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Abstract

Zero-shot learning (ZSL) is a recently emerging re-
search topic which aims to build classification mod-
els for unseen classes with knowledge transferred
from auxiliary seen classes. Though many ZSL
works have shown promising results on small-scale
datasets by utilizing a bilinear compatibility func-
tion, the ZSL performance on large-scale datasets
with many classes (say, ImageNet) is still unsat-
isfactory. We argue that the bilinear compatibili-
ty function is a low-rank approximation of the true
compatibility function such that it is not expressive
enough especially when there are a large number of
classes because of the rank limitation. To address
this issue, we propose a novel approach, termed as
High-rank Deep Embedding Networks (GREEN),
for ZSL with many classes. In particular, we pro-
pose a feature-dependent mixture of softmaxes as
the image-class compatibility function, which is a
simple extension of the bilinear compatibility func-
tion, but yields much better results. It utilizes a
mixture of non-linear transformations with feature-
dependent latent variables to approximate the true
function in a high-rank way, thus making GREEN
more expressive. Experiments on several dataset-
s including ImageNet demonstrate GREEN signifi-
cantly outperforms the state-of-the-art approaches.

1 Introduction

The aim of zero-shot learning is to recognize concepts that are
never seen during training [Xian er al., 2017]. It is very useful
in real-world applications because of the following three rea-
sons. Firstly, there are potentially unlimited concepts in prac-
tice such that it is very expensive to collect sufficient labeled
samples for all of them [Lampert et al., 2014]. Secondly, new
concepts emerge every data and it is almost impossible to re-
train a model every time a new concept pops up. Thirdly, the
objects or concepts “in the wild” follow a long-tail distribu-
tion such that many concepts have very limited visual samples
for training [Changpinyo et al., 2016].

Generally speaking, ZSL can be formulated as a cross-
modality matching problem equipped with a compatibili-
ty function F(z,y; W) where z € RP is the feature vec-
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Figure 1: The ZSL accuracy drops significantly with more classes.

tor of an image such as deep features [He et al., 2016],
y € RY is the feature vector of a concept such as class at-
tributes [Farhadi er al., 2009] or word2vec representation-
s [Socher et al., 2013], and W € RP*1 is the parameter of
the function F'. The bilinear compatibility function defined
as F(x,y; W) = aWy/' is widely utilized [Akata et al., 2016;
2015; Kodirov et al., 2017; Norouzi et al., 2013; Socher et al.,
2013; Xian et al., 2016; Zhang and Saligrama, 2015]. Since
there is no labeled samples for unseen classes for training,
some auxiliary seen classes related to the unseen ones which
have many labeled samples are utilized for training. In par-
ticular, given an image-class pair (x,y) from seen classes,
the parameter W is learned with the objective that increases
F(x,y; W) for a positive pair and decreases it for a negative
pair. Since the seen classes and unseen classes are related
(e.g., they are all animal species), the parameter W trained
with seen classes can be applied to the unseen ones. Then
given any image x and an class y, the compatibility can be
directly computed by F'(x,y; W) and the prediction of a test
image x is given based on its compatibility to each unseen
class, e.g., by choosing the class with the largest response.

For small-scale datasets with only a few classes, such as
AwA [Lampert er al., 2014] which just has 50 classes in
total, bilinear compatibility function has yielded promising
results, which has been demonstrated in massive number
of ZSL literatures [Akata et al., 2016; Guo et al., 2017b;
Kodirov et al., 2017; Zhang and Saligrama, 2015]. Howev-
er, when dealing with large-scale datasets with many classes,
like ImageNet [Russakovsky et al., 2015] which has thou-
sands of classes, the performance is still unsatisfactory [Xian
et al., 2017]. Since the latter is the case of real-world scenari-
o where we wish to apply ZSL, it is necessary to investigate
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how to improve ZSL accuracy when there are many classes.
For demonstration, we plot the current state-of-the-art ZSL
accuracy w.r.t. the number of classes in the test set, as shown
in Figure 1. When there are 50 test classes, the accuracy
is around 60% [Changpinyo et al., 2016]. But it drops be-
low 10% when there are more than one thousand test classes.
Moreover, the test accuracy keeps decreased until it reaches
less than 1%, when the test classes are increased to more than
ten thousands [Xian et al., 2017].

If we regard the model learning as a function approxima-
tion problem, i.e., we try to approximate a true compatibility
function F'* by F', the complexity of F' becomes crucial. A
simple model may lead to under-fitting while a complicated
model may result in over-fitting [Bishop and others, 2006].
When dealing with small-scale datasets, the bilinear compat-
ibility function seems complicated enough. However, when
there are a large number of classes (say, 10 thousand), its
complexity seems too low to approximate F'*. We argue that
this is caused by the rank limitation from a matrix factoriza-
tion perspective. Because the bilinear compatibility function
is a (relatively) low-rank approximation, it seems too sim-
ple to handle the complicated situation when there are many
classes. From this point of view, it is necessary to improve
the complexity of the function to handle large-scale datasets.

On the other hand, ZSL for a large-scale dataset is different
from the one for a small-scale dataset. In particular, in smal-
1 datasets, it only needs to recognize coarse-grained classes
like in AwA [Lampert et al., 2014], or fine-grained classes
from one root category like CUB [Wah et al., 2011]. Howev-
er, for a large-scale dataset like ImageNet, there are many root
categories and fine-grained sub-categories, like tens of kinds
of dogs and birds. In this scenario, a model has to capture
macro characteristics to distinguish between root categories,
such as bird and dog, and micro ones to distinguish between
fine-grained classes, such as “Labrador Retriever” and “Gold-
en Retriever”. Obviously, using a simple bilinear model to
handle a large-scale dataset seems unreasonable [Xian et al.,
2016] such that a more expressive model is required.

The success of bilinear function for ZSL motivates us
to investigate it deeper. Inspired by [Yang et al, 2018],
we propose a novel approach, termed as High-rank Deep
Embedding Networks (GREEN), for ZSL with many class-
es. Inspired by the latent variable models [Bishop, 1998],
GREEN adopts a mixture of sotmaxes together with feature-
dependent latent variables. By the weighted combination of
softmaxes, the complexity of the model is improved such that
it breaks the rank limitation suffered by the bilinear model,
which makes GREEN effective for ZSL with many classes
from the theoretical perspective. On the other hand, the la-
tent variables can be regarded as a coarse clustering of data
which groups images with similar macro characteristics, such
as views or backgrounds into one branch, followed by a soft-
max focusing on the micro characteristics to distinguish be-
tween them, making GREEN more powerful and flexible than
the bilinear model. In summary, the contributions are below.

1. We notice that the widely used bilinear compatibili-
ty function suffers from rank limitation so that it performs
poorly for ZSL with many classes. We propose novel High-
rank Deep Embedding Networks (GREEN) for ZSL with
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many classes. It adopts a mixture of softmaxes with feature-
dependent latent variables. GREEN is capable of keeping
the formulation and training simple while resulting in a high-
complexity model to handle large-scale datasets.

2. We develop a shallow version which utilizes given fea-
tures and a deep version which can be trained in an end-to-end
manner. Both versions can be trained efficiently.

3. We carry out extensive experiments for ZSL with
many classes, including ImageNet. The experimental result-
s demonstrate that GREEN outperforms the state-of-the-art
ZSL approaches, which validates its effectiveness.

2 Preliminaries

2.1 Notations

ZSL problem is described as follows. There are two disjoin-
t class sets Cs = {cf,...,c;_} and Cy, = {c{,...,c} } with
Cs N C, = 0, denoted as seen classes and unseen classes re-
spectively. Each image is represented by an image feature
vector € RP and each class is represented by a label feature
vector y € RY. There is a training set Dy, = {(x4, yi)}124
where the each class feature y; corresponds to a seen class
from C,. A compatibility function F'(x,y; W) between im-
age and class features is trained based on the training set.
Then, it is applied to a test sample from unseen classes C,
in the conventional ZSL setting, or C; UC,, in the generalized
ZSL setting. The classification is performed by selecting the
class which has the largest compatibility to the test sample.

2.2 Related Works

The bilinear compatibility function is widely utilized:
F(a,y; W) = aWy' (D)
There are many representative works with it, including DE-
VISE [Frome et al., 2013], ALE [Akata et al., 2016], SIE
[Akata et al., 2015], SAE [Kodirov et al., 2017], ESZSL
[Romera-Paredes and Torr, 2015], and many other approach-
es [Fu er al., 2015b; 2015a; Guo et al., 2016; Zhang and
Saligrama, 2016]. The basic idea is to build a cross-modality
matching function between image feature space and class fea-
ture space, which can be achieved by using the labeled data
in Dy,.. Since the class features from C, and C,, are from the
same feature space like the word2vec space and Cs and C,
are related, e.g., they are all animal species, the function F'
trained with C4 can be applied to C,,, which has been demon-
strated in many ZSL literatures. To learn the function F,
many different loss functions are considered. For example,
triplet loss [Akata er al., 2015], ranking loss [Akata et al.,
2016], Euclidean loss [Romera-Paredes and Torr, 2015] and
cross-entropy loss [Wu et al., 2018]. Bilinear compatibility
function is shown to be simple and effective for ZSL.

There are also some other ideas for ZSL. For example,
as seminal works of ZSL, DAP and IAP [Farhadi et al.,
2009; Lampert et al., 2014] consider to recognize the at-
tributes from images and compare them to the class attributes.
CMT [Socher et al., 2013] embeds image features into the
class feature space for distance measure. CONSE [Norouzi
et al., 2013] utilizes convex combination of semantic embed-
dings to compute the conditional probability. SYNC [Chang-
pinyo et al., 2016] builds synthesized classifiers based on a
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Figure 2: The basic framework of high-rank deep embedding networks
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(GREEN). Given an image, a (trainable or not) feature extractor is
used to compute the feature-dependent latent weight factors where

each factor controls the weight of one branch for the final output. For each branch, a d-dimensional branch-specific image feature is generated
based on the image feature, and then together with the class features, the branch softmax is computed based on the bilinear compatibility

function. At last, the softmaxes from each branch is mixed, producing

the final output. Benefiting from the latent factors and mixture of

softmaxes, GREEN is capable of yielding high-rank output, which is more powerful than simple bilinear compatibility function.

mapping from class feature space to a model space. SSZS-
L [Guo er al., 2017a] synthesizes samples based on the re-
constructed distribution of unseen classes. STZSL [Guo et
al., 2017b] transfers similar training samples to unseen class-
es based on the image-class similarity. Although they do not
explicitly adopt bilinear compatibility function in Eq. (1) as
the final classification model, Eq. (1) still acts as an important
part in their algorithms.

3 High-rank Deep Embedding Networks
3.1 Rank Limitation

Suppose there are n images and k classes, given the parameter
matrix W, we can construct an image-class compatibility ma-
trix F € R"**, where each element F;. = F(z;,ye; W) =
x;Wyl. Tf the ground-truth compatibility matrix for these
image-class pairs is F € R"**, we have

F=XWY'~F )
where X € R"*P is the image feature matrix by stacking x;
and Y € R¢*9 is the class feature matrix by stacking y.. In-
terestingly, this formulation is essentially a matrix factoriza-
tion problem where the matrices W, X, and Y (if learnable)
are learned by some algorithms so that the factorized matrix
XWY’ can approximate F as precise as possible.

Suppose the rank of F and F are r and 7 respectively.
Obviously, to precisely factorize F into XWY”, the ranks
should satisfy the condition » > 7 or at least 7 is close
to 7. From the definition of these matrices, we can ob-
serve that r < min(p,q) and ¥ < k. For a small dataset
with only tens of classes, 7 is usually small such that the
condition is always true. In this case, the bilinear com-
patibility function can well approximate the true function.
However, for a large-scale dataset with large k, 7 could
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be very large because the real-world dataset is complicat-
ed and it is reasonable to assume the true compatibility ma-
trix is high-rank. However, the widely used class features,
such as word2vec representation [Mikolov et al., 2013a;
2013b], have only hundreds of dimensions, or even tens of
dimensions. Since r < g, the rank of F' is much smaller than
the rank of F, making the approximation imprecise. Due to
the rank limitation, the bilinear function seems to “underfit”
datasets with many classes, yielding poor performance.

3.2 GREEN

To address the issues above, in this paper we propose a nov-
el model using a simple extension of bilinear compatibili-
ty function, termed as high-rank deep embedding network-
s (GREEN). The framework is summarized in Figure 2. In
particular, given an image feature x, instead of utilizing the
simple bilinear compatibility function in Eq. (1), we propose
to use a mixture of softmaxes with feature-dependent latent
variables to compute the compatibility,

exp(xy Wpyl)
zec, exp(TWhyr)

where B is the number of branches and w, ; is the feature-
dependent latent weight factor which controls the contribu-
tion of the b-th branch to the output, defined as follows,

B
FG(‘T/!/C; W) = wa,bz 3)
b=1

exp(zuy)

25:1 exp(wu;)
where u, € RP is the weight parameter. For each branch,
the branch-specific feature 7, = ReLU(xV;) € RY where
Vi, € RP* is the fully connected parameter, and W, € R%*4
is the compatibility parameter for the b-th branch.

One can verify F'(z,y.; W) > 0and > F(z,y; W) =1
which indicates that we can regard it as the conditional proba-
bility on each training class. Therefore we can train the model

“4)

Wz, b
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like training with conventional softmax by cross entropy loss
function as follows,

Lop = _Z Z I(ye = yi)log Fa(x,ys: W) (5)

i=1 éeCs

Minimizing Lo g is achieved by the gradient descent algo-
rithm, which gives us the most important model parameters
{up}£_, for computing the latent weight factor, {V;}£_; for
computing branch-specific feature, and {Wb}bB:1 as the com-
patibility parameter for each branch. With the model Fi;, the
prediction for a test image x is given as follows,

c(x) = argmax Fg(x,yc; W) 6)

3.3 Discussion

GREEN leads to high-rank approximation. As discussed
above, bilinear function suffers from rank limitation such that
it underfits the dataset which has many classes. GREEN is a
simple extension of bilinear function, but results in a high-
rank compatibility matrix. In particular, the compatibility
matrix F¢ produced by GREEN is as follows:

B
FG = Z Qbexp(XbWbY/ — Aansyks) (7)
b=1

where Q, = diag(wg, b, Wa,, b)> Xp € R Xd g the
branch-specific feature matrix by stacking training features
of the b-th branch, A, = diag(log Eaecs exp(z; yWiyt),i =
1,...,ns), and J,, . is a ng X ks matrix whose elements are
all 1. Obviously, F¢ is a non-linear combination of image
features and class features by the sum-exp function. Since A
is a diagonal matrix, the rank d¢ is no longer limited by the
feature dimensionality p or ¢, making it arbitrarily high-rank.
Please refer to [Yang er al., 2017] for proof. In the extreme
case where B = 1, F degenerates to F after a log trans-
formation and a simple row-wise shift. Therefore, GREEN
results in a higher-rank matrix than the bilinear model, which
is able to approximate complicated datasets with many class-
es more precisely. Due to its improved expressiveness, we
can expect GREEN to obtain better (or at least equal) results
compared to the simple bilinear function.

GREEN keeps the model simple. Based on the rank lim-
itation < min(p, q), there is a straightforward solution to
problem. One can significantly increase the dimensionality
of image and class features, i.e., p and q. However, when p
and q get too large, the bilinear model becomes very compli-
cated since W has p x g parameters, which is likely to overfit
the training set. In addition, the number of semantic classes
is potentially unlimited, it is almost impossible to keep in-
creasing p and g when there are more classes are taken into
consideration. Both issues make the model quite complicat-
ed. On the other hand, GREEN utilizes mixture of softmaxes
and non-linear transformations, which is capable of approx-
imating arbitrarily high-rank matrix, and keeping the model
simple at the same time. In particularly, GREEN needs on-
ly p x b parameters to compute the feature-dependent latent
weight factor, and B X p X d parameters in total. Since B is
usually small (e.g., 16), the complexity is controlled. In addi-
tion, because GREEN do not suffer from rank limitation any
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longer, it becomes possible to reduce p and ¢, especially p
by the branch-specific feature, to compensate for the increase
of model parameters caused by the mixture structure. In this
way, GREEN keeps as simple as the original bilinear compat-
ibility model while being more expressive and powerful.
Relation to existing works. As discussed above, GREEN
is an simple and effective extension of the bilinear function,
which address the rank limitation problem when dealing with
many classes. We also notice that there are some works con-
sidering similar mixture structure of bilinear functions. One
is LATEM([Xian et al., 2016] whose compatibility function is
/
F(z,y; W) = b:I{lf%.)'(’B xWyy )
It utilize max operation to bring in nonlinearity. GREEN is
different from LATEM in three folds. Firstly, due to the max
operation, only one component contribute to the final decision
in LATEM. As discussed above, with only one componen-
t, the model suffers from rank limitation. GREEN uses soft
combinations such that all branches contribute to the final de-
cision, making it more expressive. Secondly, LATEM uses
triplet loss for training while GREEN directly uses softmax
based cross entropy loss. Obviously, training with cross en-
tropy loss is much easier and more efficient than with triplet
loss. We can expect better performance with better optimiza-
tion. Thirdly, LATEM observed the limitation of linear func-
tion but did not point out the reason. We theoretically demon-
strate that the problem lies in the rank limitation and propose
GREEN to effectively address it. Because of these advan-
tages, GREEN is more powerful for ZSL with many classes.

4 Experiment
4.1 Setting

There are many widely used benchmarks for evaluating ZS-
L approaches. In this paper, we focus on ZSL with many
classes. Therefore, many of them with only tens of class-
es, like AwA and aPY [Farhadi er al., 2009], are not good
choices. In this paper, we consider two datasets. The first is
SUN [Patterson and Hays, 2012] scene recognition dataset. It
consists of 645 classes as the seen classes with 12, 900 sam-
ples for training, and 72 unseen classes with 1,440 samples
for test. The other dataset is ImageNet [Russakovsky et al.,
2015] which is a really large-scale dataset with many classes.
We use the widely used 1, 000 classes with about 1.3 images
as the training set. There are another about 20k classes with
about 14 million samples utilized as the test set. To compre-
hensively evaluate on ImageNet, we consider different sub-
sets of the test set, including classes that are 2-hops (denoted
as 2H, 1,509 classes) and 3-hops (3H, 7,678 classes) away
from the 1,000 seen classes, the most popular 500 (M500),
1k (M1K), and 5k (M5Kk) classes, and the least popular 500
(L500), 1k (L1K), and 5k (L5K) classes. For evaluation, we
use average per-class top-1 accuracy [Xian et al., 20171:

©))

1 #correct predictions in ¢
acc = — Z

samples in ¢
Y cecy, # P

For each image, we use the ResNet-101 pretrained on
ImageNet-1k as the feature extractor, which yields 2, 048-
dimensional image features. For SUN dataset, we use the
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SUN 2H 3H | M500 | M1k | M5k | L500 | Lik | L5k | ALL

CONSE [Norouzi et al., 2013] 38.8 7.63 | 2.18 | 12.33 | 831 | 3.22 | 3.53 | 2.69 | 1.05 | 0.95
CMT [Socher et al., 2013] 39.9 2.88 | 0.67 | 5.10 3.04 | 1.04 | 1.87 | 1.08 | 0.33 | 0.29
LATEM [Xian et al., 2016] 55.3 5.45 | 1.32 | 10.81 | 6.63 1.90 | 4.53 | 2.74 | 0.76 | 0.50
ALE [Akata et al., 2016] 58.1 5.38 | 1.32 | 10.40 | 6.77 | 2.00 | 4.27 | 2.85 | 0.79 | 0.50
DEVISE [Frome et al., 2013] 56.5 5.25 | 1.29 | 10.36 | 6.68 1.94 | 4.23 | 2.86 | 0.78 | 0.49
SJE [Akata et al., 2015] 53.7 | 5.31 1.33 | 9.88 6.53 1.99 | 493 | 293 | 0.78 | 0.52
ESZSL [Romera-Paredes and Torr, 2015] 54.5 6.35 1.51 | 11.91 7.69 2.34 | 4.50 | 3.23 | 0.94 | 0.62
SYNC [Changpinyo ef al., 2016] 56.3 9.26 | 2.29 | 15.83 | 10.75 | 3.42 | 5.83 | 3.52 | 1.26 | 0.96
SAE [Kodirov et al., 20171 40.3 4.89 | 1.26 | 9.96 6.57 | 2.09 | 2,50 | 2.17 | 0.72 | 0.56
GREEN-S 61.2 | 10.54 | 2.41 | 17.33 | 12.51 | 4.44 | 6.60 | 5.09 | 1.61 | 1.57
GREEN-D 65.6 | 12.38 | 3.41 | 18.80 | 14.47 | 5.38 | 7.71 | 6.07 | 2.30 | 2.06

Table 1: Zero-shot performance comparison on benchmarks.
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Figure 3: The top-1, top-5, and top-10 accuracy on ImageNet

provided class attributes as the class feature. Each class has
a 102-dimensional attribute feature. For ImageNet dataset,
we use the 500-dimensional word2vec representations for all
classes [Changpinyo er al., 2016]. For fair comparison, we
use the features provided by [Xian et al., 2017] as input.

GREEN can take feature vectors as input like many other
ZSL approaches, which can be regarded as fixing the feature
extractor in Figure 2. We denote this version as GREEN-
S(hallow). In addition, it is simple to combine GREEN with
deep convolutional networks, and thus it can use raw images
as input and train (finetune) the feature extractor, which is de-
noted as GREEN-D(eep). For both versions, we set the num-
ber of branches as B = 16. Since there are multiple branches,
we can reduce the dimensionality of the branch feature x to
reduce computational burden. In particular, we set d = 256.
To minimize the loss function in Eq. (5), we use mini-batch
based stochastic gradient descent algorithm. The batch size
is 128 and we train the model for 100k iterations. The initial
learning rate is 0.01 and then 0.001 at the 70k-th iteration.
For GREEN-D, we use ResNet-101 as the backbone. We im-
plement GREEN in TensorFlow'.

4.2 Benchmark Comparison

We summarize the comparison on SUN and ImageNet (in-
cluding its subsets) in Table 1. In Figure 3, we show the re-
sults on ImageNet with different metrics. From the results,
we can observe that GREEN outperforms the other ZSL ap-

"https://www.tensorflow.org/
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proaches with significant margin, which demonstrates the ef-
fectiveness of GREEN for ZSL with many classes. We have
the following important observations based on the results.

Firstly, GREEN-S, which uses the same image features as
many non-deep baseline approaches, shows observable im-
provement. This is a clear evidence of the superiority of
GREEN framework. As discussed above, GREEN utilizes
a mixture of softmaxes with feature-dependent latent weight
factors to address the rank limitation problem suffered by the
simple bilinear model, which is capable of approximating the
true compatibility matrix in a high-rank manner. From the re-
sults, we can observe that the simple formulation of GREEN
can indeed approximate the true compatibility more precisely.

Secondly, GREEN-D, which finetunes the feature extrac-
tor, improves significantly over GREEN-S. This phenomenon
is reasonable since the finetuning results in better image fea-
tures. However, some baseline approaches are based on deep
networks too, such as CONSE and DEVISE. They do not
show comparable performance. This phenomenon demon-
strates that the mixture of softmaxes and the objective func-
tion of GREEN is more effective for ZSL, especially when
there are many classes. In addition, SYNC is one of the best
baseline approaches in all. Its nonlinear compatibility func-
tion seems work well for ZSL. However, since it is very com-
plicated, it seems difficult to combine it with deep networks,
while the simple loss function of GREEN can be combined
with deep networks easily, making GREEN more powerful.

Thirdly, we show the relative improvement of GREEN-S
over the best result achieved by baseline approaches. Here we
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Figure 4: The effect of the number of branches (5B) on GREEN-D.

can observe that the improvement becomes larger with more
test classes. There are macro characteristics to distinguish be-
tween “dog” and “bird”, and micro characteristics to distin-
guish between fine-grained classes like “Golden Retriever”
and “Labrador Retriever”. When there are just a few class-
es, one simple linear more is likely to handle both. However,
when there are a large number of classes, it is unreasonable
to handle them at the same time. The mixture structure of
GREEN can model the hierarchical structure classes where
the latent weight factors can be regarded as coarse cluster-
ing of data which distinguish between root classes and each
branch focuses on fine-grained classes. The results demon-
strate the superiority of GREEN for ZSL with many classes,
which makes it more practical for real-world applications.
Fourthly, LATEM, which uses max operation to bring non-
linearity into compatibility function, does not perform well.
As discussed above, with max operation, only one branch
contributes to the final decision, which also suffers from rank
limitation to some extent. GREEN uses soft combinations
using all branches, making it more expressive, which seems
more reasonable and suffers less from the rank limitation.

4.3 The Effect of Mixture

To further verify the effectiveness of GREEN, we conduct an-
other experiment, which change the number of branches, i.e.,
B, and evaluate the performance of GREEN-D. When B = 1,
GREEN-D degenerates to the simple bilinear model. The re-
sults w.r.t. B are shown in Figure 4. We can observe that
the performance increases significantly with larger B, which
shows the importance of the mixture of softmaxes. When
there are many classes, it is unreasonable to handle them by
a simple bilinear model. With more branches in the mixture,
the model can focuses on more aspects of data, such as differ-
ent background or views, and then capture the micro informa-
tion in each branch. Besides, although the sum-exp function
can theoretically result in arbitrarily high rank, the rank of the

generated compatibility function in practice is still limited by
the complexity of the model due to the existence of model
regularization. With more branches in the mixture, the model
is more expressive, leading to higher-rank approximation.

5 Conclusion

In this paper we focus on ZSL with many classes. In par-
ticular, we notice that the widely used bilinear compatibility
function works well on small-scale datasets, but fails in large-
scale datasets with many classes like ImageNet. We argue
that this is due to the rank limitation problem based on a ma-
trix factorization perspective. To address this issue, we pro-
pose a novel approach, termed as High-rank Deep Embedding
Networks (GREEN). GREEN utilizes a mixture of softmaxes
as the image-class compatibility function, which is a simple
extension of bilinear function, but is able to approximate the
true function in a high-rank manner by a mixture of nonlin-
ear transformations with feature-dependent latent variables.
GREEN is very simple and expressive. It can be combined
with deep networks as well. Extensive experiments on bench-
marks including ImageNet demonstrate GREEN significantly
outperforms the state-of-the-arts for ZSL with many classes.
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