m+

√
n)2Ln

(1− δ̂)κn(C)
‖θ∗‖22

+
C

(1− δ)κn(C)Lnn
(
√
Lnδ +

1√
n
ξ(C))2‖w‖22, (11)

ξ(C) = supu∈C∩Bn u
TXT w

‖w‖2 for constants c1, C > 0.

Theorem 2 indicates the linear convergence of S-SVRG.
Similar to PGD, sketching brings approximation error

√
Lnδ.

To get better approximation solution in other words smaller
δ, we should increase sketching dimension m such that m >
w2(XC∩Sm−1)

δ2 . We also need to choose δ ≤ 1− 2Ln
3κn(C) such

that bound (11) is valid.
Example (Lasso): If the structured parameter θ∗ is s-sparse,

we can use l1 norm ball as constraint. l1 constrained least
squares is also known as Lasso [Tibshirani, 1996].

Let S ∈ Rm×n be a σ-sub Gaussian random matrix. Let
θ∗ ∈ Rp be an s-sparse vector, and y = Xθ∗ + w. With
θ0 = 0, we apply sketched PGD update. Let us assume
the RSC and BD conditions hold. Take η = cmn

Ln(
√
m+
√
n)2

,

if m > c · s log pδ2 for some c > 0 [Banerjee et al., 2014;
Pilanci and Wainwright, 2015], then starting from θ0 = 0,
with high probability

‖θt+1 − θ∗‖2 ≤
(

1− m(1− δ)κn(C)
(
√
m+

√
n)2Ln

)t
‖θ∗‖2

+
1√

n(1− δ)κn(C)
(
√
Lnδ +

1√
n
ξ(C))‖w‖2.

(12)

Example (Low-Rank Matrix Regression): In low-rank ma-
trix regression, the true parameter Θ∗ ∈ Rd×p is a rank r
matrix with r � min{d, p}. n observations can be accessed
by the noisy linear model yi = 〈Xi,Θ

∗〉 + wi, where 〈., .〉
denotes the entry wise inner product of two matrices, and Xi

is a data point. One commonly used constraint is nuclear norm
ball [Recht et al., 2010]. Denote ‖.‖∗ the nuclear norm, we set
R(θ) = ‖θ‖∗. Let us assume the RE and BD conditions hold.
Take η = cmn

Ln(
√
m+
√
n)2

, if m > c · r(d+p)δ2 for some c > 0

[Chandrasekaran et al., 2012], then starting from Θ0 = 0,
with high probability

‖Θt+1 −Θ∗‖2 ≤
(

1− m(1− δ)κn(C)
(
√
m+

√
n)2Ln

)t
‖Θ∗‖2

+
1√

n(1− δ)κn(C)
(
√
Lnδ +

1√
n
ξ(C))‖w‖2.

(13)

5 General Loss Functions
In previous sections, we have discussed sketched iterative
algorithms for constrained least squares. Unlike sketched least
squares, Algorithm 1 does not solve a specific optimization
problem. Instead, we find that if Algorithm 1 converges, the
convergent point will be a solution to a system of nonlinear
equations. The conclusion follows Lemma 3.

Lemma 3 Assume there is an η > 0 and a γ < 1 such that

‖θ2 − θ1 − ηXTSTS(dn(θ2)− dn(θ1)‖2 ≤ γ‖θ2 − θ1‖2,

for all θ1, θ2 ∈ Rp, then starting from arbitrary point, the
iteration θt+1 = θt − ηXTSTS · dn(θt), has a limitation θ̂
which satisfies XTSTSdn(θ̂) = 0.

From Lemma 3, S-PGD approximates first order optimality
condition XT dn(θ) = 0, which is the same as least squares.
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If sketching dimension m is large enough, then STS will
be approximately identity, and we would expect θ̂ and (2)’s
optimum to be very close.

Our results requires the following assumptions:
Assumption 3 (Strong Convexity and Smoothness of Loss
Function) All l(.; yi) are strongly convex and smooth. That is
there is an α > 0 and a β > 0 such that α ≤ l′′(xTi θ; yi) ≤
β, for any i ∈ [n], θ ∈ K.
Assumption 4 There is a 0 < δ1 < 1 such that for any
u ∈ XC, and diagonal matrix D = diag(d) with d ∈ [αβ , 1]n

|uTD(STS − I)Du| ≤ α

3β
δ1. (14)

Assumption 5 There is a δ2 > 0 such that for any u ∈ XC ∩
Bn, v ∈ span(X) ∩ Bn, and diagonal matrix D = diag(d)
with d ∈ [αβ , 1]n, where span(X) is the subspace spanned by
the columns of X

|uTD(STS − I)v| ≤ δ2. (15)
Assumptions 4 and 5 implies that matrix STS is close to
identity in some scale cones. From literature [Pilanci and
Wainwright, 2017; Pilanci and Wainwright, 2015; Woodruff,
2014], sketch dimension m determines the size of δ1 and δ2 in
assumptions 5, 4. Assumption 4 also indicates that m should
be in proportional to loss function condition number βα .

We then characterize the convergence of S-PGD.
Theorem 4 Let θ∗ be an arbitrary vector, and y is generated
according to (1). With θ0 = 0, we apply S-PGD. Let us
assume the RE and BD conditions hold for X . Set learning
rate η = α(1−δ2)κn(C)

β2(1+δ2)2L2
n

, if assumptions 3, 5 , and 4 hold, we
have at step t+ 1

‖θt+1 − θ∗‖2 ≤ ρ(C;S)‖θt − θ∗‖2 + ηξ(C;S)‖dn(θ∗)‖2,

where ρ(C;S) =
(

1− α2(1−δ1)2κ2
n(C)

β2(1+δ2)2L2
n

) 1
2

, and ξ(C;S) =

supu∈C∩B u
TXTSTS dn(θ

∗)
‖dn(θ∗)‖2 .

In Theorem 4 we use the same RE and BD conditions as
least squares (Theorem 1). Note that in general case S-PGD

convergence rate ρ(C;S) =
√

1− κ2
n(C)
L2
n

is slightly worse

than ρ(C) = 1− κn(C)
Ln

of least squares (Theorem 1) .
Example (Structured Logistic Regression): In structured

logistic regression, its loss function is logistic loss

l(xTi θ; yi) = log(1 + e−yix
T
i θ), (16)

where label yi ∈ {+1,−1}. If the structured parameter θ∗
can be captured by norm R(.), then the optimization problem
is posed as following

min
θ

1

n

n∑
i=1

log(1 + e−yix
T
i θ) s.t. R(θ) ≤ R(θ∗). (17)

The convexity and smoothness constant in Assumption 3 can
be bounded by the following conclusion
Lemma 5 When l(xTi θ; yi) is the logistic loss (16), we have
α ≤ l′′(xTi θ; yi) ≤ 1

4 , where α = ((1 + e−MR(θ∗))(1 +

eMR(θ∗)))−1 for all i and θ ∈ K, where M = maxiR
∗(xi),

and R∗(.) is the dual norm of R(.).

Let S ∈ Rm×n be a sketching matrix, the main step of S-PGD
for (17) is θt+1 = PR(θ)≤R(θ∗)(θt − η

n (SX)TS · dn(θt)),

where dn,i(θt) = −yi
1+eyix

T
i
θt

. Let us assume there exists a

RSC constant κn(C) > 0 and smoothness constant Ln > 0,
where error cone C = cone{∆ : R(θ∗ + ∆) ≤ R(θ∗)}. Take
η = α(1−δ1)κn(C)

β2(1+δ2)2L2
n

, then starting from θ0 = 0,

‖θt+1 − θ∗‖2 ≤ ρt(C;S)‖θ∗‖2

+
1√

n(1− ρ(C;S))
(
√
Lnδ +

1√
n
ξ(C))‖dn(θ∗)‖2,

(18)

where ρ(C;S) =
(

1− α2(1−δ1)2κ2
n(C)

β2(1+δ2)2L2
n

) 1
2

.

6 Comparison with SGD
In this section, we compare S-PGD with SGD. SGD can be
treated a special case of S-PGD. We introduce leverage score
and discuss how different types of sketching affects the lever-
age score. Finally, we compare the performance of SGD and
Hadamard sketching using leverage score.

Let S =
√

n
mP · In, where In ∈ Rn is the identity matrix,

then one iteration of SGD corresponds to S-PGD using the S
defined above. In each iteration, SGD sample a new sketching
matrix S in every iteration, while S-PGD only sample one S.

Let us consider ROS without re-randomization: S =√
n
mP · H , we show that the performance of different S

can be measured by leverage score. For S-PGD (1), the i-
th leverage score [Mahoney, 2011] is defined as pi(θ) =
‖hTi X‖

2
2(h

T
i d(θ))

2∑n
j=1 ‖hTj X‖22(hTj d(θ))2

, where hi is the i-th row of H . Let

µ(θ) = n ·maxi pi(θ), we have the following approximation
bound from [Mahoney, 2011; Drineas et al., 2006]

Theorem 6 Let δ ∈ (0, 1), with probability at least 1− δ, the
difference between gradient and sketching gradient can be
bounded by

‖XT d(θ)−XTSTSd(θ)‖22
‖X‖2F ‖d(θ)‖22

= O
(
µ2(θ) log(1/δ)

m

)
. (19)

From Theorem 6, the performance of SGD depends on µ(θ).
When d(θ) is close to sparse, µ(θ) is large and sketch-
ing update XTSTSd(θ) will not work. We set H to be
the Hadamard matrix and re-randomize S using D, then
XTSTSd(θ) will provide a desired stochastic gradient,

7 Experimental Results
In this section, we show the experimental results of our algo-
rithms on synthetic dataset, and how the choice of m affects
computational efficiency and statistical guarantee.

In our first set of experiments, we show how m affects the
performance of our algorithm using least squares. We draw de-
sign matrix X ∈ Rn×p randomly from Gaussian distribution.
We choose parameter θ∗ to be an s-sparse vector, non-zero
entries of θ∗ are drawn from standard Gaussian distribution.
Response y is given by y = Xθ∗ + σ · w, where σ > 0 is a
constant and w is drawn from standard Gaussian N (0, 1). We
sample sketching matrix S from N (0, 1√

m
) elementwisely.
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Figure 1: Plot of running time versus estimation error ‖θt − θ∗‖2
for PGD (left) and SVRG (right). We set sample size n to be 217

and dimension p to be 2000. We set sketching dimension m to be
1000. Estimation error is presented in log scale. We can see that both
algorithms converge linearly.
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Figure 2: (left) Dimension reduction ratio m
n

versus running time
(left, blue) and statistical error ‖θt− θ∗‖2 of least squares (right, red)
using S-PGD. As we increase the size ofm, S-PGD uses more time to
converge but the output becomes more accurate. (right) Comparison
of S-PGD and SGD on our designed synthetic dataset start from
special initial point. S-PGD converges while SGD increases the
training loss.

In the first experiment, we choose n = 131, 072(217),
p = 2000, m = 1000, and s = 10. We plot mean run-
ning time for each iteration versus mean estimation error
‖θt − θ∗‖2 and error bar of estimation error in Figure 1. We
can see that both algorithms converge linearly. In the second
experiment we choose n = 20000, p = 5000, s = 10, and
m ∈ {20000, 18000, 16000, 14000, 12000, 10000}. For each
m we run S-PGD 10 times. We stop our algorithm when rel-
ative error ‖θt+1−θt‖2

‖θt‖2 is smaller than 0.01. We plot ratio m
n

versus estimation error ‖θ̂ − θ∗‖2 and running time for each
iteration, estimation error in Figure 2 left. We can see that as
m increases, S-PGD converges slower but the output becomes
more accurate.

In our second set of experiments, we compare RHS based
S-PGD with PGD for binary logistic regression. Each data
point (yi, xi) is generated by xi ∼ N (0, Ip), P(yi|xTi θ∗) =

1

1+e−yix
T
i
θ∗ . Let p = 1000, n = 1, 048, 576(220), and

m = 2000. We run 900 iterations for both algorithms. We
collect the running time and estimation error every 10 itera-
tions. The experimental results are shown in Figure 3. We
can see that PGD takes less iterations to reach a smaller error,
but in about the first 600 seconds S-PGD outperforms PGD.
In summary, PGD has faster convergence rate but slower per
iteration computation than S-PGD. S-PGD do more iterations
in less time than PGD.

In our third set of experiments, we compare RHS based
S-PGD with SGD for binary logistic regression. We choose
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Figure 3: Convergence comparison of PGD and S-PGD. For both
algorithms we plot running time versus estimation error ‖θt − θ∗‖2
(left) and number of iterations versus estimation error (right). We
set sample size n to be 220 and dimension p to be 1000. We set
sketching dimension m to be 2000. We can see from the left that in
about the first 600 seconds S-PGD achieves lower estimation error.
By comparing the result of both left and right we can see that S-PGD
has faster per iteration computation.

n = 131, 072(217), p = 1000, and m = 1000. Firstly, we
sample uniformly from the unit sphere Sp−1 ⊂ Rp a vector θ0.
Denote S+p−1 a sphere gap such that for all u ∈ S+p−1 the angle
between θ0 and u is in

[
0, π3

]
. Let y ∈ {1,−1}n be the label

vector and X ∈ Rn×p be the data matrix. We set yi = 1 and
sample xi uniformly from S+p−1 if i = 2, . . . , 65, 536(216);
We set yi = −1 if i = 65, 538, . . . , 131, 072 and sample xi
uniformly from −S+p−1 = {v : −v ∈ S+p−1}. Then we set
y1 = 1, y65537 = −1 and randomly sample x1 and x65537
such that xi = 1000 · gi, i = 1, 65, 537 where gi ∈ Rp is a
random vector that satisfies gTi θ0 = 0. Finally, we constructed
a dataset with two outliers. We set sketching dimensionm = 1
and initialize both algorithms by w0. We compare the perfor-
mance of S-PGD and SGD in terms of Ln(θ) and iterations.
We run both S-PGD and SGD 100 times, and plot the average
of training loss versus number of iterations.

From Figure 2 right, the loss function trained by S-PGD
keeps going down while SGD stops, which implies that SGD
failed to find an effective sample in fixed iterations. Vector
d(θ0) is close to sparse since only two samples are misclassi-
fied, and µ(θ0) is large because the misclassified samples have
greater ‖x‖2. RHS based S-PGD finds descent directions and
move towards the real optimum.

8 Conclusion
In this paper we discussed sketching based iterative algorithms
for generalized linear models. We show that under proper
assumptions, these algorithms converge linearly to an error
bound. The rate of convergence and error bound is determined
by size of random projection and property of design matrix. In
future works we want to explore if there exists similar results
for nonlinear problems.
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